Organic substrate and organic foliar fertilizer effect on chlorophyll index and growth in Umbuzeiro seedlings Received for publication: 18 January, 2018. Accepted for publication: 28 July, 2018 Doi: 10.15446/agron.colomb.v36n2.69866 1 Universidade Federal de Viçosa, Viçosa (Brasil). 2 Universidade Estadual Paulista, Jaboticabal (Brasil). 3 Universidade Federal da Paraíba, Bananeiras (Brasil). * Corresponding autor: cassio.alian216@gmail.com Agronomía Colombiana 36(2), 152-157, 2018 Organic substrate and organic foliar fertilizer effect on chlorophyll index and growth in Umbuzeiro seedlings Efectos de substratos orgánicos y fertilizantes orgánicos foliares en el crecimiento e índices de clorofila en plántulas de Umbuzeiro Alian Cássio Pereira Cavalcante1*, Adailza Guilherme Cavalcante2, Josinaldo da Silva Henrique3, José Flavio Cardoso Zuza3, Murielle Magda Medeiros Dantas3, and Raunira da Costa Araújo3 ABSTRACT RESUMEN The umbuzeiro (Spondias tuberosa Arr. Cam.) is a fruit tree originating from the Caatinga biome that enjoys high accep- tance in the market for in natura consumption or industrial- ized products; as a result, its cultivation has become of great importance for the region of Northeast Brazil. The objective was to evaluate growth, substrate temperature and chlorophyll indices in umbuzeiro seedlings at organic substrate levels and with organic foliar fertilizer (EcoLife®) applications. The experimental design was a randomized block with a factorial arrangement of 5×2, with four replicates and three plants per experiment unit. The factors corresponded to the proportions of the organic compost to the substrates (0, 25, 50, 75 and 100%), with and without foliar applications of 1% organic foliar fertilizer. The growth, leaf area and chlorophyll indices of the umbuzeiro seedlings were higher in the treatments with organic compost and foliar applications of organic foliar fertilizer. El umbuzeiro (Spondias tuberosa Arr. Cam.) es un árbol frutal originario del bioma Caatinga con gran aceptación en el mer- cado para consumo in natura o productos industrializados. Debido a esto, su cultivo ha adquirido gran importancia para la región del Nordeste brasileño. El objetivo fue evaluar el crecimiento, temperatura del sustrato e índices de clorofila en plántulas de umbuzeiro en niveles de compuestos orgánicos en el sustrato y aplicación foliar de fertilizante foliar orgánico (EcoLife®). El delineamiento experimental utilizado fue en bloques al azar, con arreglo factorial de 5×2, con cuatro repe- ticiones y tres plantas por unidad experimental. Los factores corresponden a las proporciones de compuesto orgánico a los sustratos (0, 25, 50, 75 y 100%) en el sustrato con y sin aplicación foliar de fertilizante foliar orgánico a 1%. El crecimiento, área foliar e índices de clorofila de plántulas de umbuzeiro fue mayor en los tratamientos con compuesto orgánico y aplicación foliar de fertilizante orgánico. Key words: Spondias tuberosa, organic inputs, native fruit. Palabras clave: Spondias tuberosa, insumos orgánicos, frutal nativo. because of its pleasant, refreshing, acidic taste with high antioxidant activity (Zeraik et al., 2016). The umbuzeiro is a species highly adapted to semi-arid regions, with long periods of drought in the dry season. This fruit represents an additional income for farmers in the dry season because it is a nutritious food for humans (Lins Neto et al., 2010). Despite the high demand in the northeastern region for umbu fruits, there are no com- mercial plantations and production is exclusively extractive (Costa et al., 2015). This species is dicotyledonous and can be propagated by cutting, grafting or, predominantly, seeds. The plants originating from seeds have pivotal roots, a structure that Introduction In the present study, some responses by umbuzeiro (Spon- dias tuberosa Arr. Cam.) to organic inputs were evaluated. The umbuzeiro is an endemic plant of the Caatinga biome characterized by a seasonally dry tropical forest (Mertens et al., 2017). Among the tropical and subtropical fruits grown in the northeast region of Brazil, fruits of the genus Spondias, such as umbu (Spondias tuberosa) and umbu-cajá (Spon- dias sp.), are generally consumed in natura, as juice and in the form of ice cream (Galvão et al., 2011; Medeiros et al., 2015). Umbu fruit has great prominence and acceptance by consumers in the north and northeast of Brazil, mainly http://dx.doi.org/10.15446/agron.colomb.v36n2.69866 cassio.alian216@gmail.com 153Pereira Cavalcante, Cavalcante, da Silva Henrique, Cardoso Zuza, Medeiros Dantas, and da Costa Araújo: Organic substrate and organic foliar fertilizer effect... cannot be observed in the plants originating from cut- tings. Seed-derived plants become more resistant to tipping caused by strong winds (Reis et al., 2010). In order to evaluate adaptation of Spondia tuberosa in different conditions, the response of its root system to soil changes should be evaluated. Additionally, seedling growth and development with the use of organic substrates and fertilizers that improve soil and consequently the plant’s nutrition should be monitored for the development of this species in natural conditions (Cruz et al., 2016; Mertens et al., 2017). The use of organic fertilization in agriculture with crop residues and animal manure has been highlighted as one of the main strategies for agriculture with sustainable use and management, especially in regions with low fertility soils (Chiti et al., 2012; Ansari and Mahmood, 2017). When properly managed, organic residues from agricultural ac- tivities such as crop residues and animal manure, can also be used as substrates for seedling production (Cavalcante et al., 2016; Mota et al., 2018). Organic fertilizers stimulate the production of extracellular enzymes (Medeiros et al., 2014) that contribute to the gradual release of nutrients and substances that stimulate plant growth (Silva et al., 2013). Because of the scarcity of information on the development of umbuzeiro seedlings, the objective was to evaluate the growth, substrate temperature and chlorophyll indexes in umbu seedlings at organic compound levels in the substrate and with organic foliar fertilizer applications. Materials and methods This experiment was conducted from July to October, 2015 in a protected environment belonging to the Center for Human, Social and Agricultural Sciences (CCHSA) at the Federal University of Paraíba (UFPB), Bananeiras- Paraíba, Brazil. The experiment design used randomized blocks in a 5×2 factorial arrangement, with four replicates and three plants per experiment unit. The factors corresponded to the substrates for sowing (0, 25, 50, 75 and 100% of organic compound) in the substrate, with and without foliar ap- plications of 1% organic foliar fertilizer (EcoLife®, Palm Harbour, Florida, USA). The composition of the organic foliar fertilizer is described in Supplementary material 1. For the preparation of the organic compound, rabbit ma- nure was used and rest of cultures (brachiaria, common bean and jackfruit). The soil used was collected at a depth of 0 to 20 cm in a Dystrophic Yellow Latosol classified ac- cording to the criteria of the Brazilian Soil Classification System - SiBCS (EMBRAPA, 2013). The foliar application of the organic fertilizer was carried out at 20, 40 and 60 d after transplanting the seedlings to the bag, at a concentra- tion of 1% of the organic input. The seeds were collected in the Riachão municipal district, Paraíba, Brazil. Then, the seeds were taken to the soil laboratory, where the endocarp was removed with sand- paper (number 120) in the distal part of the seeds to avoid damaging the embryo (Melo et al., 2012). The seeds were allowed to germinate on polyethylene trays containing vermiculite as the substrate, with emergence starting 25 d after sowing, with a duration of 10 d. After 40 d of emergence, the seedlings were transplanted to 18×30 cm polyethylene bags. After 90 d, when the seedlings were fit to be taken to the field, the following biometric vari- ables were analyzed: stem diameter, which was measured with a digital caliper, plant height, with a ruler graduated in centimeters, number of leaves, leaf area, a, b and total chlorophyll indexes, which were measured with a portable chlorophyll meter (ClorofilLOG® CFL 1030, Falker, Bra- zil) and substrate temperature at 12 pm with the help of a Digital Infrared Thermometer (AK35new, Akso, Brazil). The data were compiled to perform an analysis of variance (F test, P≤0.05). The mean values for the organic foliar fertilizer application were compared by the F test, which in this case was conclusive; the means of the substrate com- position were compared by regression. A statistical analysis was carried out using SISVAR version 5.3 (Ferreira, 2011). TABlE 1. Data of chemical analysis of the soil and the organic compound used in the substrate composition. Sources **pH H2O P mg dm-3 K+ Na+ H+Al3+ Al3+ Ca+ Mg2+ BS CTC V M OM g kg-1-------------------------------cmolc dm -3---------------------------------- -------%------- Soil 4.57 16.17 0.26 0.09 12.46 0.55 2.40 1.45 4.21 16.67 25.25 11.55 9.48 OC 6.84 233.5 9.53 2.67 4.54 0.00 6.30 6.70 25.18 29.72 84.72 0.00 164.0 * pH in water; OC: organic compost; BS: base sum (Ca2+ + Mg2+ + K+); CTC: cation exchange capacity [BS + (H+ + Al3+); V: saturation by exchangeable bases (BS/CTC)*100; OM: Organic matter; M: Al+3 saturation. 154 Agron. Colomb. 36(2) 2018 Results and discussion The analysis of variance (Tab. 2) verified that the organic compound × foliar fertilization interaction exerted a sig- nificant inf luence on the plant height, stem diameter, number of leaves, leaf area, chlorophyll b index, and total chlorophyll index and an isolated effect on the substrate temperature and chlorophyll a index. The height of the umbuzeiro seedlings was higher in the treatments with organic compost with up to 50% of the organic compound in the substrate and foliar fertilization with organic foliar fertilizer at 90 d after transplanting the seedlings in polyethylene bags (Fig. 1A). According to Cruz et al. (2016), the use of 40 to 50% organic matter with bovine manure in the substrate provided better growth of the umbuzeiro seedlings because of nutritional balance in the substrate, increasing the availability of nutrients to the seedlings. Organic fertilizers cause the production of extracellular enzymes (Medeiros et al., 2014) as a result of maintenance and stimulation of enzymatic activity in the presence of the organic material (Li et al., 2018a). This contributes to the gradual release of nutrients and substances that stimulate plant growth (Silva et al., 2013). The foliar application of organic fertilizer may have contributed simultaneously to the growth of the umbuzeiro seedlings. The treatments with organic compost and applications of organic foliar fertilizer at the estimated dose of 46.9% of the organic compound in the substrate provided the best seed diameters of the seedlings (Fig. 1B). These results may have resulted from improvement in nutrient bal- ance of the substrate, as well as the improvement in water availability and nutrient retention near the root, which is a limiting factor for growth in umbuzeiro plants (Mertens et al., 2017). The addition of organic matter increases the contents of fulvic acid and humic acid in the organic TABlE 2. Summary of analysis of variance, including mean values of the variables plant height (PH), stem diameter (SD), number of leaves (NL), leaf area (LA), substrate temperature (ST), chlorophyll a index (ICa), chlorophyll b index (ICb) and total chlorophyll index (ICt). SV DF PH SD Nl lA ST ICa ICb ICt Block 3 17.95* 0.02ns 8.73ns 1.75 0.29 3.00 0.49ns 4.42 Proportion (P) 4 126.72** 2.78** 492.96** 47.97** 67.85** 31.47** 2.68ns 51.02** Foliar Fertilizer (FF) 1 1010.02** 0.22ns 90.00** 11.02ns 1.22ns 0.40ns 0.62ns 0.02ns P x FF 4 594.90** 5.78** 60.32** 18.90* 1.97ns 19.52ns 3.43* 51.40** Residue 27 4.34 0.08 4.91 1.75 1.12 6.92 1.21 4.42 Total 39 - - - - - - CV (%) - 5.66 7.23 10.36 16.11 3.78 9.86 14.94 8.78 SV: source of variation; DF: degrees of freedom; CV: coefficient of variation; ** and * significant at 1% and 5% probability, respectively; ns: not significant at 1% and 5% probability. EC y=50.07 - 0.136x** R2=0.90 ES y=24.23 - 0.0062x - 0.0021x2** R2=0.95 EC y=3.2061 + 0.075x - 0.0008x2** R2=0.97 ES y=2.9457 + 0.0182x** R2=0.92 0 25 7550 100 S te m d ia m et er ( m m ) 0 4 5 6 3 2 1 Doses of organic compost (%) B 0 25 7550 100 P la nt h ei gh t ( cm ) 0 40 50 60 30 20 10 Doses of organic compost (%) A FIGURE 1. Plant height (A) and stem diameter (B) of the umbuzeiro seedlings in organic substrate with EC (___) and without ES (---) organic foliar fertilizer applications. *significant at 1% and ** significant at 5% probability. 155Pereira Cavalcante, Cavalcante, da Silva Henrique, Cardoso Zuza, Medeiros Dantas, and da Costa Araújo: Organic substrate and organic foliar fertilizer effect... matter, which can favor the growth and development of seedlings (Bacilio et al., 2016). For the number of leaves per umbuzeiro plant, the treat- ments with organic compounds at the estimated dose of 54.4% with organic foliar fertilizer applications and 84% organic compound in the substrate without organic foliar fertilizer provided the best results (Fig. 2A). The addition of leaf fertilization with an organic foliar fertilizer increases the availability of nitrogen to plants, as well as a plant’s resistance to pathogens (Nascimento et al., 2008), which may have favored an increase in the number of leaves and leaf area in the umbuzeiro seedlings in this study (Fig. 2B). The organic foliar fertilizer EcoLife® is a commercial product composed of biof lavonoids; in addition to improv- ing plant resistance to stress, this product has a synergistic action between its components and can regulate vegetative vigor, causing better growth in plants (Cavalcanti et al., 2006; Furtado et al., 2010). The temperature was higher in the substrates with more than 75% organic compound, which may have increased the accumulation of heat and, consequently, the temperature (Fig. 2C). According to Li et al. (2017), soil temperature may directly inf luence seedling growth. The increase of organic matter in a substrate can raise its temperature and consequently inf luence the growth of seedlings (Hartley and Ineson, 2008; Conant et al., 2011; Moinet et al., 2018). The chlorophyll a and b rates increased in the organic fo- liar fertilizer treatments. For the total chlorophyll index, the best results were obtained in the treatments without applications of the organic foliar fertilizer at an estimated dose of 58% organic compound in the substrate (Fig. 3). In order to obtain a better balance of organic residues in the substrate, it is possible to provide better conditions and relative chlorophyll indexes in the seedlings, which may favor light uptake by chlorophyll and consequently improve the photosynthetic regulation of the plants (Braga et al., 2017; Li et al., 2018b). According to Mota et al. (2018), the evaluation of chlo- rophyll in seedlings growing in substrates with organic residues is a quick and simple way to increase the quality of seedlings. EC y=11.84 + 0.7283x - 0.0067x2** R2=0.97 ES y=8.5429 + 0.4876x - 0.0029x2** R2=0.99 EC y=14.281 + 0.0491 - 0.001x2** R2=0.95 ES y=17.399 - 0.057x** R2=0.94 y=25.447 - 0.1052x + 0.0021x2** R2=0.94 0 25 7550 100 Le af a re a (c m 2 pl an t-1 ) 0 12 16 20 8 4 Doses of organic compost (%) B 0 25 7550 100 S ub st ra te te m pe ra tu re ( °C ) 0 30 40 20 10 Doses of organic compost (%) C 0 25 7550 100 N um be r of le av es 0 25 30 35 20 15 10 5 Doses of organic compost (%) A FIGURE 2. Number of leaves (A), leaf area (B) and substrate temperature (C) in the umbuzeiro seedlings in the organic substrate with EC (___) and without ES (---) organic foliar fertilizer applications. * significant at 1% and ** significant at 5% probability. 156 Agron. Colomb. 36(2) 2018 FIGURE 3. Chlorophyll a index (A), chlorophyll b index (B) and total chlo- rophyll index (C) in the umbuzeiro seedlings in the organic substrate with EC (___) and without ES (---) foliar applications of the organic foliar fertilizer. * significant at 1% and ** significant at 5% probability. Conclusions The substrate with up to 58% of the estimated dose of or- ganic compound with organic foliar fertilizer applications provided better growth in terms of height, stem diameter and number of leaves. The temperature of the substrate increased regardless of the proportion of the substrate or the application of the organic foliar fertilizer. The indexes of chlorophyll a and b were higher in treat- ments with the organic foliar fertilizer up to the dose of 50% organic compound in the substrate, and the total chlo- rophyll was higher in the treatments without the organic fertilizer at the estimated dose of 58% organic compound in the substrate. literature cited Ansari, R.A. and I. Mahmood. 2017. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 226, 1-9. Doi: 10.1016/j.scienta.2017.07.033 Bacilio, M., M. Moreno, and Y. Bashan. 2016. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol. 107, 394-404. Doi: 10.1016/j.apsoil.2016.04.012 Braga, B.B., F.H. Nunes Junior, R.M. Barbosa, P.O.B. Brito, K. Martins, P.H.A. Medeiros, and F.A. Gondim. 2017. Biomass production and antioxidative enzyme activities of sunf lower plants growing in substrates containing sediment from a tropical reservoir. J. Agric. Sci. 9(5), 95-106. Doi: 10.5539/jas. v9n5p95 Cavalcante, A.G., R.C. Araújo, A.C.P. Cavalcante, A.S. Barbosa, M.A. Diniz Neto, B.F. Matos, D.S. Oliveira, and J.F.C. Zuza. 2016. Production of yellow passion fruit seedlings on substrates with different organic compounds. Afr. J. Agric. Res. 11(12), 1086-1091. Doi: 10.5897/AJAR2015.10777 Cavalcanti, F.R., M.L.V. Resende, A.B. Zacaroni, P.M. Ribeiro Junior, J.C.B. Costa, and R.M. Souza. 2006. Acibenzolar-S-Metil e Ecolife na indução de respostas de defesa do tomateiro contra a mancha bacteriana (Xanthomonas vesicatoria). Fitopatol. Bras. 31(4), 372-380. Doi: 10.1590/S0100-41582006000400007 Chiti, T., L. Gardin, L. Perugini, R. Quarantino, F.P. Vaccari, F. Miglietta, and R. Valentini. 2012. Soil organic carbon stock assessment for the different cropland land uses in Italy. Biol. Fert. Soils. 48, 9-17. Doi: 10.1007/s00374-011-0599-4 Conant, R.T., M.G. Ryan, G.A. Agren, H. Birge, E.A. Davidson, P.E. Eliasson, S.E. Evans, S.D. Frey, C.P. Giardina, F.M. Hopkins, R.H. Nen, M.U.F. Kirschbaum, J.M. Lavallee, J.L. Feld, W.J. Parton, J.M. Steinweg, M.D. Wallenstein, J.A.M. Wetterstedt, and M.A. Bradford. 2011. Temperature and soil organic matter decomposition rates-synthesis of current knowledge and a way forward. Global Change Biol. 17, 3392-3404. Doi: 10.1111/j.1365-2486.2011.02496.x EC y=30.6 ES y=26.04 + 0.054x* R2=0.88 EC y=8.456 - 0.01193x** R2=0.91 ES y=7.3 ES y=28.109 + 0.3266x - 0.0028x2** R2=0.86 ES y=34.14 0 25 7550 100 In de x ch lo ro ph yl l b 4 8 9 10 7 6 5 Doses of organic compost (%) B 0 25 7550 100 In de x to ta l c hl or op hy ll 10 40 50 30 20 Doses of organic compost (%) C 0 25 7550 100 In de x ch lo ro ph yl l a 10 25 30 35 40 20 15 Doses of organic compost (%) A http://dx.doi.org/10.1016/j.scienta.2017.07.033 http://dx.doi.org/10.1016/j.apsoil.2016.04.012 http://dx.doi.org/10.5539/jas.v9n5p95 http://dx.doi.org/10.5539/jas.v9n5p95 http://dx.doi.org/10.5897/AJAR2015.10777 http://dx.doi.org/10.1590/S0100-41582006000400007 http://dx.doi.org/10.1007/s00374-011-0599- http://dx.doi.org/10.1111/j.1365-2486.2011.02496.x 157Pereira Cavalcante, Cavalcante, da Silva Henrique, Cardoso Zuza, Medeiros Dantas, and da Costa Araújo: Organic substrate and organic foliar fertilizer effect... Costa, F.R., E.R. Rêgo, M.M. Rêgo, D.G. Neder, S.M. Silva, and A.P.P. Schunemann. 2015. Análise biométrica de frutos de umbuzeiro do semiárido brasileiro. Biosci. J. 31(3), 682-690. Doi: 10.14393/ BJ-v31n3a2015-22844 Cruz, F.R.S., L.A. Andrade, and R.C. Feitosa. 2016. Produção de mudas de umbuzeiro (Spondias tuberosa Arruda Câmara) em diferentes substratos e tamanho de recipientes. Ci. Fl. 26(1), 69-80. Doi: 10.5902/1980509821092 Empresa Brasileira de Pesquisa Agropecuária - EMBRAPA. 2013. Sistema brasileiro de classificação de solos. (3rd ed.). Embrapa, Brasilia, Brasil. Ferreira, D.F. 2011. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia 35(6), 1039-1042. Doi: 10.1590/ S1413-70542011000600001 Furtado, L.M., A.C.C. Rodríguez, V.S. Araújo, L.L.S. Silva, and A.M. Catarino. 2010. Utilização de Ecolife® e Acibenzolar-s- metil (ASM) no controle da antracnose da banana em pós- colheita. Summa Phytopathol. 36(3), 237-239. Doi: 10.1590/ S0100-54052010000300009 Galvão, M.S., N. Narain, M.S.P. Santos, and M.L. Nunes. 2011. Volatile compounds and descriptive odor attributes in umbu (Spondias tuberosa) fruits during maturation. Food Res. Int. 44, 1919-1926. Doi: 10.1016/j.foodres.2011.01.020 Hartley, I.P. and P. Ineson 2008. Substrate quality and the tempera- ture sensitivity of soil organic matter decomposition. Soil Biol. Biochem. 40, 1567-1574. Doi: 10.1016/j.soilbio.2008.01.007 Li, J., X. Tong, M.K. Awasthi, F. Wu, S. Ha, J. Ma, X. Sun, and C. He. 2018a. Dynamics of soil microbial biomass and enzyme activities along a chronosequence of desertified land revegeta- tion. Ecol. Eng. 111, 22-30. Doi: 10.1016/j.ecoleng.2017.11.006 Li, X., J. Simunek, H. Shi, J. Yan, Z. Peng, and X. Gong. 2017. Spatial distribution of soil water, soil temperature, and plant roots in a drip-irrigated intercropping field with plastic mulch. Eur. J. Agron. 83, 47-56. Doi: 10.1016/j.eja.2016.10.015 Li, Y., C. Liu, J. Zhang, H. Yang, L. Xu, Q. Wang, L. Sack, X. Wu, J. Hou, and N. He. 2018b. Variation in leaf chlorophyll concen- tration from tropical to cold-temperate forests: association with gross primary productivity. Ecol. Indic. 85, 383-389. Doi: 10.1016/j.ecolind.2017.10.025 Lins Neto, E.M.F., N. Peroni, and U.P. Albuquerque. 2010. Tra- ditional knowledge and management of Umbu (Spondias tuberosa, Anacardiaceae): an endemic species from the Semi- Arid region of northeastern Brazil. Econ. Bot. 64, 11-21. Doi: 10.1007/s12231-009-9106-3 Melo, A.P.C., A. Seleguini, M.N. Castro, F.A. Meira, J.M.S. Gonzaga, and K.I. Haga. 2012. Superação de dormência de sementes e crescimento inicial de plântulas de umbuzeiro. Semin. Cienc. Agrar. 33(4), 1343-1350. Doi: 10.5433/1679-0359.2012v33n 4p1343 Mertens, J., S. Germer, J. Germer, and J. Sauerborn. 2017. Com- parison of soil amendments for reforestation with a native multipurpose tree under semiarid climate: root and root tuber response of Spondias tuberosa. For. Ecol. Manage. 396, 1-10. Doi: 10.1016/j.foreco.2017.04.010 Medeiros, E.V., K.A. Notaro, J.A. Barros, W.S. Morales, A.O. Silva, and K.A. Moreira. 2014. Absolute and specific enzymatic ac- tivities of sandy entisol from tropical dry forest, monoculture and intercropping areas. Soil Tillage Res. 145(1), 208-215. Doi: 10.1016/j.still.2014.09.013 Medeiros, E.V., K.A. Notaro, B.M. Souza, A.O. Silva, G.P. Duda, and M.M. Silva. 2015. População microbiana, disponibilidade de nutrientes e crescimento de umbuzeiro em substratos con- tendo resíduos orgânicos. Revista Caatinga 28(3), 47-53. Doi: 10.1590/1983-21252015v28n305rc Moinet, G.Y.K., J.E. Hunt, M.U.F. Kirschbaum, C.P. Morcom, A.J. Midwood, and P. Millard. 2018. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333-339. Doi: 10.1016/j.soilbio.2017.10.031 Mota, C.S., F.G. Silva, P.D.M. Freiberger, D.N. Reis, and G.C. Mén- dez. 2018. Parameters of physiology, nutrition and quality of Eugenia dysenterica DC seedlings grown in organic substrates from the agricultural industry. J. Agric. Sci. 10(1), 73-84. Doi: 10.5539/jas.v10n1p73 Nascimento, L.C., A.R. Nery, and L.N. Rodríguez. 2008. Controle de Colletotrichum gloeosporioides em mamoeiro, utilizando extratos vegetais, indutores de resistência e fungicida. Acta Sci. Agron. 30(3), 313-319. Doi: 10.4025/actasciagron.v30i3.3500 Reis, R.V., N. Fonseca, C.A.S. Ledo, L.S.A. Gonçalves, F.L. Partelli, M. G.M. Silva, and E.A. Santos. 2010. Estádios de desenvolvimento de mudas de umbuzeiros propagadas por enxertia. Cienc. Rural 40(4), 787-792. Doi: 10.1590/S0103-84782010005000043 Silva, C.A.D., E.V. Medeiros, C.B. Bezerra, W.M. Silva, J.A. Barros, and U.J. Santos. 2013. Interferência da incorporação de matéria orgânica no solo no controle da podridão negra da mandioca, causada por Scytalidium lignicola. Biosci. J. 29(6), 1823-1831. Zeraik, M.L., E.F. Queiroz, L. Marcourt, O. Ciclet, I. Castro-Gam- boa, D.H.S. Silva, M. Cuendet, V.S. Bolzani, and J.L. Wolfender. 2016. Antioxidants, quinone reductase inducers and acetylcho- linesterase inhibitors from Spondias tuberosa fruits. J. Funct. Foods 21, 396-405. Doi: 10.1016/j.jff.2015.12.009 SUPPlEMENTARy MATERIAl 1. Components of the organic foliar fertilizer EcoLife®. Nitrogen (N) 1% Total organic carbon (C.O.) 9.50% Density 1.06 g L-1 Additives - citric acid, polyflavonoids and polyols - http://dx.doi.org/10.14393/BJ-v31n3a2015-22844 http://dx.doi.org/10.14393/BJ-v31n3a2015-22844 http://dx.doi.org/10.5902/1980509821092 http://dx.doi.org/10.1590/S1413-70542011000600001 http://dx.doi.org/10.1590/S1413-70542011000600001 http://dx.doi.org/10.1590/S0100-54052010000300009 http://dx.doi.org/10.1590/S0100-54052010000300009 http://dx.doi.org/10.1016/j.foodres.2011.01.020 http://dx.doi.org/10.1016/j.soilbio.2008.01.007 http://dx.doi.org/10.1016/j.ecoleng.2017.11.006 http://dx.doi.org/10.1016/j.eja.2016.10.015 http://dx.doi.org/10.1016/j.ecolind.2017.10.025 http://dx.doi.org/10.1007/s12231-009-9106-3 http://dx.doi.org/10.5433/1679-0359.2012v33n4p1343 http://dx.doi.org/10.5433/1679-0359.2012v33n4p1343 http://dx.doi.org/10.1016/j.foreco.2017.04.010 http://dx.doi.org/10.1016/j.still.2014.09.013 http://dx.doi.org/10.1590/1983-21252015v28n305rc http://dx.doi.org/10.1016/j.soilbio.2017.10.031 http://dx.doi.org/10.5539/jas.v10n1p73 http://dx.doi.org/10.4025/actasciagron.v30i3.3500 http://dx.doi.org/10.1590/S0103-84782010005000043 http://dx.doi.org/10.1016/j.jff.2015.12.009