89-106 Al-Khwarizmi Engineering Journal,Vol. 11, No. Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators Louay Abd Alazez Mahdi *,**,***Department (Received Abstract A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a temperatures in range of (-35℃ to -10 refrigerant mass flow rate. Additional correlations equations for these variables as a quick choic ASHRAE standard that cover a range of swept volume range (2.24 The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling capacity and 50 models for power consumption and 25 models for refrigerant mass flow rate. Keywords: Performance, compressors, 1. Introduction The household compressors manufactured in the world due to the wide range of usage in refrigerators and freezers. A lot of brands and models are available which may cause troubles in selecting the proper compressor and type. The refrigerators and freezers may have no identifying data when the maintenance engineers work to replace the compressors. Also, engineers who asked about general model can be used to select the household compressors . All these reasons stand behind the present research to find general correlations f capacity, power consumption, and mass flow rate that cover the compressors performance and application. Khwarizmi Engineering Journal,Vol. 11, No. 4, P.P. 89-106 (2015) Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators and Freezers Alazez Mahdi* Emad Esmaael Habib Laith Abd Almunam*** *,**,***Department of Mechanical Engineering/ University of Technology Email: louayalkaesy@gmail.com Email: emad_1955_emad@yahoo.com Email: laith.ismael@ymail.com (Received 20 November 2015 ; accepted 16 June 2015) A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating 10℃) using Matlab software for cooling capacity, power consumption, and Additional correlations equations for these variables as a quick choice selection for a proper compressor use that cover a range of swept volume range (2.24-11.15) cm3. The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of models for power consumption and 25 models for refrigerant mass flow rate. manufacturing, data, equations. The household compressors are widely manufactured in the world due to the wide range of usage in refrigerators and freezers. A lot of brands and models are available which may cause troubles in selecting the proper compressor and type. The refrigerators and freezers may have no ntifying data when the maintenance engineers work to replace the compressors. Also, engineers who asked about general model can be used to All these reasons stand behind the present research to find general correlations for cooling capacity, power consumption, and mass flow rate that cover the compressors performance and 2. Literature Review It is found in literatures that few researchers pay attention to the subject of general performance equation among them - Duggan.et.al. [1] Compared between two experimental methods of compressor test, calorimeter and flow rater test in order to know the more efficient method. The researcher recommended that the flow rater test is more accurate than calorimeter. - Cavallini.et.al. [2] In their work presented a procedure for a steady state thermal analysis of a hermetic reciprocating compressor. The compressor machine was subdivided into six parts. The energy balance was established for each part and overall system to obtai distribution inside the compressor machine and the heat flow rates exchanged. The results were compared against the experimental measurements carried out on commercial units operating with R Al-Khwarizmi Engineering Journal (2015) Prediction of Performance Equations for Household Compressors Depending on Manufacturing Data for Refrigerators Emad Esmaael Habib** University of Technology A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. function of refrigerant saturating and evaporating ) using Matlab software for cooling capacity, power consumption, and e selection for a proper compressor use at The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of models for power consumption and 25 models for refrigerant mass flow rate. It is found in literatures that few researchers pay attention to the subject of general performance equation among ] Compared between two experimental methods of compressor test, calorimeter and flow rater test in order to know the more efficient method. The researcher recommended that the flow rater test is more ] In their work presented a procedure for a steady state thermal analysis of a hermetic reciprocating compressor. The compressor machine was subdivided into six parts. The energy balance was established for each part and overall system to obtain the temperature distribution inside the compressor machine and the heat flow rates exchanged. The results were compared against the experimental measurements carried out on commercial units operating with R- Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 90 600a and R-134a, and a good agreement was found. - Mackensen.et.al. [3] identified a physics based method to characterize the compressor performance in refrigeration systems with limited experimental data. The work focused on positive displacement compressors, semi-hermetic and open type. The compressors data were obtained from various manufacturers. The refrigerant mass flow rates were based on the polytropic compression process with clearance volume that leads to a volumetric efficiency expression. The overall performance of the model was acceptable with maximum average mean errors of 3.7% for reciprocating compressor, 2.3% for scroll compressor, and 0.6% for screw compressor. - Kim and Bullard.[4] Developed a simple physical model for small hermetic reciprocating, rotary and scroll compressors based on thermodynamic principles and large data sets from the compressor calorimeter and in situ tests. Pressure losses along the refrigerant path were neglected, and the compression process was isentropic. A mass flow rate model reflected the clearance volume efficiency and simulated the suction of gas heating using an effectiveness method. Compressor work was calculated using the compressor efficiency represented by two empirical parameters. A linear relationship between the discharge and shell temperatures was extracted from large data sets and applied to the model for calculating the discharge temperature. The model that found can predict the mass flow rate and power consumption within ∓3.0% accuracy. - Jähnig.et.al. [5] investigated a semi- empirical model to represent the compressor performance. The model was based on the volumetric efficiency and assumed a polytropic compression process. The single point condition currently used for rating refrigerator/freezer compressors is an evaporating temperature of – 23.3°C (–10°F) and a condensing temperature of 54.4°C (130°F) in a 32.2°C (90°F) environment. The model was not extrapolated from static (zero air velocity) cooling to forced cooling or vice- versa. - Cezar.et.al. [6] Proposed a semi-empirical mathematical model to simulate the unsteady behavior of mass flow rate and power of reciprocating compressors. The model based on thermodynamic equations is linearly fitted to calorimeter data sets of two compressors. Comparisons of computed and measured values of mass flow rate and power, in transient regime, were conducted for two fitted compressor curves. A good agreement of results was found for both compressors in start-up tests. They concluded that the proposed semi-empirical model can safely applied to dynamic simulations of the whole refrigeration system. The work proposed a semi- empirical model to predict the performance of reciprocating compressor in transient regime. The model based on thermodynamic equations fitted to manufacturer data by using linear correlations and compared with experimental data are which quite accurate with the prediction of compressor mass flow rate and power. The previous literatures do not explore the performance of a wide range of compressors and help the designer and the engineers to select the proper compressor size from the wide production brands. Therefore, the aim of this work is to find theoretical general equations for cooling capacity, power consumption, and refrigerant mass flow rate for ranges of compressors swept volume (2.42-11.15) cm3 depending on calorimeter data, these equations are easy to use and find the requirement of the compressors without depending on the brand. 3. Data Collection The compressors brands are: Danfoss, Electrolux, Tecumseh, TEE, Embraco, ACC, KULTHORN KIRBY, and Donper. Twenty-five sets of calorimeter test data for hermetic reciprocating compressors have been studied for Danfoss and Electrolux compressors which cover the swept volume from (2.42-11.15) cm3 working with refrigerant 134a. The cooling capacity calorimeter set data that available are ninety sets and fifty-nine for power and thirty-four for refrigerant mass flow rate. These sets were used to compare and find the deviation from the correlations that obtained. The compressor brands and models and the available data set for cooling capacity, power, and refrigerant mass flow rate which depend on the following common points for the compressors used in thesis research are presented in Table (4): 1. Hermetic reciprocating 2. Low back pressure 3. Static cooling method 4. RSIR motor type (Resistance Start— Induction Run) 5. R-134a is working fluid 6. Ester oil type 7. 220V, 1ph, 50Hz power. Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 91 4. Approximation Functions The goal of the approximation functions, is to obtain the best dependable fitting curves to measure the dependability of the fitted curves corresponding values R2 were calculated, where R2 is given by [7]: �� = ∑�� − ���� ∑�� − ���� y is the measured data yn is the estimated(calculated) value and y ̅ is the mean of y. Depending on Electrolux and Danfoss compressor brand using the available data for capacity, power, and refrigerant mass flow rate for 25 size that cover 2.42 - 11.15 cm3 swept volume represented are in Table (4). A surface fitting method was used with Matlab software to find the following correlations: 4.1. Cooling Capacity The cooling capacity correlation was found based on ARI 540-90 standard [8]. The results are plotted in Figure (1); the correlation was as follow: �� = �� + �� ∗ � + �� ∗ �� + �� ∗ � � + �� ∗ � ∗ �� + �� ∗ �� � + �� ∗ � � + �� ∗ �� ∗ � � + �� ∗ � ∗ �� � + �� ∗ �� � …(1) Table 1, Coefficients of cooling capacity correlation. Coefficient Value Range a0 -18.24 -53.16, 16.67 a1 78.54 68.45, 88.64 a2 0.7153 -3.1, 4.531 a3 0.2132 -1.123, 1.549 a4 2.877 2.505, 3.248 a5 0.04653 -0.118, 0.2111 a6 -0.04921 -0.1119, 0.01344 a7 -0.01148 -0.03118, 0.008213 a8 0.02749 0.02149, 0.03349 a9 0.0006736 -0.00169, 0.003037 Goodness of fit: R2: 0.9968 where S: swept volume cm3 Te: evaporator temperature. The value of R2 is 0.9968 which indicates the degree of correlation i.e. (99.68%) of total variation present. 4.2. Power Consumption It depends on ARI 540-90 standard, the corresponding data is plotted in Figure (2) and the following correlation was found: � = �� + �� ∗ � + �� ∗ �� + �� ∗ � � + �� ∗ � ∗ �� + �� ∗ �� � + �� ∗ � � + �� ∗ �� ∗ � � + �� ∗ � ∗ �� � + �� ∗ �� � …(2) Table 2, Coefficients of power consumption correlation. The value of R2 is 0.9945 which indicates the degree of correlation, i.e., (99.45%) of total variation included. 4.3. Refrigeration Mass Flow Rate The results of the fitting are shown in Figure [3] and given by; ! " = #� + #� ∗ � + #� ∗ �� + #� ∗ � � + #� ∗ � ∗ �� + #� ∗ �� � + #� ∗ � � + #� ∗ �� ∗ � � + #� ∗ � ∗ �� � + #� ∗ �� � …(3) Table 3, Coefficients of refrigerant mass flow rate correlation. Coefficient Value Range c0 -0.4668 -1.29 ,0.3564 c1 1.55 1.312,1.788 c2 0.0006981 -0.08926,0.09066 c3 0.007452 -0.02405,0.03896 c4 0.05961 0.05085,0.06838 c5 0.0005814 -0.003298,0.004461 c6 -0.0009898 -0.002467,0.0004873 c7 -0.000175 -0.0006394,0.0002894 c8 0.0006249 0.0004834,0.0007663 c9 1.29e-005 -4.282e-005,6.863e-005 Goodness of fit: R2: 0.9955 Where the value of R2 is 0.9955 which indicates high dependability of fitted. Coefficient Value Range b0 42.46 17.59, 67.33 b1 28.26 21.07, 35.45 b2 -0.1031 -2.821, 2.615 b3 1.266 0.3142, 2.218 b4 0.9115 0.6466, 1.176 b5 -0.01531 -0.1325, 0.1019 b6 -0.06662 -0.1112, -0.022 b7 -0.00426 -0.01829, 0.009771 b8 0.003956 -0.0003186, 0.00823 b9 -0.0004349 -0.002119, 0.001249 Goodness of fit: R2: 0.9945 Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 92 Table (5) indicates the minimum and the maximum deviation for each compressor from the results of equations 1, 2, 3 and the indications are: -For cooling capacity Qe: It was found that 89 compressors have 30% deviation and 72 compressors have 15% deviation.The deviated compressor brands are Donper, Tee, K.K. -For power consumption: the deviated compressors were found 59 within 30% deviation and 50 compressors within 15% deviation. The compressor brands that are deviated are Donper, K.K. -For refrigerant mass flow rate: 29 compressors were found to be deviated with 30% and 25 compressors were found to be deviated ±15%. The compressor brand that deviated is for TECUMSH, this brand is very dependable brand in the world and capacity, and the power data are within the 15% deviation. Due to the high demand on the type of compressor that works at (54.4) ℃ condenser temperature and (-23.3) ℃ evaporator temperature for swept volume range [2.42-11.15] cm3, the data of cooling capacity, power consumption, and refrigerant mass flow rate which are working according to ASHRAE standard 23-1993[9] are correlated where the refrigerant temperatures in the cycle as follows: Temperature location ℃ Condenser 54.4 evaporator -23.3 sub cooled 32 suction 32 Ambient 32 The first number printed in the label plate of the compressors or refrigerators and freezers represents the power consumption (P). This number is used to calculate the swept volume via the following correlation to find the swept volume; � = −3.46234361297 + �1.02257271308E − 001 ∗ �� + �−3.29252164432E − 004 ∗ ��� + �7.45584362830E − 007 ∗ ��� …(4) Standard Error is 0.0034096 with R2= 0.9999991 ، After that, the cooling capacity and the refrigerant mass flow rate can be found as follow according to the swept volume found: Q1 = �−1.84013586272E + 001� + �2.65613665790E + 001 ∗ �� + �4.59664932840E − 001 ∗ ��� + �−4.81895917828E − 002 ∗ ��� …(5) Standard Error is 0.0249453 and R2: 0.9999999. ! " = �−2.91401871854E − 001� + �4.95966412918E − 001 ∗ �� + �1.23494398093E − 002 ∗ ��� + �−1.03344762424E − 003 ∗ ��� …(6) Standard Error: 0.0030522 with R2=0.9999974 Table (5) is included the deviation results for 76 compressors type according to swept volume. The table represents the cooling capacity, power consumption, and refrigerant mass flow rate for each one according to equations 1, 2, and 3 . These correlations are very helpful for engineers and the designers in order to find the closed compressor type needed for replacement or for new refrigerators or freezers. Figures 4, 5,and 6 show the results obtained by correlations 1, 2, 3 for each swept volume at -35 ℃ to -10℃ evaporator temperature and 54.4℃ fixed condensing temperature for cooling capacity, power consumption, and refrigerant mass flow rate. These figures are helpful to find the performance data of all compressors for a wide range of evaporator temperatures. Figures 7, 8, and 9 depict the deviation of the correlated and standard data for cooling capacity, power consumption, and refrigerant mass flow rate, respectively. It can be seen that the deviation does not exceed the value of ∓15% for the three parameters, which is acceptable accuracy in practical engineering problems . Figures (10-a to10-w), (11-a to 11-s), and (12- a to 12-w) represent the deviation between the calorimeter data and correlated data of cooling capacity, power consumption, and refrigerant mass flow rate for swept volume range (2.42 to 11.15) cm3 corresponding to various types compressors, as indicated at each figure. These detailed comparisons show a fairly good agreement with acceptable accuracy for services, maintenance and retrofit proposes. Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 93 Table 4, The available data of compressors brands. Item Swept volum Compressor brand and legend Data available cm3 Qe P mr 1 2.24 CUBIGEL (GD24AA) Y Y Y 2 2.5 DANFOSS (PL50F) Y Y Y 2.5 CHINA(D25CZ) Y Y Y 3 2.61 DANFOSS (TL2.5F) Y Y Y 4 2.7 TECUMSEH(1324Y) Y N N 5 2.8 TEE (AZ47YP) Y N N 6 3 EMBRACO (EMT22HLP) Y N N 3 DONPER CHINA (D30CZ) Y N N 7 3.05 CUBIGEL(GD30AA) Y Y Y 8 3.13 DANFOSS (TL3F) Y Y Y 9 3.36 ACC (OF605) Y Y N 10 3.38 CUBIGEL(GL35AA) Y Y Y 11 3.58 CUBIGEL (GD36AA) Y Y Y 3.58 TECUMSEH(THB1335Y) Y Y Y 12 3.59 TEE (AZ68YD) Y N N 13 3.6 DONPER CHINA (S36CS) Y N N 14 3.66 ACC (GQY35AA) Y Y N 15 3.86 DANFOSS (TL4F) Y Y Y 16 3.9 KULTHORN KIRBY(AE1327Y) Y Y N 17 3.97 EMBRACO (EMT36HLP) Y N N 18 4 TEE (AZ82 YP) Y N N 19 4.01 CUBIGEL (GL40AA) Y Y Y 4.01 ACC (GQY40AA) Y Y N 20 4.03 CUBIGEL (GD40AA) Y Y Y 21 4.07 ACC (GVM40AA) Y Y N 22 4.08 KULTHORN KIRBY(AE1330Y) Y Y N 23 4.23 TECUMSEH(THB 1340Y) Y Y Y 24 4.3 CHINA(S43BZ) Y N N 25 4.38 ACC(OF789.02) Y Y N 26 4.56 CUBIGEL (GL45AA) Y Y Y 27 4.6 KULTHORN KIRBY(AE1335Y) Y Y N 28 4.85 EMBRACO (EMT43HLP) Y N N 29 5.0 TEE(AZ90 YP) Y N N 5.0 DONPER CHINA(S50CZA) Y N N 30 5.08 DANFOSS (TLS5F) Y Y Y 31 5.11 KULTHORN KIRBY(AE1340Y) Y Y N 32 5.12 CUBIGEL (GL50AA) Y Y Y 33 5.2 TECUMSEH(THB1350Y) Y Y Y 34 5.3 CHINA(S53BZ) Y N N 35 5.46 ACC(GL50AA.02) Y Y N 36 5.5 Donper CHINA(EK1112CZA) Y N N 37 5.56 EMBRACO (EMT49HLP) Y N N 38 5.58 TECUMSEH(THB1350YS) Y Y Y 39 5.7 DANFOSS (TLS6F) Y Y Y 5.7 ACC (GVM57AA) Y Y N 40 5.75 TEE(AE148 YP) Y N N 41 5.8 DONPER CHINA(L58CZ) Y N N 42 5.99 CUBIGEL (GL60AA) Y Y Y 5.99 KULTHORN KIRBY(AE1350Y) Y Y N 5.99 ACC(GQY60AA) Y Y N 43 6.1 TECUMSEH(THB 1360 Y) Y Y Y 44 6.13 DANFOSS (NL6F) Y Y Y 45 6.2 EMBRACO(NBT1114Z) Y N N 46 6.3 DONPER CHINA(EK1114CZA) Y N N 47 6.49 DANFOSS (TLS7F) Y Y Y 48 6.5 DONPER CHINA(L58CZ) Y N N 49 6.6 ACC(GVM66AA) Y Y N 50 6.64 CUBIGEL (GL70AA) Y Y Y 6.64 ACC(L70AN.02) Y Y N 51 6.76 EMBRACO (EMT60HLP) Y N N 52 6.9 DONPER CHINA(EK1116CZA) Y N N 53 6.91 KULTHORN KIRBY (AE1360Y) Y Y N 6.91 TEE (AE148 YP) Y N N 54 6.93 DANFOSS(FR7.5F) Y Y Y 55 7.0 ACC(GVY66AA.01) Y Y N 56 7.2 DONPER CHINA(EK1118CZA) Y N N 7.2 DONPER CHINA(L72CZ) Y N N 57 7.27 DANFOSS (NL7F) Y Y Y 58 7.39 CUBIGEL (GL75AA) Y Y Y 7.39 ACC (GL80AA.02) Y Y N 59 7.4 EMBRACO (NBT1116Z) Y N N 60 7.52 ACC (GVY75AA) Y Y N 61 7.94 TEE (AE176 YP) Y N N 62 7.95 DANFOSS (NL8F) Y Y N 63 8.07 EMBRACO(NB1118Z) Y N N 64 8.09 ACC (GL80AN) Y Y N 65 8.1 CUBIGEL (GL80AA) Y Y Y 8.1 EMBRACO (NB1116Z) Y N N 66 8.12 KULTHORN KIRBY (AE1370Y) Y Y N 67 8.35 DANFOSS (NL9F) Y Y Y 68 8.8 TECUMSEH (AEZ 1365Y) Y Y N 69 8.99 TEE (AE196YP) Y N N 70 9.05 DANFOSS (FR10F) Y Y Y 9.05 ACC (GQY90AA) Y Y N 71 9.08 CUBIGEL (GL90AA) Y Y Y 72 9.27 EMBRACO (NE1121Z) Y N N 73 9.407 TECUMSEH (AEA 1410 YXC) Y Y Y 74 9.42 KULTHORN KIRBY(AE2390Y) Y Y N 75 9.93 CUBIGEL (GL99AA) Y Y Y 76 11.15 DANFOSS (NL11F) Y Y Y Number of compressors to find the general equations(yellow) 25 Total number of compressors with swept volume 90 Total number of cooling capacity data compressors 90 Total number of power data compressors 59 Total number of refrigerant mass flow rate data compressors 34 Y: available data N: not available Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 94 Table 5, The deviations from the surface fitting model. Item Swept volum Compressor brand and legend Deviations Qe % P % mr % cm3 min max min max min max 1 2.24 CUBIGEL (GD24AA) 0 2.3 1.1 7.5 0 13 2 2.5 DANFOSS (PL50F) -10 -4.5 13 15 -8 5 2.5 CHINA(D25CZ) -9 -1 18 23 4 14 3 2.61 DANFOSS (TL2.5F) 9 15 12 14 9 15 4 2.7 TECUMSEH(1324Y) 2 36 X X X X 5 2.8 TEE (AZ47YP) 3 22 X X X X 6 3 EMBRACO (EMT22HLP) -17 -12 X X X X 3 DONPER CHINA (D30CZ) -6 11 X X X X 7 3.05 CUBIGEL(GD30AA) -6 2 -4 -1 -3 3 8 3.13 DANFOSS (TL3F) 7 14 14 15 8 15 9 3.36 ACC (OF605) -10 2 5 14 X X 10 3.38 CUBIGEL(GL35AA) -6 4 -4 0 -4 4 11 3.58 CUBIGEL (GD36AA) 1 6 -2 2 0 10 3.58 TECUMSEH(THB1335Y) -12 -3 4 7 30 33 12 3.59 TEE (AZ68YD) 9 16 X X X X 13 3.6 DONPER CHINA (S36CS) -10 -4 X X X X 14 3.66 ACC (GQY35AA) -12 -7 13 18 X X 15 3.86 DANFOSS (TL4F) 0 7 8 11 0 8 16 3.9 KULTHORN 3 25 17 21 X X 17 3.97 EMBRACO (EMT36HLP) -23 -12 X X X X 18 4 TEE (AZ82 YP) 6 12 X X X X 19 4.01 CUBIGEL (GL40AA) 0 10 4 9 0 15 4.01 ACC (GQY40AA) -11 -8 13 17 X X 20 4.03 CUBIGEL (GD40AA) -1 2 -7 -3 2 7 21 4.07 ACC (GVM40AA) -24 -10 4 6 X X 22 4.08 KULTHORN 6 17 20 26 X X 23 4.23 TECUMSEH(THB 1340Y) -7 0 7.13 7.36 30 35 24 4.3 CHINA(S43BZ) -5 7 X X X X 25 4.38 ACC(OF789.02) -13 -11 -5 0 X X 26 4.56 CUBIGEL (GL45AA) 0 8 3 5 0 6 27 4.6 KULTHORN -3 15 8 11.5 X X 28 4.85 EMBRACO (EMT43HLP) -19 -10 X X X X 29 5.0 TEE(AZ90 YP) 24 25 X X X X 5.0 DONPER CHINA(S50CZA) -5 7 X X X X 30 5.08 DANFOSS (TLS5F) -11 -8 -3.5 3.5 -4 0 31 5.11 KULTHORN -15 16 3 9 X X 32 5.12 CUBIGEL (GL50AA) -2 4 0 3 0 6 33 5.2 TECUMSEH(THB1350Y) 2 6 4 6 35 38 34 5.3 CHINA(S53BZ) -10 10 X X X X 35 5.46 ACC(GL50AA.02) 2 4 3 5 X X 36 5.5 Donper CHINA(EK1112CZA) -8 -6 X X X X 37 5.56 EMBRACO (EMT49HLP) -7 -15 X X X X 38 5.58 TECUMSEH(THB1350YS) 9 14 10 10.5 40 43 39 5.7 DANFOSS (TLS6F) -6 -2 0 3 -7 0 5.7 ACC (GVM57AA) -14 -8 -4 2 X X 40 5.75 TEE(AE148 YP) 11 12 X X X X 41 5.8 DONPER CHINA(L58CZ) -19 -5 X X X X 42 5.99 CUBIGEL (GL60AA) 0 5 -3 0 0 6 5.99 KULTHORN -5 9 -5 5 X X 5.99 ACC(GQY60AA) -10 -6 8 11 X X 43 6.1 TECUMSEH(THB 1360 Y) -2 4 -2 7 34 39 44 6.13 DANFOSS (NL6F) -5 5 5 9 -5 6 45 6.2 EMBRACO(NBT1114Z) -6 -4 X X X X 46 6.3 DONPER -10 -8 X X X X 47 6.49 DANFOSS (TLS7F) -5 -1 -2 0 -5 0 48 6.5 DONPER CHINA(L58CZ) 0 6 X X X X 49 6.6 ACC(GVM66AA) -11 -7 -4 -1 X X Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 95 50 6.64 CUBIGEL (GL70AA) 0 5 -3 0 0 9.5 6.64 ACC(L70AN.02) -8 -4 -12 -3 X X 51 6.76 EMBRACO (EMT60HLP) -9 -3 X X X X 52 6.9 DONPER -12 -3 X X X X 53 6.91 KULTHORN KIRBY -3 9 2 6 X X 6.91 TEE (AE148 YP) 12 14 X X X X 54 6.93 DANFOSS(FR7.5F) 5 14 8 11 8 20 55 7.0 ACC(GVY66AA.01) -8 -4 4 9 X X 56 7.2 DONPER -28 6 X X X X 7.2 DONPER CHINA(L72CZ) -6 9 X X X X 57 7.27 DANFOSS (NL7F) -6 -3 -2 6 -4 2 58 7.39 CUBIGEL (GL75AA) 0 3 0 4 2 8 7.39 ACC (GL80AA.02) -8 -5 0 2 X X 59 7.4 EMBRACO (NBT1116Z) -5.3 -4.3 X X X X 60 7.52 ACC (GVY75AA) -9 -7 3 7 X X 61 7.94 TEE (AE176 YP) 10 12 X X X X 62 7.95 DANFOSS (NL8F) -7 -4 -4 6 X X 63 8.07 EMBRACO(NB1118Z) -1.5 1.5 X X X X 64 8.09 ACC (GL80AN) -2 5 -8 -2 X X 65 8.1 CUBIGEL (GL80AA) 0 9 -3 3 0 10 8.1 EMBRACO (NB1116Z) -6 10 X X X X 66 8.12 KULTHORN KIRBY -16 16 -6 13 X X 67 8.35 DANFOSS (NL9F) -3 3 0 5 -2 3 68 8.8 TECUMSEH (AEZ 1365Y) 10 26 0 8 X X 69 8.99 TEE (AE196YP) 10 12.5 X X X X 70 9.05 DANFOSS (FR10F) 2 16 6 9 10 12.5 9.05 ACC (GQY90AA) -15 -6 0 7 X X 71 9.08 CUBIGEL (GL90AA) 0 3 -6 -3 3 6 72 9.27 EMBRACO (NE1121Z) -10 -8 X X X X 73 9.407 TECUMSEH (AEA 1410 -8 0 -30 -12 -3 12 74 9.42 KULTHORN 2 20 -3 12 X X 75 9.93 CUBIGEL (GL99AA) 2 9 1 2.5 -5 7 76 11.15 DANFOSS (NL11F) -4 -1 -2 4 -4 2 Total number of compressors with 15% cooling capacity deviation 72 18 Total number of compressors with 15% power deviation 50 9 Total number of compressors with 15% refrigerant mass flow rate deviation 25 9 Compressors Brand: Electrolux CUBIGEL, Danfoss, Tecumseh, TEE, Embraco, ACC, KULTHORN KIRBY(TURKY) , DONPER(CHINA) 8 Fig. 1. Show the surface fitting for compressors cooling capacity via Te & swept volume. Swept volume T evaporator o Cooling capacity W Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 96 Fig. 2. Show the surface fitting for compressors power via Te & swept volume. Fig. 3. Show the surface fitting for compressors refrigerant mass flow rate via Te & swept volume. Fig. 4. The cooling capacity curves for the compressors via the evaporator temperatures for range of swept volume [S=2.42 to 11.15] cm3. Fig. 5. Power consumption curves for the compressors via the evaporator temperatures for range of swept volume [S=2.42 to 11.15] cm3. -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 500 550 Te [°C] C o o lin g C ap ac it ie s [ W ] S=2.42 S=3.05 S=3.58 S=4.01 S=4.56 S=5.08 S=5.99 S=6.49 S=7.39 S=8.1 S=8.35 S=9.05 S=9.93 S=11.15 -23.3 °C -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 Te [°C] P o w er [ W ] S=2.42 S=3.05 S=3.58 S=4.01 S=4.56 S=5.08 S=5.99 S=6.49 S=7.39 S=8.1 S=8.35 S=9.05 S=9.93 S=11.15 -23.3 °C Swept volume 3 Power W T evaporator Refrigerant mass flow rate kg/hr T evaporator oC Swept volume Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 97 0 50 100 150 200 250 0 50 100 150 200 250 0 2 4 6 8 10 12 Correleted Power Data [W] A c tu a l P o w e r [ W ] S w e p t v o lu m e [ c m 3 ] +15% -15% 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 2 4 6 8 10 12 Correleted refrigerant mass flow [kg/hr] A c tu a l r e fr ig e ra n t m a s s f lo w [ k g /h r] S w e p t v o lu m e [ c m 3 ] +15% -15% Fig. 6. Refrigerant mass flow rate curves for the compressors via the evaporator temperatures for range of swept volume [S=2.42-11.15] cc. Fig. 7. The deviation for the cooling capacity between correlated results and available Data. Fig. 8. The deviation for the power consumption between correlated results and available Data. Fig. 9. The deviation for the Refrigerant mass flow rate between correlated results and available Data. -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 Te [°C] R ef ri g er an t m as s fl o w r at e[ kg /h r] S=2.42 S=3.05 S=3.58 S=4.01 S=4.56 S=5.08 S=5.99 S=6.49 S=7.39 S=8.1 S=8.35 S=9.05 S=9.93 S=11.15 -23.3 °C 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 2 4 6 8 10 12 correleted Cooling Capacity [W] A c tu a l c o o lin g c a p a c it y [ W ] S w e p t v o lu m e [ c m 3 ] + 15% -15% Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 98 -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 Te [°C ] C o o lin g c a p a ci ty [ W ] Da ta f o rm m a tl a b eq.[S=2 .4 2 ] El ectro l ex G D2 4 A A [S=2 .4 2 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 Te [°C ] C o o lin g C a p a c it y [ W ] Em bra co EMT2 2 HLP[S=3 .0 ] El ectro l ex G D3 0 A A [S=3 .0 5 ] Do nper D3 0 C Z[S=3 .0 ] Da ta f ro m m a tl a b eq.[S=3 .0 5 ] -40 -35 -30 -25 -20 -15 -10 -5 0 20 40 60 80 100 120 140 160 180 200 Te [°C] C o o lin g c ap ac it y [W ] El ectro lex G D3 6 A A [S=3 .5 8 ] TEE A Z6 8 YD[S=3 .5 9 ] A C C G Q Y3 5 A A [S=3 .6 6 ] Do nper S3 6 C 6 [S=3 .6 ] Tecum s eh THB 1 3 3 5 Y[S=3 .3 5 8 ] da ta f ro m m a tla b eq.[S=3 .5 8 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 Te [°C] C o o lin g c a p a c it y [ W ] Em braco EMT3 6 HLP[S=3 .9 7 ] TEE A Z8 2 YP[S=4 .0 ] El ectro lex G L4 0 A A [S=4 .01 ] A C C G Q Y40 A A [S=4.0 1 ] Kultho rn Ki rby A E13 3 0 Y[S=3 .9 ] Da ta f ro m m a tl ab eq.[S=4 .01 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 250 Te [°C ] C o o lin g C a p a c it y [ W ] Da ta f ro m m a tla b eq.[S=4 .5 6 ] Electro lex G D4 5A A [S=4 .5 6 ] K K A E13 3 5 Y[S=4 .6 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 Te [°C ] C o o lin g C a p a c it y [ W ] Da ta f ro m m a tla b[5 .1 2 ] K K A E1 3 4 0 Y[S=5 .1 1 ] Electro lex G D5 0 A A [S=5 .1 2 ] TEC U MSEH THB 1 3 5 0 Y[S=5 .2 ] [10-a] [10-c] [10-e] [10-b] [10-d] [10-f] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 99 -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 Te [°C ] C o o lin g C a p a c it y [ W ] Da nf o s s TLS6 F[S=5 .7 ] A C C G VM5 7 A A [S=5 .7 ] TEE A E1 4 8 YP[S=5 .7 5 ] Do nper L5 8 C Z[S=5 .8 ] Do nper LU 5 8 C Z[S=5 .8 ] Da ta f ro m m a tl a b eq.[S=5 .7 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 Te [°C ] C o o li n g C a p a c it y [ W ] Tecum seh THB 1 3 6 0 Y[S=6 .1 ] Da nf o ss N L6 F[S=6 .1 3 ] Em bra co N B T1 1 1 4 Z[S=6 .2 ] Do nper EK1 1 1 4 C ZA [S=6 .3 ] Da ta f ro m m a tla b eq.[S=6 .1 3 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 Te [°C ] C o o lin g C a p a c it y [ W ] Da nf o s s TLS7 F[S=6 .4 9 ] Do nper L5 8 C Z[S=6 .5 ] Da ta f ro m m a tla b eq.[S=6 .4 9 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 500 Te [°C ] c o o lin g c a p a c it y [ W ] Do nper EK1 1 1 8 C ZA [S=7 .2 ] Do nper L7 2 C Z [S=7 .2 ] Da nf o s s N L7 F [S=7 .2 7 ] Da ta f ro m m a tl a b eq. [S=7 .2 7 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 Te [°C] Q e [ W ] El ectro l ex G L8 0 A A [S=8 .1 ] Em bra co N B 1 1 1 6 Z[S=8 .1 ] KK A E1 3 7 0 Y[S=8 .1 2 ] Da ta f ro m m a tl a b eq.[S=8 .1 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 Te [°C] C o o lin g c a p a c it y [ W ] Tecum s eh A EZ1 3 6 5Y[S=8 .8] TEE A E1 96 YP[S=8 .9 9 ] Da nf o s s FR 1 0F[S=9 .0 5 ] A C C G Q Y9 0 A A [S=9 .0 5 ] Data f ro m m a tl ab eq.[S=9 .0 5 ] [10-g] [10-h] [10-i] [10-j] [10-k] [10-l] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 100 -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 500 550 Te [°C ] C o o lin g c a p a c it y [W ] Da ta f ro m m a tl a b[S=9 .9 3 ] Electro l es G L9 9 A A [S=9 .9 3 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 400 450 500 550 Te [°C ] Da ta f ro m m a tla b eq.[S=1 1 .1 5 ] Da f o s s N L1 1 F[S=1 1 .1 5 ] C o o lin g c a p a c it y [W ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 Te [C ] P o w e r [ W ] Da ta f ro m m a tla b[S=2 .4 2 ] El etro l ex G D2 4 A A [S=2 .4 2 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 Te [°C] P o w er [ W ] El ectro l ex G D3 0 A A [S=3 .0 5 ] Da ta f ro m m a tl a b eq.[S=3 .05 ] -40 -35 -30 -25 -20 -15 -10 -5 0 20 40 60 80 100 120 140 160 180 200 Te [°C] P o w e r [ W ] El ectro lex G D3 6 A A [S=3 .5 8 ] A C C G Q Y3 5 A A [S=3 .6 6 ] Tecum s eh THB 1 3 3 5 Y[S=3 .5 8 ] Da ta f ro m m a tl a beq.[S=3 .5 8 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 Te [°C ] P o w e r [ W ] Ki l tho rn Kirby A E1 3 2 7 Y[S=3 .9 ] A C C G Q Y4 0 A A [S=4 .0 1 ] Da ta f ro m m a tl a b eq.[S=4 .0 1 ] Electro lex G L4 0 A A [S=4 .0 1 ] A C C G VM4 0 A A [S=4 .0 7 ] Kultho rn Kirby A E1 3 3 0 Y[S=4 .0 8 ] [10-m] [10-n] Fig. 10-a to 10-n. Show the deviation of the calorimeter data from correlated data for cooling capacity for the range of swept volume [2.42 to 11.15] cm3. [11-a] [11-b] [11-c] [11-d] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 101 -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 Te [°C ] p o w e r [ W ] Tecum seh THB 1 3 6 0 Y[S=6 .1 3 ] Da nf o ss N L6 F[S=6 .1 3 ] Da ta f ro m m a tla b eq.[S=6 .1 3 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 250 Te [°C ] P o w e r [W ] A C C G VM6 6 A A [S=6 .6 ] Electro l ex G L7 0 A A [S=6 .6 4 ] A C C LN 7 0 A N [S=6 .6 4 ] Da ta f ro m m a tl a b[S=6 .6 4 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 Te [°C ] P o w e r [ W ] Kul tho rn Ki rby A E1 3 6 0 Y[S=6 .9 1 ] Da nf o s s FR 7 .5 F[S=6 .9 3 ] A C C G VY6 6 A A [S=7 .0 ] Da ta f ro m m a tl a b eq.[S=7 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 Te [°C ] P o w e r [ W ] El ectro lex G L4 5 A A [S=4 .5 6 ] Kultho rn Kirby A E 1 3 3 5 Y[S=4 .6 ] Da ta f ro m m a tl a b[S=4 .6 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 Te [°C ] P o w e r [ W ] Kul tho rn Kirby A E1 3 4 0 Y[S=5 .1 1 ] El ectro l ex G L5 0 A A [S=5 .1 2 ] Tecum seh THB 1 3 5 0 Y[S=5 .2 ] Da ta f ro m m a tl a b eq.[S=5 .1 2 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 Te [°C ] P o w e r [ W ] Da ta f ro m m a tl a b eq.[S=5 .7 ] Da nf o s s TLS6 F[S=5 .7 ] A C C G VM5 7 A A [S=5 .7 ] [11-e] [11-f] [11-g] [11-h] [11-i] [11-j] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 102 -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 250 275 300 Te [°C ] P o w e r [ W ] Electro lex G L7 5 A A [S=7 .3 9 ] A C C G L8 0 A A [S=7 .3 9 ] A C C G VY7 5 A A [S=7 .3 9 ] Da ta f ro m m a tl a b eq.[S=7 .3 9 ] A C C G VY7 5 A A [S=7 .5 2 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 Te [°C ] p o w e r [ W ] Da ta f ro m m a tla b eq.[S=9 .9 3 ] Electro lex G L9 9 A A [S=9 .9 3 ] -40 -35 -30 -25 -20 -15 -10 -5 0 50 100 150 200 250 300 350 Te [°C ] p o w e r [ W ] Da ta f ro m m a tla b eq.[S=1 1 .1 5 ] Da nf o s s N L1 1 F[S=1 1 .1 5 ] -40 -35 -30 -25 -20 -15 -10 -5 0 25 50 75 100 125 150 175 200 225 250 275 300 Te [°C ] P o w e r [ W ] Electro lex G L8 0 A A [S=8 .1 ] Da nf o ss N L9 F[S=8 .3 5 ] Da ta f ro m m a tl a b eq.[S=8 .1 ] Da ta f ro m m a tl a b eq.[S=8 .3 5 ] -40 -35 -30 -25 -20 -15 -10 -5 0.25 0.65 1.05 1.45 1.85 2.25 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da ta f ro m m a tl a b eq.[S=2 .42 ] Electro lex G D2 4 A A [S=2 .4 2 ] -40 -35 -30 -25 -20 -15 -10 -5 0 0.5 1 1.5 2 2.5 3 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da ta f ro m m a tl a b eq.[S=3 .0 5 ] El ctro lex G D3 0 A A [S=3 .0 5 ] [11-k] [11-l] [11-m] [11-n] Fig. [11-a to 11-n]. Show the deviation of the calorimeter data from correlated data for power consumption for the range of swept volume [2.42-11.15] cm3. [12-a] [12-b] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 103 -40 -35 -30 -25 -20 -15 -10 -5 0 0.5 1 1.5 2 2.5 3 3.5 4 Te [°C] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] El ectro l ex G D3 6 A A [S=3 .5 8 ] Da ta f ro m m a tl a b eq.[S=3 .5 8 ] -40 -35 -30 -25 -20 -15 -10 -5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Te [°C] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da ta f ro m m a tla b eq.[S=4 .0 1 ] Electro lex G L4 0 A A [S=4 .0 1 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [k g /h r] Electro l ex G L4 5 A A [S=4 .5 6 ] Da ta f ro m m a tl a b eq.[S=4 .5 6 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 Te [°C] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da nf o s s TLS5 F[S=5 .0 8] Da ta f ro m m a tl a b eq.[S=5 .0 8 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da ta f ro m m a tl a b eq.[S=5 .7 ] Da nf o s s TLS6 F[S=5 .7 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 Te [°C ] Da nf o ss N L6 F[S=6 .1 3 ] Tecum s eh THB 1 3 6 0 Y[S=6 .1 ] Da ta f ro m m a tl a b[S=6 .1 3 ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] [12-c] [12-d] [12-e] [12-f] [12-g] [12-h] Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 104 -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 Te [° C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da nf o ss TLS7 F[S=6 .4 9 ] Te [° C ] Da ta f ro m m a tla b eq.[S=6 .4 9 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] Da nf o s s N L7 F[S=7 .2 7 ] Da ta f ro m m a tla b eq.[S=7 .2 7 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 Te [°C ] R e fr ie ra n t m a s s f lo w r a te [ k g /h r] El ectro lex G L8 0 A A [S=8 .1] Da ta f ro m m atla b eq.[S=8 .1 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 Te [°C ] Da nf o ss N L9 F[S=8 .3 5 ] Dta f ro m m a tl a b eq.[S=8 .3 5 ] R e fr ie ra n t m a s s f lo w r a te [ k g /h r] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 Te [°C ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] El ectro l ex G L9 9 A A [S=9 .9 3 ] Da ta f ro m m a tl a b eq.[S=9 .9 3 ] -40 -35 -30 -25 -20 -15 -10 -5 0 1 2 3 4 5 6 7 8 9 10 11 Te [°C ] Da ta f ro m m a tl a b eq.[S=1 1 .1 5 ] Da f o s s N L1 1 F[S=1 1 .1 5 ] R e fr ig e ra n t m a s s f lo w r a te [ k g /h r] [12-i] [12-j] [12-k] [12-l] [12-m] [12-n] Fig. [12-a to 12-n]. Show the deviation of the calorimeter data from correlated data for refrigerant mass flow rate for the range of swept volume [2.42-11.15] cm3. Louay Abd Alazez Mahdi Al-Khwarizmi Engineering Journal, Vol. 11, No. 4, P.P. 89- 106 (2015) 105 5. Conclusion Semi-empirical models were found to represent household compressors. First: The calorimeter data which are correlated (according to ARI standard 540-90) which must involve to coefficients to cover the swept volume range (2.24-11.15) cm3 at constant condensing temperature 54.4 ℃ and evaporating temperature range (-35 to -10)℃, by using Matlab software- surface fitting method as in equations (1),(2), and (3). The models represent the cooling capacity, power consumption, and refrigerant mass flow rate with ∓15% deviation. Second: Another correlations as quick selection was found depending on the label power consumption and according to SHRAE standard 23-1993, in order to find the household compressor specifications, like swept volume and cooling capacity as in equations (4), (5), and (6). List of symbols a1,a2,…,a9 Constant ARI Air conditioning and Refrigeration Institute ASHRAE American Society of Heating, Refrigerating and Air- Conditioning Engineers b1,b2,…,b9 constant c1,c2,…,c9 constant mr Refrigerant mass flow rate Kg/hr P Power consumption Watt Qe Cooling capacity Watt R2 Goodness of fit S Swept volume cm3 Te Evaporator Temperature ℃ 6. References [1] Duggan.M.G., Hundy.C.F.,and Lawson.S. "Refrigeration compressor performance using calorimeter and flow rater techniques", Purdue University, Int. Compressor Engineering Conference,1988 . [2] Cavallini, Doretti, Longo, and Rossetto."Thermal analysis of hermetic reciprocating compressor" , Purdue University, Int. Compressor Engineering Conference,1996. [3] Mackensen, Klein, and eindl,"Characterization of refrigeration system compressor performance", Purdue University, Int. Compressor Engineering Conference, 2002. [4] Kim,and Bullard. "Thermal performance analysis of small hermetic refrigeration and air conditioning compressors" International Journal of JSME, series B, Vol.45, No.4, 2002. [5] Jähnig, Reindl, and Klein, “A semi-empirical method for representing domestic refrigerator/freezer compressor calorimeter test data”, ASHRAE Transactions, 106 (2000),PP 122-130. [6] Cezar O. R. Negrao, Raul H. Erthal, Diogo E. V. Andrade, and Luciana W. Silva”Embraco An Algebraic Model for Transient Simulation of Reciprocating Compressors “. [7] Holmn. J.P." Experimental Methods for Engineers", eight editions. Mc GrawHill Company.2010. [8] A.R.I. Standard 540-99, “Positive Displacement Refrigerant Compressors and Compressor Units”. Air-Conditioning and Refrigeration Institute, 1999. [9] ASHRAE/ANSI Standard 23-1993, “Methods of Testing for Rating Positive Displacement Refrigerant Compressors and Condensing Units”, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 1993. ������"ي �� ا #$%&��()' ا*+��د11�%$' ا�0/ارز#, ا�� )2015( 89-106، 234' 4، ا 106 ���ت وا� � �ات�ا���د ���د�ت ا�داء �� �ا� ا� ����� ا���� ������ �دا ��! ا� ����ت ا�� ***��+ � � ا� ��* ** � �د ا( ���) ' �& * �%ي � � ا������#�ى *،**،***'(5(675(&��(' ا*+��/;)'/ :89 ا/*5<� ا�%7#�' ا � ا?�5><و6,�>�� louayalkaesy@gmail.com:ا � ا?�5><و6,�>�� emad_1955_emad@yahoo.com :ا ��� ا?�5><و6,<ا�: laith.ismael@ymail.com �,� ا�- �$7G>Aت ا�&D# D(*E? '�*F ا��C#7ت ا�>%7ر�' ا�A+)<ة >�9&��)' ا(>*7دا إ�H I)767ت ا�*&�ھSه ا�&�7د?ت ذات ، 8P ا�%7د #�7د?ت أداء #7' �$M/اKL ا �رھ7 : 'W ';ر�H '(5�>#?ا ��>�<�#\/�' ) - ١٠ا�I - ٣٥(D #\/�' ودر;' W<ارة #�0< # ٥٤.٤ E >A/ا7H YH?(>*7د ا�7X(E/P Iت #"(9' ا `#76>H ام�0<)7HبCP7# ، /ي ھS�� ا�>�<��cd7# '$+Cك ا�7h:'، و#��>�<��رة اX�± و7Gن #��ل ا�2)/د . R-134aھSه ا�&�7د?ت jV&P ا ��' و ٧٢٪ و�&7X# jVر6' ١٥�>�<��رة اX$� KL7o>�9# 7ن(Hك ٥٠C+<)? >�9# 7ن(H 7:' وh��H$�9#' ��>�<� .cd7# ا pppppp&G7 ام�0�<��ل ;<�7ppppppن cd7pppppp# 'pppppp$�<��وھSppppppا ، ھSppppppا ا�8pppppp%2 ا�&f7pppppp5,ء ��pppppp9' ا�ppppppf>�# 8pppppp(7 �$ppppppp)?7H KL7pppppppM>*7د ا�7pppppppX(E/P Ipppppppت ASHRAE ى�ppppppp&� KLا/pppppppM�ا�Ippppppp ٢.٤٢(ا�7(X(ppppppp)' ا�>ppppppp /&%# ,ppppppphsP ,ppppppp' وا(Dppppppp# '�ppppppp ا7ppppppp%Wم ا ١١.٥١ (cm3.