Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

165 
 

 

 

 

 

 

THE USE OF THE CONTROL CHARTS TO CONTROL THE 

DIMENSION OF THE CLAY BRICK UNITS  

lecturer Sada A. Hasan,                               Dr.Tumadhir M., Borhan 

Civil Engineering Department, University of Al-Qadissiyah ,Iraq 
e-mail: sada.hasan@qadissuni.edu.iq              . tumadhir_borhan@qadissuni.edu.iq  

Received 3 December 2013         Accepted 27 March 2014      

 
ABSTRACT 

   Some manufactured material properties are expected to have unavoidable shifting in its average 

value for many reasons, however, they are still able to meet the established specifications. This case 

occurs when the standard deviation of the process at the various average values is very small compared 

to the difference between the upper and lower specification limits. On the other hand, any results out of 

these limits indicates that the efficiency of the process changes and the reasons have to be investigated 

and corrected .In this study, Al-Qadissiyah brick factory was adopted to examine the acceptance of the 

produced brick, in terms of its dimensions, according to Iraqi specifications. Control charts were 

plotted for this purpose. Two types of charts were used, the mean and the standard deviation charts. 

The upper and the lower limits (UCL andLCL) of each brick dimension were plotted and discussed. 

The results showed that the lower, the upper limits and the mean value for all dimensions are within 

the IQ specifications limits and the process is under control. However, the results of the length show 

that there is one point outside the LCL at the mean chart and one point outside the UCL at the standard 

deviation chart. This due to the chance causes, as it is only one point from thirteen patches .These 

charts can be adopted by the factory to show the production process and can be used in the future to 

investigate the mean of any measured patch. 

Keywords: quality control, control charts, mean chart, standard deviation chart, brick dimensions. 

 

 

 استخدام لوحات السيطرة للسيطرة على إبعاد الطابوق الطيني

 الخالصة 

من المتوقع ان تتغير خواص بعض المواد المصنعة وتتحول في متوسط قيمتها ألسباب كثيرة ,ومع ذلك فأنها ماتزال قادرة على تلبية    

ف المعياري للعملية  عند المتوسط الحسابي لمختلف القيم صغير جدا عندما يكون االنحراالمواصفات المعمول بها . تحدث هذه الحالة 

مقارنه بالفرق بين حدود المواصفة  العليا والدنيا . من ناحية أخرى فان أي نتيجة خارج هذه الحدود تعطي مؤشر بان كفاءة العملية 

دراسة اعتمد معمل طابوق القادسية لفحص قبول إنتاجه من الطابوق من تتغير ويجب البدا بالتحقق عن األسباب وتصحيحها. في هذه ال

mailto:sada.hasan@qadissuni.edu.iq
mailto:tumadhir_borhan@qadissuni.edu.iq


Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

166 
 

حيث اإلبعاد وفقا للمواصفة العراقية . وقد رسمت لهذا الغرض خرائط السيطرة وقد استخدمت نوعين من خرائط السيطرة ,خريطة 

 رسمها ومناقشتها . المتوسط وخريطة االنحراف المعياري , الحدود العليا والدنيا لكل أبعاد الطابوق قد تم

مخططات السيطرة للمتوسط  واالنحراف المعياري لكل من الطول والعرض والسمك للطابوق  قد رسمت وبينت ان الحدود العليا    

 والدنيا والمتوسط الحسابي لكل اإلبعاد ضمن المواصفات العراقية والعملية اإلنتاجية  تحت السيطرة . 

لوحة المتوسط للطول بينت بان هناك نقطة واحدة خارج الحدود الدنيا للمخطط  بينما بينت لوحة االنحراف المعياري  بان هناك نقطة    

 03واحدة اعلى من الحدود العليا  وبعد إجراء التحقق ألموقعي تبين ان هذه النتائج تعود ألسباب صدفية كونها نقطة واحدة من اصل 

يطرة على العرض قد رسمت والنتائج تشير بان النقاط كلها ضمن الحدود وتتوزع بشكل عشوائي حول الخط خرائط الس .عينة 

المركزي واتجاه النقاط هذا يعطي مؤشر بان العملية اإلنتاجية ضمن السيطرة ونفس النتيجة قد تم تحصيلها لخرائط السيطرة على 

لتبين نتائج عمليات اإلنتاج ويمكن ان تستخدم  في المستقبل لتصحيح معدل نتائج  السمك . هذه الخرائط من الممكن اعتمادها في المعمل

 أي وجبة  مقاسه  كما تساعد على مقارنة النتائج الجديدة للفحوصات بالحدود المرسومة في خرائط هذا البحث .

 

INTRODUCTION 

   The quality control is one of the main functions in all organizations as a tool that is responsible for 

the accomplished work in each stage of production process in order to make sure that the final results 

and the estimated results are identical. This will help to detect the deviation early so remedies can be 

deployed quickly. The quality of the product is a result of the quality of the process of production and 

the statistical quality control is necessary to detect changes in the behavior of these processes. The 

factories of different materials produce a large amount of products. This may causes shifting in their 

specifications. To control the quality of their products and testing the quality characteristics, many of 

laboratories are established inside the factory. 

   Since one of the basic tools in the control processes are the charts to monitor the quality of the 

products, as if the output acceptable, it allows for the manufacturing process to continue. However, if 

the output is unacceptable, it means that the process is out of control, which requires corrections. These 

charts are considered one of the important functions of the control in management of the structures in 

general and the construction industry factories in particular. The most widely used control charts are 

the Shewhart control charts[ Gibra,1975],[ Box,2011] that developed to distinguish between common 
and special-cause variation. The special cause variation was measured by a change in the mean of 

process. These Shewhart charts are known as the  ̅-chart (Average-chart or Mean–chart), the R-chart 
(Range–chart) and the σ-chart (Standard deviation chart) [Leavenworth,2000],[ Montgomery,2007] . 
The brick unites produced in Iraqi factories are mostly varies in its dimensions and may not meet the 

standard specification. In this case, it is very helpful to apply the control charts in these factories to 

eliminate this problem. 

   To control the upper and the lower limits of the brick dimensions in a specific factory in Iraq (Al-

Qadissiyah Factory), these charts were used in this study. The charts used are the mean ( ̅-chart) and 
standard deviation(σ-chart) charts. This will help to reduce or eliminate the variation outside the limits 

in the brick dimensions if it is caused by common causes not by chance causes[ Heizer,2008] . 
 

 

 

 



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

167 
 

COLLECTING DATA 

   The collected data for quality control purposes is obtained directly from the factory. Thirteenth 

patches of brick units that produced during one month were taken from the factory. Each of them has 

twenty-four brick units as recommended by the Iraqi specifications No. 24. The dimensions of the 

units were measured according to method stated by Iraqi specifications [IQSNO.24 , 1988] .Tables 1-
3show the length, width and the thickness of the selected brick units for these patches. 

 

CONTROL CHARTS  

   The  ̅-chart plots the process averages of each patch from the production against three horizontal 
lines. The central line represents the average value of the mean of each patch. While the σ-chart plots 

the process standard deviation of each patch from the production against three horizontal lines. The 

central line represents the average value of the standard deviation of each patch. The other two lines 

are known as Upper and Lower Control Limits (UCL & LCL). The mean and the standard deviation 

are calculated as shown in Table 4.The Eqs.(1-3) and (4-6) represent  the limits for the  ̅-chart and σ-
chart respectively [ Altaai,2008] . 
 

UCL= ̿+A1 ̅   ………………………………………………………………………………………………(1) 
 

CL= ̿               ………………………………………………………………………………………………(2) 
 

LCL= ̿A1 ̅     ……………………………………………………………………………………………….(3) 
 

UCL=B1. ̅      ……………………………………………………………………………………………….(4) 
 

CL= ̅              ……………………………………………………………………………………………….(5) 
 

LCL=B2. ̅       ………………………………………………………………………………………………(6) 
 

Where: 

A1, B1, B2  is a constant and predetermined values [7] . 

 ̿is the average value of the mean 
 ̅is the average value of the standard deviation 
 

RESULTS AND DISCUSSION 

   Figures (1 -3) show the control charts for the mean and the standard deviation of the length, width 

and the thickness respectively. It can be seen that the lower, the upper limits and the mean value for all 

dimensions are within the IQ specifications limits and the process is under control. 

   Figure (1a) shows the control chart for the mean of the length . It can be seen that there is one point 

outside the LCL. Figure (1b) shows the control chart of the standard deviation and there is one point 

outside the UCL. After the site investigation, these results can be attributed to the chance causes, as it 

is only one point from thirteen patches. 

   The control charts for the width, using the mean and the standard deviation charts, are shown in 

Figure 2 (a and b) respectively. The results indicated that all points are within the limits and 

distributed randomly around the centerline. The trend of the points indicates that the production 

process is under control. The same results are obtained for the thickness as shown in Fig. 3 (a and b).   



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

168 
 

   These charts can be adopted by the factory to show the production process and can be used in the 

future to investigate the mean of any measured patch. This will help to compare the new results with 

the charts limits stated in this study.   

   If the results of the new patch are outside the limits, we have to study the cause and again we have to 

measure a second patch and compare it with the limits. If the results obtained from the second patches 

are similar to the previous one (the mean is outside the limits), then the production process is out of 

control and should be corrected. However, the number of the brick unites in the patch, specified by the 

IQ specifications, for measuring the dimensions of the brick unites (24 unites)is relatively high as 

shown in Fig.4(a and b). This increase the chance for the patch to pass the test successfully. As a 

result, it can be concluded that changing the specifications of the brick dimensions is urgent to give an 

accurate indication about the quality of the process of the production in the brick unites factories. 

 

CONCLUSION 

   On the basis of the results obtained from the analysis of the real data of the brick dimensions, we can 

conclude that the mean value for all dimensions is within the IQ specifications limits and the process is 

under control.The control charts presented in this study can be used to help the factoryto investigate 

the mean of any measured patch in the future. 

- It can be concluded that there is a need to change the IQ specifications regarding the number of the 

brick unites that have to be examined for its dimensions, as the current number is relatively high and 

give more realistic results. 
 

References 

 

[1] Altaai, y. h. and m. a. alajily (2008). Quality management systems in the productivity organization. Iraq. 

 

[2] Box, G. E. P. and W. H. Woodall (2011). "Innovation, Quality Engineering, and Statistics." Quality 

Engineering 24(1): 20-29. 

 

[3] Gibra, I. N. (1975). "Recent developments in control chart techniques." Journal of Quality Technology 7(4): 

183-192. 

 

[4] Heizer, J. H. and B. Render (2008). Operations management, Pearson Education India. 

 

[5] IQSNO.24 (1988). standard methods for physical and  chemical tests and sampling of building bricks  in 

Iraq. 

 

[6] Leavenworth, R. S. and E. L. Grant (2000). Statistical Quality Control 7/E, Tata McGraw-Hill Education. 

 

[7] Montgomery, D. C. (2007). Introduction to statistical quality control, Wiley. com. 

 

 

 

 

 



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

169 
 

Table 1: The measured length of the selected unites 

 

 

 

 

 

 

 

 

 

Table 2:   The measured width of the selected unites 

 

 

 

 

 

 

 

 

 

 

 

1 24.13 23.75 24.2 24.15 23.8 24.3 24.4 24.08 23.4 24.13 24.01 23.97 23.75 23.95 23.4 24.07 24.4 23.8 24.15 24.13 24.07 24 24.13 24.14

2 24.01 24.13 23.97 23.95 24.13 23.75 24.2 24.15 23.8 23.4 24.13 23.95 24.97 24.13 23.75 23.8 24.07 24.13 23.95 24.13 24.15 23.75 24.01 23.8

3 23.97 24.13 24.13 23.75 24.3 24.16 23.75 24.3 24.4 24.1 23.5 24.2 24.15 23.85 23.95 24.25 24.15 23.9 24.18 24.5 23.8 24.18 24.4 23.9

4 24.25 24.23 24.4 24.1 23.95 24.2 24.15 24.34 24.3 24.1 24.01 24.07 24.02 24.15 24.01 24.2 24.15 23.8 23.98 24.2 23.99 23.8 24.01 23.85

5 23.9 23.85 23.95 23.8 24.12 24.13 23.65 23.85 23.65 23.98 24.15 24.1 23.75 23.85 24 24.1 23.82 24.01 23.98 23.95 23.85 24.1 24.2 24.15

6 23.75 24.08 24.06 23.9 23.85 24.02 24.08 24.13 23.95 24.1 24.01 23.85 23.9 23.95 24.1 24.12 24.1 24.08 23.95 23.8 23.78 23.95 24.1 24.12

7 24.12 24.07 23.85 24 23.75 24.3 24.4 24 23.6 24.12 23.653 24.03 24.2 24.123 23.85 24.035 24.13 24.21 24.2 24.12 24.1 24.11 23.85 23.8

8 24.1 23.8 23.95 23.75 24.2 23.98 23.75 24.07 23.85 23.9 23.8 23.95 24.08 24.12 23.8 23.9 24.13 24.06 24.13 24.12 24.12 24.07 24.05 24.13

9 23.85 23.65 24.08 23.95 23.8 23.4 24.13 23.85 24.15 24.04 23.8 23.85 23.95 23.9 23.85 23.85 23.95 24.12 24.1 23.75 23.8 23.5 23.65 23.7

10 23.97 24.12 24.14 24.08 23.85 24.15 24.04 23.97 24.25 23.9 23.5 24.2 23.95 23.75 23.95 23.9 23.9 24.15 23.85 24.4 23.9 24.13 23.95 24.12

11 24.25 24.1 24.08 23.98 23.95 24.1 24.12 24.25 24.2 23.8 24.01 24.07 24.18 24.15 24.08 23.95 23.85 24.02 24.15 24.01 23.85 23.9 24.18 23.85

12 23.95 24.13 23.75 24.14 24.12 23.8 23.68 23.95 24.04 24.12 24.15 24.1 23.95 24.12 24.12 24.07 24.15 23.75 23.85 24.2 24.15 23.8 23.98 24.2

13 24.1 24.01 24.07 23.75 23.85 24.15 24.04 23.85 23.95 23.8 23.85 23.85 24.3 24.31 24 24.016 24.3 24.18 23.86 23.9 24.12 24.125 23.95 24.01

2418 19 20 21 22 2312 13 14 15 16 176 7 8 9 10 11unit no 

batch no 

1 2 3 4 5

1 11.55 11.5 11.65 11.5 11.5 11.16 11.42 11.52 11.53 11.5 11.35 11.75 11.61 11.16 11.6 11.6 11.53 11.52 11.42 11.61 11.75 11.35 11.42 11.51

2 11.35 11.3 11.52 11.14 11.75 11.5 11.35 11.75 11.6 11.17 11.5 11.65 11.5 11.5 11.16 11.6 11.45 11.55 11.35 11.41 11.16 11.5 11.35 11.65

3 11.5 11.45 11.7 11.55 11.43 11.18 11.71 11.62 11.65 11.75 11.62 11.16 11.35 11.5 11.57 11.42 11.6 11.65 11.55 11.45 11.5 11.63 11.65 11.4

4 11.75 11.62 11.55 11.16 11.35 11.28 11.16 11.6 11.5 11.42 11.65 11.5 11.6 11.5 11.35 11.53 11.45 11.5 11.16 11.4 11.45 11.65 11.5 11.6

5 11.5 11.35 11.45 11.5 11.13 11.6 11.4 11.45 11.35 11.16 11.25 11.45 11.5 11.35 11.65 11.35 11.4 11.55 11.3 11.14 11.16 11.4 11.5 11.65

6 11.56 11.6 11.66 11.5 11.75 11.45 11.35 11.4 11.55 11.6 11.45 11.14 11.6 11.16 11.55 11.75 11.45 11.35 11.4 11.54 11.23 11.35 11.53 11.54

7 11.75 11.5 11.76 11.6 11.5 11.42 11.65 11.6 11.35 11.53 11.55 11.43 11.18 11.71 11.6 11.65 11.55 11.65 11.34 11.45 11.45 11.55 11.43 11.5

8 11.65 11.55 11.54 11.45 11.35 11.16 11.25 11.54 11.65 11.54 11.3 11.12 11.16 11.54 11.55 11.45 11.5 11.16 11.65 11.35 11.35 11.3 11.45 11.6

9 11.55 11.16 11.35 11.16 11.25 11.45 11.43 11.18 11.43 11.54 11.65 11.34 11.43 11.16 11.4 11.45 11.45 11.45 11.5 11.65 11.45 11.24 11.45 11.4

10 11.45 11.5 11.55 11.6 11.45 11.14 11.16 11.54 11.35 11.16 11.23 11.24 11.22 11.3 11.14 11.16 11.4 11.45 11.5 11.34 11.54 11.35 11.4 11.16

11 11.34 11.36 11.5 11.35 11.53 11.55 11.54 11.5 11.65 11.12 11.23 11.3 11.34 11.45 11.45 11.55 11.45 11.35 11.53 11.25 11.4 11.55 11.45 11.26

12 11.45 11.35 11.16 11.25 11.5 11.5 11.34 11.16 11.55 11.43 11.18 11.71 11.35 11.35 11.3 11.45 11.35 11.16 11.55 11.45 11.5 11.63 11.8 11.26

13 11.4 11.55 11.6 11.16 11.25 11.6 11.27 11.16 11.12 11.16 11.54 11.55 11.45 11.24 11.23 11.26 11.34 11.18 11.23 11.4 11.45 11.65 11.5 11.17

5unit no 

batch no 

1 2 3 4 176 7 8 9 10 11 12 13 14 15 16 2418 19 20 21 22 23



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

170 
 

 

Table 3: The measured thickness of the selected unites 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 7.65 7.5 7.56 7.7 7.5 7.6 7.57 7.55 7.45 7.47 7.6 7.6 7.6 7.65 7.5 7.5 7.6 7.57 7.54 7.57 7.56 7.6 7.6 7.5

2 7.5 7.75 7.57 7.65 7.58 7.7 7.56 7.56 7.62 7.45 7.67 7.5 7.45 7.63 7.59 7.38 7.45 7.6 7.43 7.65 7.54 7.55 7.54 7.47

3 7.65 7.54 7.47 7.57 7.56 7.6 7.36 7.59 7.38 7.56 7.45 7.5 7.68 7.5 7.55 7.58 7.57 7.63 7.65 7.54 7.65 7.63 7.5 7.5

4 7.65 7.5 7.55 7.58 7.55 7.56 7.62 7.64 7.55 7.68 7.5 7.56 7.65 7.6 7.7 7.56 7.55 7.5 7.63 7.7 7.56 7.57 7.45 7.66

5 7.56 7.34 7.56 7.57 7.67 7.5 7.55 7.75 7.55 7.44 7.56 7.45 7.56 7.56 7.5 7.4 7.5 7.67 7.36 7.58 7.61 7.57 7.56 7.55

6 7.17 7.27 7.55 7.67 7.47 7.55 7.75 7.54 7.56 7.45 7.5 7.47 7.61 7.55 7.56 7.5 7.4 7.55 7.54 7.58 7.54 7.5 7.55 7.6

7 7.76 7.67 7.46 7.57 7.78 7.61 7.3 7.44 7.5 7.56 7.55 7.55 7.6 7.45 7.46 7.55 7.56 7.63 7.45 7.45 7.45 7.55 7.55 7.6

8 7.55 7.56 7.62 7.66 7.57 7.45 7.66 7.5 7.6 7.45 7.56 7.4 7.54 7.65 7.45 7.65 7.56 7.66 7.47 7.42 7.6 7.6 7.56 7.45

9 7.67 7.5 7.55 7.5 7.45 7.6 7.45 7.5 7.5 7.5 7.57 7.63 7.6 7.54 7.36 7.5 7.55 7.58 7.57 7.63 7.45 7.68 7.5 7.55

10 7.47 7.57 7.56 7.6 7.6 7.65 7.44 7.56 7.56 7.45 7.56 7.45 7.5 7.45 7.56 7.65 7.5 7.64 7.61 7.44 7.57 7.65 7.6 7.7

11 7.68 7.5 7.56 7.65 7.5 7.65 7.45 7.56 7.6 7.5 7.4 7.57 7.54 7.6 7.4 7.56 7.45 7.57 7.41 7.46 7.55 7.56 7.56 7.5

12 7.6 7.6 7.56 7.43 7.58 7.53 7.42 7.46 7.54 7.62 7.65 7.7 7.44 7.46 7.46 7.42 7.55 7.65 7.55 7.53 7.45 7.55 7.6 7.47

13 7.56 7.5 7.75 7.57 7.65 7.58 7.7 7.56 7.56 7.62 7.45 7.67 7.5 7.45 7.63 7.6 7.56 7.55 7.65 7.53 7.56 7.4 7.5 7.6

2418 19 20 21 22 2312 13 14 15 16 176 7 8 9 10 11unit no 

batch no 

1 2 3 4 5



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

171 
 

 

 

Table 4: The mean and the standard deviation for each dimension 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

St andard 

deviat ion  
mean

St andard 

deviat ion  
mean

St andard 

deviat ion  
mean

0.0610 7.5642 0.1463 11.5004 24.0129 0.2573

0.0926 7.5579 0.1793 11.4483 24.0088 0.2803

0.0827 7.5504 0.1521 11.5246 24.0792 0.2416

0.0671 7.5863 0.1605 11.4679 24.0942 0.1597

0.0941 7.5383 0.1522 11.3975 23.9538 0.1589

0.1166 7.5179 0.1607 11.4775 23.9888 0.1201

0.1062 7.5438 0.1370 11.5292 24.0259 0.1992

0.0829 7.5496 0.1690 11.4233 23.9921 0.1411

0.0756 7.5388 0.1429 11.3967 23.8613 0.1942

0.0774 7.5558 0.1522 11.3471 24.0050 0.1850

0.0776 7.5325 0.1285 11.4167 24.0450 0.1322

0.0812 7.5342 0.1718 11.4054 24.0113 0.1606

0.0821 7.5708 0.1702 11.3525 24.0142 0.1615

Average 

=0.084396

Average 

=7.549263 

Average 

=0.155592

Average 

=11.43747

Average 

=24.00709

Average 

=0.183968

T hickness widt h lengt h



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

172 
 

 

 

 

 

 

 

 

 

 

 

 

 

a: the mean chart 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

b: the standard deviation chart 

Figure (1): Control chart for the brick length a: the mean chart b: the standard deviation chart 

 

 

 

 

23.8

23.85

23.9

23.95

24

24.05

24.1

24.15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 m

e
a

n
 

Patch number 

L.C.L = 23.8907 

U.C.L = 24.1232 

 ̿= 24.007 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 s

ta
n

d
a

rd
 d

e
v

a
ti

o
n

 

Patch number 

L.C.L =0.10210 

U.C.L = 0.26583 

σ̅=0.183968 



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

173 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

a: the mean chart 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

b: the standard deviation chart 

 Figure (2): Control chart for the brick width a: the mean chart b: the standard deviation chart 

 

11.3

11.35

11.4

11.45

11.5

11.55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 m

e
a

n
 

Patch number 

L.C.L = 11.3391 

U.C.L = 11.5358 

 ̿= 11.43747 

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

 

Patch number 

L.C.L =0.086496 

U.C.L = 0.22483 

σ̅=0.155592 



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

174 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

a: the mean chart 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

b: the standard deviation chart 

Figure (3): Control chart for the brick thickness a: the mean chart b: the standard deviation chart 

 

7.48

7.5

7.52

7.54

7.56

7.58

7.6

7.62

7.64

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 m

e
a

n
 

Patch number 

L.C.L = 7.4957 

U.C.L = 7.6022 

 ̿= 7.495 

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

T
h

e
 s

ta
n

d
a

rd
 d

e
v

ia
ti

o
n

 

Patch number 

L.C.L =0.04678 

U.C.L = 0.12181 

σ̅=0.0853 



Al-Qadisiya Journal For Engineering Sciences,         Vol. 7……No. 2 ….2014 
 

 
 

175 
 

 

 

 

 

 

 

 

        
 

a- method of width test  

     
 

b- method of thickness  test  

 

Figure (4):  method of tests a- method of width test   b- method of thickness  test