Microsoft Word - ???? ?? ??? ?? ????. 22- 28 This is an open access article under the CC BY license : Al-Khwarizmi Engineering Journal Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, Sptember, (2021) P. P. 22- 28 Robust Computed Torque Control for Uncertain Robotic Manipulators Maryam S. Ahmed* Ali Hussien Mary** Hisham H. Jasim*** *,**,***Department of Mechatronics/ Al-Khwarizmi College of Engineering/ University of Baghdad *Email: Maryamsadeq97@gmail.com **Email: Alimary76@kecbu.uobaghdad.edu.iq ***Email: mschisham@gmail.com (Received 27 July 2021; Revised 20 August 2021; Accepted 1 September 2021) https://doi.org/10.22153/kej.2021.09.002 ABSTRACT This paper presents a robust control method for the trajectory control of the robotic manipulator. The standard Computed Torque Control (CTC) is an important method in the robotic control systems but its not robust to system uncertainty and external disturbance. The proposed method overcome the system uncertainty and external disturbance problems. In this paper, a robustification term has been added to the standard CTC. The stability of the proposed control method is approved by the Lyapunov stability theorem. The performance of the presented controller is tested by MATLAB-Simulink environment and is compared with different control methods to illustrate its robustness and performance. Keywords: Computed Torque Control, Linear Matrix Inequality, Robotic Control, Robotic Manipulato. 1. Introduction Today, the robotics systems enter into many applications such as, industrial applications, manufacturing, medical fields, and space application [1] . Precise positioning is an important desired feature of the robot manipulator. The robot manipulator can be considered as a nonlinear system that suffering from high nonlinearity and external disturbance. The main problem is how to control the robot taking into account the system uncertainty and external disturbance. However, in recent years, significant and rapid progress had been made in the field of control, to solve the control problem. Different control strategies have been proposed. PID control proposed by many researchers because Due to its simplicity and ease of implementation. Abhishek and Dayal presented PID controller optimized by Particle Swarm Optimization (PSO) to stabilize the gait humanoid robot [2]. Ignacio proposed design an adaptive PID controller based reinforcement learning [3]. Structured and unstructured uncertainties and external interference, it is difficult to obtain an accurate dynamics model of the robotic arm. Therefore, many control schemes for unknown dynamic models of robot manipulators have been proposed. A robust control strategy is an important method that can handle the system uncertainties and disturbances. Sliding mode control (SMC) is an effect robust control method that applied successfully in control different robotic manipulators.in [4], SMC is combined with fuzzy logic technique to control robot manipulator in task space. Mary and Kara presented robust control Maryam S. Ahmed Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, P.P. 22- 28 (2021) 23 method for control 2 links robotic arm by using Linear Matrix Inequality (LMI) to tune the control gains [5]. In (Wu and Huang , 2021), fraction fractional calculus utilized to design hybrid controller with the sliding mode control for trajectory tracking of mobile robot manipulator. In (Chen et al. , 2019), radial basis function neural network used with SMC for control n links robot arm taking into account the actuator dynamic. However, the Chattering is the important drawback in SMC [8,9]. CTC is an efficient control used in robotic control problem. CTC method require knowing the dynamic of robotic arm and in practice, determine the accurate dynamic of robotic arm may be difficult [10,11,12]. Thus, this paper proposed a new method that can improve the robustness of the standard CTC against system uncertainty and external disturbance. 2. Dynamic Model of the Robotic Manipulator The dynamic model of the robotic arm system can be written as follows: ๐‘€ ๐‘ž ๐‘ž ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž ๐œ ๐œโ€ฆ(1) where ๐‘ž, ๐‘ž, ๐‘ž โˆˆ ๐‘… refer respectively to the angular position, velocity, and acceleration vectors of robotic manipulator joints, ๐‘€ ๐‘ž โˆˆ ๐‘… refers to the inertia matrix, ๐ถ ๐‘ž, ๐‘ž โˆˆ ๐‘… denotes a centripetal and Coriolis vector force, ๐น ๐‘ž โˆˆ ๐‘… is the friction torque vector, ๐บ ๐‘ž โˆˆ ๐‘… represents loading of the gravity, ๐œ โˆˆ ๐‘… is the external disturbance, and ๐œ โˆˆ ๐‘… refers to the joints torque vector. In particular applications, getting the accurate dynamic of the robotic manipulator are not easy due to model uncertainties and external disturbance. Therefore, the model uncertainty can be included in the dynamic model as follows: ๐‘€ ๐‘ž ๐‘€ ๐‘ž โˆ†๐‘€ ๐‘ž โ€ฆ(2) ๐ถ ๐‘ž, ๐‘ž ๐ถ ๐‘ž, ๐‘ž โˆ†๐ถ ๐‘ž, ๐‘ž โ€ฆ(3) ๐น ๐‘ž ๐น ๐‘ž โˆ†๐น ๐‘ž โ€ฆ(4) ๐บ ๐‘ž ๐บ ๐‘ž โˆ†๐บ ๐‘ž โ€ฆ(5) where ๐‘€ ๐‘ž , ๐ถ ๐‘ž, ๐‘ž , ๐น ๐‘ž , and ๐บ ๐‘ž represent the nominal model of the robotic system and it can be known, whereas โˆ†๐‘€ ๐‘ž , โˆ†๐ถ ๐‘ž, ๐‘ž , โˆ†๐น ๐‘ž and โˆ†๐บ ๐‘ž denote the uncertainty part of the robotic manipulator dynamic model and it cannot be determined exactly. In this paper, we assume the following: Assumption 1. The desired trajectories ๐‘ž with their first and second derivatives ๐‘ž and ๐‘ž are continuous and bounded as follows: |๐‘ž ๐‘ก | ๐‘€ , |๐‘ž ๐‘ก | ๐‘€ , |๐‘ž ๐‘ก | ๐‘€ , โ€ฆ(6) with ๐‘€ , ๐‘€ , and ๐‘€ being positive constants[5]. 3. Computed Torque Control Computed torque control is an important control method that applied successfully in robotic system control when there is no model uncertainty Then, the dynamic model in (1) becomes ๐‘€ ๐‘ž ๐‘ž ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž ๐œ โ€ฆ(7) The standard CTC is ๐œ ๐‘€ ๐‘ž ๐‘ž ๐‘˜ ๐‘’ ๐‘˜ ๐‘’ ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž โ€ฆ(8) ๐‘’ ๐‘ž ๐‘ž โ€ฆ(9) where ๐‘’ is the tracking error, ๐‘˜ and ๐‘˜ are the proportional and derivative control gain matrices. By substituting (8) in (7), ๐‘ž ๐‘˜ ๐‘’ ๐‘˜ ๐‘’ 0 โ€ฆ(10) It is obvious that the roots of (10) will lie on the left half plane if the control gain matrices ๐‘˜ and ๐‘˜ are positive, which implies that the actual trajectory can track desired trajectory and error signal will converge to zero. 4. Proposed Robust Ctc Design A robust CTC controller will be presented to improve the performance of the CTC. The proposed control law is ๐œ ๐‘ข ๐‘ข โ€ฆ(11) ๐‘ข ๐‘€ ๐‘ž ๐‘ž ๐‘˜ ๐‘’ ๐‘˜ ๐‘’ ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž โ€ฆ(12) where ๐‘ข is a standard computed torque that defined in (8). ๐‘ข is a robust control term that can handle the system uncertainties and external disturbance. Design of robust compensator controller To solve the problem robustness of the standard CTC, the following control is proposed: ๐‘ข ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› ๐›พe t e t โ€ฆ(13) Where ๐‘˜ is the gain of the robust term, ๐›พ is a positive constant. Sign is the sign function. Theorem 1. Consider the robotic manipulator dynamic model (1) with the proposed control law in (2), the closed loop controlled system will be Maryam S. Ahmed Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, P.P. 22- 28 (2021) 24 stable and the tracking error and its derivative will converge to zero. Proof. The Lyapunov function candidate selected as follows: ๐‘† t ๐›พe t e t โ€ฆ(14) ๐‘ž ๐‘ž ๐›พ ๐‘ž ๐‘ž โ€ฆ(15) By simple calculations it can be obtained the following ๐‘† ๐‘ก ๐‘ž ๐‘ž โ€ฆ(16) ๐‘† ๐‘ก ๐‘ž ๐‘ž โ€ฆ(17) ๐‘‰ ๐‘ก ๐‘† ๐‘€๐‘† โ€ฆ(18) ๐‘‰ ๐‘ก ๐‘† ๐‘€๐‘† ๐‘† ๐‘€๐‘† โ€ฆ(19) ๐‘† ๐‘€๐‘† ๐‘† ๐ถ๐‘† ...(20) ๐‘† ๐‘€ ๐‘ž ๐‘ž ๐ถ ๐‘ž ๐‘ž โ€ฆ(21) ๐‘† ๐‘€๐‘ž ๐ถ๐‘ž ๐‘€๐‘ž ๐ถ๐‘ž โ€ฆ(22) ๐‘† ๐‘€๐‘ž ๐ถ๐‘ž ๐น ๐บ ๐œ โ€ฆ(23) Sub (11) in (23) ๐‘‰ ๐‘ก ๐‘† ๐‘€๐‘ž ๐ถ๐‘ž ๐น ๐บ ๐‘ข ๐‘ข โ€ฆ(24) Sub (12) and (13) in (24) ๐‘† ๐‘€๐‘ž ๐ถ๐‘ž ๐น ๐บ ๐‘€ ๐‘ž ๐‘ž ๐‘˜ ๐‘’ ๐‘˜ ๐‘’ ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› S โ€ฆ(25) Let ๐œŒ ๐‘ก ๐‘€๐‘ž ๐ถ๐‘ž ๐น ๐บ ๐‘€ ๐‘ž ๐‘ž ๐ถ ๐‘ž, ๐‘ž ๐‘ž ๐น ๐‘ž ๐บ ๐‘ž โ€ฆ(26) ๐‘† ๐œŒ ๐‘ก ๐‘€ ๐‘ž ๐‘˜ ๐‘’ ๐‘˜ ๐‘’ ๐‘ž ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› S ...(27) ๐‘‰ ๐‘ก ๐‘† ๐œŒ ๐‘ก ๐‘˜ ๐‘€ ๐‘ž ๐‘’ ๐‘˜ ๐‘€ ๐‘ž ๐‘’ t ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› S โ€ฆ(28) ๐‘‰ ๐‘ก ๐‘† ๐œŒ ๐‘ก ๐‘€ ๐‘ž ๐‘˜ ๐‘˜ ๐‘˜ ๐‘’ ๐‘’ t ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› S โ€ฆ(29) If parameters ๐‘˜ and ๐‘˜ selected as follows ๐‘˜ ๐‘˜ ๐›พ โ€ฆ(30) Sub (30) in (29), yields: ๐‘‰ ๐‘ก ๐‘† ๐œŒ ๐‘ก ๐‘˜ ๐‘€ ๐‘† ๐‘˜ ๐‘ ๐‘–๐‘”๐‘› S โ€ฆ(31) ๐‘† ๐‘˜ ๐‘€ ๐‘† ๐‘† ๐œŒ ๐‘ก ๐‘˜ โ€ฆ(32) โ€–๐‘€ ๐‘ž โ€–โ€–๐‘˜ โ€–โ€–๐‘†โ€– โ€–๐‘˜โ€–โ€–๐‘†โ€– โ€–๐œŒ ๐‘ก โ€–โ€–๐‘†โ€– โ€ฆ(33) If ๐‘˜ selected large enough greater than ๐œŒ ๐‘ก , then ๐‘‰ ๐‘ก โ€–๐‘€ ๐‘ž โ€–โ€–๐‘˜ โ€–โ€–๐‘†โ€– โ€ฆ(34) which implies that: ๐‘‰ ๐‘ก 0 โ€ฆ(35) As a result the stability of the controlled system in (1) with the proposed control law in (11) is guaranteed. 5. Simulation Results In this section, the performance and robustness of the proposed control method is tested by applying it on the two link robotic arm. Moreover, the proposed method is compared with the standard CTC method. Additionally, integral absolute value error (๐ผ๐ด๐ธ) performance index is used to examine the tracking error performances in this comparison that can be expressed as follows: ๐ผ๐ด๐ธ |๐‘’ ๐‘ก |๐‘‘๐‘ก โ€ฆ(36) The dynamic model of two link robotic manipulator is [21]: ๐œ ๐œ ๐ด ๐ด ๐ด ๐ด ๐‘ž ๐‘ž 2๐‘๐‘ž ๐‘ง๐‘ž ๐‘๐‘ž 0 ๐‘ž ๐‘ž ๐‘ฃ ๐‘ž ๐‘ฃ ๐‘ž ๐‘ ๐‘ ๐‘”๐‘› ๐‘ž ๐‘ ๐‘ ๐‘”๐‘› ๐‘ž ๐บ ๐บ โ€ฆ(37) with ๐ด ๐‘š ๐‘™ ๐‘š ๐‘™ ๐‘™ 2๐‘™ ๐‘™ ๐‘๐‘œ๐‘  ๐‘ž ๐ด ๐‘š ๐‘™ ๐‘™ ๐‘๐‘œ๐‘  ๐‘ž ๐‘™ ๐ด ๐‘š ๐‘™ ๐‘ 2๐‘š ๐‘™ ๐‘™ ๐‘ ๐‘–๐‘› ๐‘ž ๐‘ง ๐‘š ๐‘™ ๐‘™ ๐‘ ๐‘–๐‘› ๐‘ž ๐บ ๐‘š ๐ฟ ๐‘”๐‘๐‘œ๐‘  ๐‘ž ๐‘š ๐‘” ๐ฟ ๐‘๐‘œ๐‘  ๐‘ž ๐‘ž ๐ฟ ๐‘๐‘œ๐‘  ๐‘ž ๐บ ๐‘š ๐‘™ ๐‘” ๐‘๐‘œ๐‘  ๐‘ž ๐‘ž where ๐‘ž and ๐‘ž are angular positions, ๐œ and ๐œ are torques, ๐ฟ and ๐ฟ are lengths, ๐‘š and ๐‘š are masses, ๐‘ฃ , and ๐‘ฃ are coefficients of viscous friction, and ๐‘ and ๐‘ are coefficients of dynamic friction of Link1and Link2, respectively. The parameters of the robotic manipulator are selected as: ๐‘š 10 ๐‘˜๐‘” , ๐‘š 2 ๐‘˜๐‘” , ๐‘™ 1.1 m, ๐‘™ 0.8 m, ๐‘ƒ ๐‘ƒ 30 ,and ๐‘‰ ๐‘‰ 10 . The desired trajectory is ๐‘ž ๐‘ก ๐‘ž ๐‘ž , where q sin 2ฯ€t โ€ฆ(38) ๐‘ž sin 2ฯ€t โ€ฆ(39) The controller gains selected as follows: ๐‘˜ 3, ๐‘˜ 5, ๐‘˜ 15.The robustness of the proposed method and standard CTC are checked by varying the parameters of the robotic system by 15% of their nominal. Moreover, a sin ๐‘ก disturbance signal is applied. At second 3, Angular position and error in this position of robotic manipulators are shown in Figures 1 and 2 for the proposed and CTC methods. These figures indicated faster response of the proposed method. The proposed method needs approximately 0.06 seconds until tracking error converges to zero. Tables 1 and 2 list the ๐ผ๐ด๐ธ for proposed control scheme and CTC methods for Link1 and Link2 respectively. Maryam S. Ahmed Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, P.P. 22- 28 (2021) 25 Fig. 1. Results for system uncertainty. These indices indicate that the performance of the prosed control method is better than standard CTC method in reduction tracking error. Finally, it should be noted that all simulation results illustrate good robustness of proposed method against system uncertainty and external disturbance. Table 1, Performance of controllers under system uncertainty Proposed CTC Link 1 0.3464 2.1859 Link 2 0.0419 1.7772 Table 2 Performance of controllers for disturbance rejection Proposed CTC Link 1 0.4679 2.7099 Link 2 0.0485 2.2542 6. Conclusion In this paper, a robust control method proposed for control a robotic manipulator. Robotic manipulator is non-linear system, especially with the inability to represent the system perfectly due to the change in the parameters and the external disturbance. Although, CTC is good control method, but itโ€™s not robust to system uncertainties. This paper improves CTC method by adding a new robust term 0 1 2 3 4 5 -3 -2 -1 0 1 time(s) P o s iti o n t ra c k in g o f lin k 1 ideal position Proposed CTC 0 1 2 3 4 5 -1.5 -1 -0.5 0 0.5 1 1.5 time(s) P o s iti o n t ra c k in g o f lin k 2 ideal position Proposed CTC 0 1 2 3 4 5 -10 -5 0 5 10 time(s) S p e e d t ra c k in g o f lin k 1 ideal speed Proposed CTC 0 1 2 3 4 5 -10 -5 0 5 10 time(s) S p e e d t ra c k in g o f lin k 2 ideal speed Proposed CTC Maryam S. Ahmed Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, P.P. 22- 28 (2021) 26 Fig. 2. Results for disturbance rejection. Moreover, Lyapunov theorem stability has been used to approve stability of the proposed control method. It was concluded from the simulation results that there was a significant improvement in the performance of the proposed control in response to external disturbance and uncertainties in parameters of robotic manipulator. In future work, reinforcement learning can be used to select the optimal gains for the proposed controller parameters. Moreover, the proposed algorithm can be tested in the real robotic manipulator. 7. References [1] A. Mary, T. Kara and A. Miry, โ€œInverse kinematics solution for robotic manipulators based on fuzzy logic and PD controlโ€, Al- Sadiq International Conference on Multidisciplinary in IT and Communication Techniques Science and Applications(AIC- MITCSA), vol.pp.160-165, 2016. [2] A. Kashyap and D. Parhi, โ€œParticle Swarm Optimization aided PID gait controller design for a humanoid robotโ€, ISA Transaction, vol. 114, pp.306-330, 2020. [3] I. Carlucho and G. Acosta, โ€œAn adaptive deep reinforcement learning approach for MIMO PID controlโ€, ISA Transactions, vol.102, pp.280-249, 2020. [4] [4] X. Yin, L. Pan and S. Cai, โ€œRobust adaptive fuzzy sliding mode trajectory tracking control for serial robotic manipulatorsโ€, Robotics and Computer- Integrated Manufacturing, vol. 72, pp. 101884, 2021. [5] A. Mary and T. Kara,โ€ Robust Proportional Control for Trajectory Tracking of a Nonlinear Robotic Manipulator: LMI Optimization Approachโ€, Arabian Journal for Science and Engineering, vol. 41, pp. 5027- 5036, 2016. [6] X. Wu and Y. Huang, โ€œAdaptive fractional- order non-singular terminal sliding mode control based on fuzzy wavelet neural networks for omnidirectional mobile robot manipulatorโ€, ISA Transactions, vol. 115, 2021. [7] Z. Chen, X.Yang and X. Liu, โ€œRBFNN-based non-singular fast terminal sliding mode control for robotic manipulators including actuator dynamicsโ€, Neurocomputing, vol. 362, pp. 72-92, 2019. [8] T. Kara and A. Mary,โ€ Robust trajectory tracking control of robotic manipulators based on model-free PID-SMC approachโ€ Journal of Engineering Research, vol. 6, pp. 170-188, 2018. [9] T. Kara and A. Mary,โ€ Adaptive PD-SMC for Nonlinear Robotic Manipulator Tracking 0 1 2 3 4 5 -1.5 -1 -0.5 0 0.5 1 1.5 time(s) P o s iti o n t ra c k in g o f lin k 2 ideal position Proposed CTC 0 1 2 3 4 5 -10 -5 0 5 10 time(s) S p e e d t ra c k in g o f lin k 1 ideal speed Proposed CTC 0 1 2 3 4 5 -10 -5 0 5 10 time(s) S p e e d t ra c k in g o f lin k 2 ideal speed Proposed CTC 0 1 2 3 4 5 -3 -2 -1 0 1 time(s) P o s iti o n t ra c k in g o f lin k 1 ideal position Proposed CTC Maryam S. Ahmed Al-Khwarizmi Engineering Journal, Vol. 17, No. 3, P.P. 22- 28 (2021) 27 Controlโ€ Studies in Informatics and Control, vol. 26, pp. 49-58, 2017. [10] Th. Costa, F. Lara-Molina, A. Junior and E. Taketa,โ€Robust Hโˆž Computed torque Control for Manipulatorsโ€, IEEE Latin America Transactions, vol. 16, pp. 398-407, 2018. [11] M. Alwan, Hassan and R. Zaid Hikmat,โ€ Motion Control of Three Links Robot Manipulator (Open Chain) with Spherical Wristโ€, Al-Khwarizmi Engineering Journal 15(2) ,13-23. 2019. [12] C. Chen, C. Zhang, T. Hu, H. Ni1, and W. Luo,โ€œModel-assisted extended state observer- based computed torque control for trajectory tracking of uncertain robotic manipulator systemsโ€, International Journal of Advanced Robotic Systems, vol. 15, pp. 1-12, 2018. ) 2021( 22- 28 ุตูุญุฉ ุŒ 3ุงู„ุนุฏุฏ ุŒ 17ุงู„ู…ุฌู„ุฏ ุงู„ู‡ู†ุฏุณูŠุฉ ุงู„ุฎูˆุงุฑุฒู…ูŠ ุฌู„ุฉู… ู…ุฑูŠู… ุตุงุฏู‚ ุงุญู…ุฏ 28 ุงู„ุชุญูƒู… ุงู„ู…ุชูŠู† ููŠ ู…ุชุญูƒู… ุนุฒู… ุฏูˆุฑุงู† ุฐุฑุงุน ุงุงู„ู†ุณุงู† ุงุงู„ู„ูŠ ***ู‡ุดุงู… ุญุณู† ุฌุงุณู… **ุนู„ูŠ ุญุณูŠู† ู…ุฑูŠ ุงุญู…ุฏ* ู…ุฑูŠู… ุตุงุฏู‚ *ุŒ**ุŒ***ู‚ุณู… ู‡ู†ุฏุณุฉ ุงู„ู…ูŠูƒุงุชุฑูˆู†ูƒุณ/ ูƒู„ูŠุฉ ุงู„ู‡ู†ุฏุณุฉ ุงู„ุฎูˆุงุฑุฒู…ูŠ/ ุฌุงู…ุนุฉ ุจุบุฏุงุฏ Maryamsadeq97@gmail.com :ุงู„ุจุฑูŠุฏ ุงุงู„ู„ูƒุชุฑูˆู†ูŠ* Alimary76@kecbu.uobaghdad.edu.iq :ุงู„ุจุฑูŠุฏ ุงุงู„ู„ูƒุชุฑูˆู†ูŠ** mschisham@gmail.com :ุงู„ุจุฑูŠุฏ ุงุงู„ู„ูƒุชุฑูˆู†ูŠ*** ุงู„ุตุฉุงู„ุฎ ุซู„ ู†ุธุงู… ูŠุฏุฑุณ ู‡ุฐุง ุงู„ุจุญุซ ุงู„ุณูŠุทุฑุฉ ุนู„ู‰ ุฐุฑุงุน ุฑูˆุจูˆุช ุญูŠุซ ุชู… ุฅู‚ุชุฑุงุญ ุจู†ุงุก ู…ู†ุธูˆู…ุฉ ุณูŠุทุฑุฉ ุจุงุงู„ุนุชู…ุงุฏ ุนู„ู‰ ุทุฑู‚ ุงู„ุณูŠุทุฑุฉ ุงู„ุฐูƒูŠุฉ. ุฅุฐ ุฅู† ุฐุฑุงุน ุงู„ุฑูˆุจูˆุช ุชู… uncertaintyุงู„ ุฎุทูŠุง ูˆุฎุงุตุฉ ู…ุน ุนุฏู… ุงู„ู‚ุฏุฑุฉ ุนู„ู‰ ุชู…ุซูŠู„ ุงู„ู†ุธุงู… ุจุดูƒู„ ู…ุซุงู„ูŠ ุจุณุจุจ ุงุฒุนุงุฌุงุช ุงู„ุญู…ู„ ูˆุงุฅู„ุฎุทุงุก ุงู„ุชูŠ ุชุญุตู„ ุนู†ุฏ ู†ู…ุฐุฌุฉ ุงู„ู†ุธุงู… ูˆู‡ูˆ ู…ุงูŠุณู…ู‰ system ูˆู‡ุฐุง ู…ู† ุฎุงู„ู„ ุชุญุณูŠู† ุชุญูƒู… ุนุฒู… ุงู„ุฏูˆุฑุงู†CTCุงุณุชุฎุฏู…ุช ู†ุธุฑูŠุฉ, Lyapunov ู„ู„ุญุตูˆู„ ุนู„ู‰ ุงุณุชู‚ุฑุงุฑูŠุฉ ุงู„ู†ุธุงู…. ูˆ ุชู… ุงุฎุชุจุงุฑ ุฃุฏุงุก ุงู„ู…ุชุญูƒู… ุงู„ู…ู‚ุชุฑุญ ู…ู‚ุชุฑุญุฉ ูˆู…ุชุงู†ุชู‡ุง ูˆุงู„ุญุตูˆู„ ู…ุชุญูƒู… ุนุฒู… ุงู„ุฏูˆุฑุงู† ุงู„ู…ุญุณูˆุจ ุงู„ุชู‚ู„ูŠุฏูŠ, ุญูŠุซ ุชูˆุถุญ ู†ุชูŠุฌุฉ ุงู„ู…ุญุงูƒุงุฉ ู‚ูˆุฉ ุงู„ุทุฑูŠู‚ุฉ ุงู„ูˆู…ู‚ุงุฑู†ุชู‡ุง ู…ุน matlab - simulink ุจูˆุงุณุทู‡ ุนู„ู‰ ุชุชุจุน ู…ุณุงุฑ ุฌูŠุฏ ูˆูู‚ ุงุงู„ุฏุงุก ุงู„ุทู„ูˆุจ.