ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 151 NUTRITONAL CONDITION OF ADULT FEMALE SHIRAS MOOSE IN NORTHWEST WYOMING Scott A. Becker 1,3, Matthew J. Kauffman2, and Stanley H. Anderson 2,4 1Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Department 3166, 1000 East University Avenue, Laramie, WY 82071, USA; 2U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Department 3166, 1000 East University Avenue, Laramie, WY 82071, USA. ABSTRACT: T�� ������� ��������� �������� ������� ���� ������� �� ������ �� � ������� �� ��� ���T�� ������� ��������� �������� ������� ���� ������� �� ������ �� � ������� �� ��� ��� vironment, it likely reflects the quality of its environment. Although this concept has been applied to assess population condition and habitat quality for Alaskan moose (Alces alces gigas), to our knowledge this is the first time it has been used to assess the nutritional status of a Shiras moose (A.a. shirasi) population. We investigated the physical condition and nutritional status of adult (≥ 2 years) female Shiras moose captured in northwest Wyoming during the winters of 2005-2007. Rump fat depth was measured via ultrasonography and biological samples were collected and analyzed for hematology, serum chemistry, micro- and macronutrients, endo- and ectoparasites, and bacterial and viral serology. Five blood parameters believed to be important predictors of moose condition (packed cell volume, total serum protein, hemoglobin [Hb], calcium [Ca], and phosphorous [P]) were compared to data from Alaskan moose considered to be in average-above average condition. Micro- and macronutrient values were evaluated based on published deficiency levels for domestic herbivores. We conducted a correlation analysis to determine if a significant relationship existed between hematological and serum chemical parameters and rump fat depth. Mean rump fat depth did not differ among years and was greater than reported values for Alaskan moose. However, a high proportion of sampled moose had Hb, Ca, and P values lower than Alaskan moose that were considered to be in average condition. Hair and serum micro- and macronutrient analyses indicated a high proportion of moose were potentially deficient in copper, zinc, manganese, and P. We observed a marginally significant relationship between depth of rump fat and two serum chemical parameters (aspartate amimotransferase and lactate dehydrogenase). The results are suggestive of a Shiras moose population in marginal physical condition that is probably related to less than optimal habitat quality. These findings should assist managers in evaluating the health of Shiras moose populations throughout their range. ALCES VOL. 46: 151-166 (2010) Key words: Alces alces shirasi, condition, disease, hair, hematology, moose, nutrients, nutrition, parasites, rump fat, serum chemistry, ultrasound, Wyoming. T�� ������� ��������� �������� �� ���� to provide managers with a relative index �� ���������� ������ w��� ������� �� ������� carrying capacity (Franzmann 1985). This �������� ������� ���� �� ������ �� � ������� of its environment and therefore will reflect the quality of its environment. Early work focused on hematological and serum chemi� ��� ���������� �� ������ ����������� �� ������� quality among populations of pronghorn ante� lope (Antilocapra americana; Seal and Hosk� inson 1978), white-tailed deer (Odocoileus virginianus; Seal et al. 1978), and elk (Cervus elaphus; Weber et al. 1984). Franzmann and LeResche (1978) expanded this concept by evaluating blood parameters in relation to in� 3Present address: Wyoming Game and Fish Department, 2820 State Highway 120, Cody, WY 82414, USA. 4D�������. MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 152 ����� �� ��y����� ��������� ��� A���k�� ����� (Alces alces gigas). This provided managers w��� �������� ���� ���� ����� �� ���� �� ������ ���������� ���������, ��������� ����������v� performance, and ultimately, habitat quality (Franzmann and Schwartz 1985, Stephenson 2003). Packed cell volume (PCV) was the single best predictor of body condition in moose, followed by hemoglobin (Hb), total serum protein (TSP), calcium (Ca), and phos� phorous (P; Franzmann and LeResche 1978). Although the value of using TSP, Ca, and P has been questioned (Keech et al. 1998), these 5 blood parameters were effective in identifying populations at the extremes (i.e., very good or v��y ���� ���������), ��� w��� ���� �������v� w��� ���� �� ������� ����������� �� ������ ate condition (Franzmann et al. 1987). More �������y, ���������� ������������ �� ���� ��� depth have been used to successfully quantify ����� ��������� ��� ����������v� ������� (Stephenson et al. 1998, Testa and Adams 1998, Keech et al. 2000). Ev�� �� �� ������ ������� �� �� �� ����� tively good physical condition, nutritional deficiencies can create physiological imbal� ����� ���� ��y ������ ���������� ����������� (Combs 1987, Gogan et al. 1989). Due to high variability in forage mineral concentra� tions among sites and seasons, free-ranging herbivores rarely acquire sufficient quantities of particular nutrients (McDowell 2003). The nutritional quality of moose browse is most limited during winter (Kubota et al. 1970, Oldemeyer et al. 1977, Ohlson and Staaland 2001) ��� ������� �������������� �� ����� hair show similar temporal trends (Franzmann et al. 1974, Flynn et al. 1977, Stewart and Flynn 1978, Flynn and Franzmann 1987). Mineral deficiencies can lead to reduced sur� vival, especially among calves and yearlings, ��� ������� ����������v� ������ �� �������� herbivores (WallisDeVries 1998). Although clinical deficiencies are difficult to diagnose in wild ungulate populations, deficiencies of trace elements, specifically Cu, have been suggested as a contributing factor to moose population declines in Alaska (Flynn et al. 1977, O’Hara et al. 2001), Minnesota (Custer et al. 2004), and Sweden (Frank et al. 1994). I������ �� ���� ����������� ��� ���������� density suggest a downward trend in Shiras moose (A.a. shirasi) ������� �� �����w��� Wyoming (Brimeyer and Thomas 2004, Becker 2008). Several factors have been hypothesized as contributing to this decline (Brimeyer and Thomas 2004), but no sys� ������� �������� ��� ���� ����������� �� �v������ ����� �������. T� ������� ��� ������ of habitat quality, disease, and parasites, we ���� ��� ������ ��������� ������� �� �������� ��� ��y����� ��������� ��� ����������� ������ of adult (≥ 2 years) female Shiras moose via a suite of physiological parameters. Although Houston (1969) and Kreeger et al. (2005) ���v�����y �������� ����� ��������� v����� for Shiras moose in Wyoming, to our knowl� edge, this study is the first to use the animal ��������� ������� �� ������ ��� ��������� �� � S����� ����� ����������. T��������, ���� work provides data that will aid managers in ������ �v�������� �� S����� ����� ����������� throughout their range. Our research objec� tives were to: 1) compare hematological and ����� �������� ���������� �� �������� ���� ���� A���k�� �����, 2) �v������ ��� ������v� ��������� �� ��� ����� ���� ���� ���������� ���� ��� ������������, 3) ���� ��� � ��������� ship between rump fat depth and hematological and serum chemical parameters, 4) examine ������ ��� ������������� ������� �� ����� ����� ��� ���� ��� ������� �� �������� ��� ficiency values for domestic ruminants, 5) �v������ ��� �������� �� ���������� ��������, ��� 6) ������ ����� ��� ������������ �����. STUDY AREA T�� ����y ���� w�� �������� �� ��� B������ Valley (43° 42’ N, 110° 22’ W) approximately 50 km north of the town of Jackson, Wyoming, USA. It encompassed nearly 6,400 km2 �� ������������y ������ ���� �� �����w��� Wy�� ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 153 ming and included portions of Grand Teton National Park, Yellowstone National Park, and the Bridger-Teton National Forest where eleva� tions ranged from 1,866-4,197 m. The climate was characterized by short, cool summers and cold winters (Houston 1968). In general, sage� brush (Artemisia ���.) ��������� ��� v����y floors while coniferous forests and open forest parks were the most abundant vegetation types at moderate elevations (Knight 1994); alpine tundra occurred at the highest elevations. Riparian areas were characterized by willow (Salix ���.) ������������ w��� �����w���� cottonwood (Populus angustifolia) �� ��w�� elevations and on more mesic sites at higher ���v������. M���� �� ��� ����y ���������� w������� �� ��w����v�����, ������������������ habitats along the Snake River and its primary tributaries (Becker 2008). During summer, migratory moose traveled to more dispersed, mid-elevation ranges (Becker 2008), whereas non-migratory individuals remained on low elevation ranges (Houston 1968). METHODS A���� ������ ����� w��� �������� �� w��� ter range in January-March, 2005-2007. They were darted from the ground or helicopter and immobilized with 10-mg thiafentanil (A-3080, Wildlife Pharmaceuticals Inc., Fort Collins, Colorado, USA; McJames et al. 1994, Arnemo et al. 2003, Kreeger et al. 2005) in 2005 and 2006, and 10-mg carfentanil (Wildnil, Wildlife Pharmaceuticals Inc., Fort Collins, Colorado, USA; Kreeger 2000) in 2007. Samples were collected and moose were fitted with global po� sitioning system (model TGW-3700, Telonics, Mesa, Arizona, USA) or very high frequency radio transmitters (model M2710, Advanced Telemetry Systems, Isanti, Minnesota, USA). Once handling was completed, thiafentanil and carfentanil were antagonized with an intramuscular injection of 300-mg naltrexone (Trexonil, Wildlife Pharmaceuticals, Fort Collins, Colorado, USA; Kreeger et al. 2005). C������� w��� ��������� �� ���������� w��� approved University of Wyoming Animal Care and Use Committee protocols (approved 2005, 2006, 2007). We collected approximately 50-ml of blood from each moose via jugular venipunc� ture for hematological analyses, serum chemi� ��� ����y���, ����� ����� ������� ������, ��� bacterial and viral serology. Hematological ����y��� �������� w���� ����� �������������� of PCV, Hb, mean corpuscular hemoglobin content (MCHC), red blood cells (RBCs), total white blood cells (WBCs), composition �� w���� ����� �����, ��� ���������. S���� �������� ����y��� �������� �������������� of albumin (ALB), alkaline phosphate (ALP), aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatine kinase (CK), gamma- glutanyl transferase (GGT), globulins (Glob), glucose (Gluc), lactate dehydrogenase (LDH), TSP, and the macronutrients Ca, magnesium (Mg), and P. Levels of 5 micronutrients were analyzed w��� ����� ����� ������� ������� ��� �������� Cu, iron (Fe), manganese (Mn), molybdenum (Mb), and zinc (Zn). Blood was analyzed for the presence of antigens against Leptospira, ���������� ��v��� ��������������� v����, ��v��� viral diarrhea virus, parainfluenza-3 virus, and ��v��� ����������y �y��y���� v���� �� 2005; ����y��� w�� ��������� ��� Brucella abortus in 2005, 2006, and 2007. Hair samples were ��������� ���� ��� ������ ������� ���w��� ��� shoulders and analyzed for concentrations of arsenic (As), barium (Ba), cadmium (Cd), chromium (Cr), cobalt (Co), Cu, Fe, lead (Pb), Mn, mercury (Hg), Mb, nickel (Ni), selenium (Se), thallium (Tl), vanadium (V), tin (Sn), and Zn. F���� ������� ��� ��� �w��� w��� ���� ������ �� �v������ ����� ��� ������������ loads. Although encapsulation would have resulted in few, if any, fluke eggs transported through the feces, fecal examinations were ���� �� ������ ����� ��������, �����������y ��� giant liver fluke (Fascioloides magna) w���� is undocumented in Wyoming and the com� MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 154 mon liver fluke (Fasciola hepatica) w���� �� ���������� ����. A 30������� ���k ����� w�� performed along the dorsal midline posterior �� ��� ���k �� ���� ����� �� �������� ��� ��� verity of winter tick (Dermacantor albipictus) infestations. All diagnostic analyses were performed at the Wyoming State Veterinary Laboratory (Laramie, Wyoming, USA). Body condition was subjectively evalu� ated and a score from 0-10 was assigned to each moose (Franzmann 1977). Depth of rump ��� w�� �������� w��� ���������� �������� �� the nearest 0.1 cm using an Omega I portable ultrasound unit (E.I. Medical, Loveland, Colorado, USA) in 2005 and a Bantam XLS portable ultrasound unit (E.I. Medical, Love� land, Colorado, USA) in 2006 and 2007. We measured to the midpoint between the coxal tuber (hip bone) and the ischial tuber (pin bone), then located maximum rump fat depth from that point. Maximum rump fat depth was closer to the ischial tuber than the coxal tuber in all cases; however, since our starting point differed slightly from that described by Stephenson et al. (1993, 1998), the measure� ���� w�� ������� �w�y ���� ��� ����� ��� �� was unknown how this might affect subsequent ����������� w��� ����� ����. Blood parameter (hematological and ����� ��������) v����� ��� ������� ������� trations (serum and hair micro- and macro� ���������) ��� ��� ����� w��� ������ w����� years. Annual means for PCV, Hb, TSP, Ca, and P were compared to baseline data for A���k�� ����� ���� w��� ���������� �� �� in average-above average condition (Fran� zmann and LeResche 1978); we report the ���������� �� ��� ������� ���������� ����w ����� �������� v�����. M����� ��� �������� trient requirements for moose have not been �����������, �� ��� ���������� �� ��� ������� population that was deficient was estimated based on published deficiency thresholds for domestic ruminants (Puls 1994, McDowell 2003). T�� ��������� ��������� v����� ��� C� (8.0 mg/dl) and Mg (1.8 mg/dl) are not true deficiency thresholds and only represent the ��w�� ������ ����� ��� �������� ��������� (Puls 1994, McDowell 2003). W� ����� ������y��� �� ��� ������ ���� because we expected among-year variation in female reproductive status (i.e., cost of lacta� tion) and environmental conditions (i.e., winter ��v����y, ������ ��������v��y) �� ��v� � ����� nant influence on individual condition. Since ���� ��� ������������ ��� ������������v� �� the variation that can be expected in adult female moose condition among years (Testa and Adams 1998, Keech et al. 2000, Boertje et al. 2007), we plotted rump fat depth for moose sampled in 2 (n = 5) or 3 (n = 2) years against ����� ������� �� ���y ��� y���. T��� ����w�� �� �� �v������ �� �������� �������� ���� ��� ���� ����� �v�� �������� y���� ������ �� cluster (suggesting a lack of independence) or were variable among years (Schwartz et ��. 2010). V����� ���������� �� ����� ���w�� ���� ���� ��� �� ����� ������� �� �������� y���� w�� �� v������� �� ����� ������� ���y once, suggesting that moose-year was an ap� propriate sampling unit. We used a one-way analysis of variance and a Tukey’s Honestly Significant Difference (HSD) test to examine among year differences (α = 0.05) in rump fat depth, body condition scores (BCS), all blood ����������, ��� ������ ��� �������������� ���� w��� ���v� ��� ������� ��������� ����� (MDL) in order to quantify between-year v���������. W� ��������� � S������� ���k correlation analysis (α = 0.05) with Bonfer� roni corrections to determine if a significant relationship existed between hematological (α = 0.001) and serum chemical parameters (α = 0.004) ��� ����� �� ���� ���. A�� ����������� analyses were performed with Statistix 8.0 software (Analytical Software, Tallahassee, Florida, USA). RESULTS Moose Capture, Rump Fat, Disease, and Parasites Forty-eight adult female moose were cap� ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 155 tured 61 times during the course of this study. Most captures occurred in February (n = 54) from a helicopter (n = 53). N����y ��� ������ ����� ���� ��� ������������ w��� �������� in February (n = 41) with the exception of 5 �� ����y �� ����M����. W� ��� ��� ������� �� distinguish rump fat depth between cows with ��� w������ ���v���������� �� w����� ������� of inconsistency in reporting presence of a calf during capture. Mean rump fat depth was not different among years (f(2,43) = 0.9, P = 0.399; Table 1). There were no differ� ences between rump fat depth for pregnant cows observed with (x = 24.1 ��, SE = 2.4, n = 8) or without calves (x = 27.4 mm, SE = 1.3, n = 31) in the spring following capture (t = 1.18, df = 37, P = 0.246). D���������� were observed in BCS among years (f(2,51) = 4.8, P = 0.012) ��� post hoc ����y��� ��������� that BCS in 2005 were significantly higher than in either 2006 or 2007 (Table 1). Moose (n = 59) were negative for anti� gens against B. abortus �� ��� y���� ��� ��� Leptospira, ���������� ��v��� ��������������� virus, bovine viral diarrhea virus, parainflu� enza-3 virus, and bovine respiratory syncytial virus in 2005 (n = 20). W����� ���k ����� w��� relatively low and averaged 2.8 ticks/moose with 55 of 59 moose hosting <10 ticks. No moose (n = 56) ��� �v������ �� ��� ����� ��� fluke eggs were not observed in any sample (n = 43). Fecal examinations (n = 44) ��������� a low infection (≤12 eggs/g) of Nematodirus spp. �� 13 ����� ��� Trichostrongylus spp. �� 2 �����. Hematological, Serum Chemical, and Mac- roelement Analyses There were no among-year differences in Hb (P = 0.053) or platelets (P = 0.104), ��� differences were found for PCV (f(2,48) = 9.5, P <0.005), MCHC (f(2,48) = 8.3, P <0.005), RBC (f(2,48) = 6.9, P = 0.002), and WBC (f(2,48) = 4.7, P = 0.013; Table 2). No consistent increasing or decreasing patterns were observed for PCV, MCHC, or RBC, but WBC exhibited a gener� ally increasing trend with 2005 significantly lower than 2007. The percent composition of WBC did not differ among years for lympho� cytes (P = 0.089), eosinophils (P = 0.353), �� monocytes (P = 0.168), but differences were observed for neutrophils (f(2,48) = 4.7, P = 0.014), ��� post hoc ����y��� ��������� ���� 2007 was significantly lower than 2005 and 2006 (Table 2). F�� ����� �������� ����y���, ����� w��� no among-year differences for ALP (P = 0.149) and GGT (P = 0.339), but differences were found for ALB (f(2,54) = 19.0, P < 0.005), AST (f(2,54) = 10.3, P < 0.005), BUN (f(2,54) = 4.7, P < 0.005), CK (f(2,53) = 6.5, P = 0.003), globulins (f(2,54) = 23.6, P <0.005), glucose (f(2,54) = 12.5, P <0.005), LDH (f(2,54) = 47.1, P <0.005), and TSP (f(2,54) = 48.3, P < 0.005; Table 3). No consistent increasing or decreasing patterns were observed for ALB, AST, BUN, globulins, glucose, LDH, and TSP. However, CK values exhibited a generally increasing Y��� Parameter n x ± SE 95% CI1 2005 Rump fat (mm) 13 27.6 ± 3.5 19.9 � 35.3 BCS 17 7.5 ± 0.3 6.9 � 8.2 2006 Rump fat (mm) 18 26.4 ± 1.3 23.7 � 29.0 BCS 19 6.6 ± 0.2 6.1 � 7.0 2007 Rump fat (mm) 15 23.6 ± 1.3 20.8 � 26.5 BCS 18 6.6 ± 0.2 6.1 � 7.0 Table 1. Count (n), mean (x) ± standard error (SE), and 95% confidence intervals (CI) for rump fat depth and body condition scores (BCS) by year for adult female moose captured in northwest Wyoming during winter 2005-2007. 1Upper and lower confidence interval. MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 156 pattern with 2007 significantly higher than 2005 (Table 3). A���y��� �� ����� �������� ���������� indicated among-year differences for all 3 macronutrients (Ca: f(2,54) = 35.7, P <0.005; Mg: f(2,53) = 16.1, P <0.005; P: f(2,54) = 4.93, P = 0.011; Table 3), but no consistent increasing or decreasing trend was evident. Annual means of serum Ca exceeded the lower normal limit threshold for domestic ruminants (8.0 mg/dl) in 2006 and 2007, but were slightly below this level in 2005 (Table 3). When moose were compared individually, 18% (11 of 58) had Ca levels <8.0 mg/dl threshold, and 57% (33 of 58) were below the domestic ruminant deficiency threshold (4.5 mg/dl) for serum P; Parameter1 (units) 2005 (n = 19) 2006 (n = 16) 2007 (n = 16) PCV (%) 54.7 ± 7.9 45.6 ± 4.5 49.7 ± 5.2 Hb (g/dl) 16.5 ± 2.1 15.6 ± 1.6 17.2 ± 1.7 MCHC (g/dl) 30.6 ± 4.8 34.2 ± 1.9 34.7 ± 2.0 RBC (x 106/μl) 7.9 ± 1.3 6.8 ± 0.6 7.3 ± 0.7 Total WBC (/μl) 5296.8 ± 1581.2 5967.5 ± 1466.2 6952.5 ± 1706.7 Lymphocytes (%) 56.1 ± 9.6 56.4 ± 9.9 63.7 ± 13.2 Neutrophils (%) 36.2 ± 8.7 37.3 ± 8.9 27.9 ± 11.2 Eosinophils (%) 4.4 ± 3.2 3.7 ± 2.9 5.4 ± 4.1 Monocytes (%) 3.3 ± 1.8 2.7 ± 1.1 2.4 ± 1.0 Platelets (x 103/μl) 189.4 ± 53.0 148.4 ± 58.5 177.8 ± 58.7 Table 2. Mean ± standard deviation for hematological analyses of adult female moose captured in northwest Wyoming during winter 2005-2007. 1PCV = packed cell volume; Hb = hemoglobin; MCHC = mean corpuscular hemoglobin concentration; RBC = ��� ����� ����; WBC = w���� ����� ����. Parameter1 (units) 2005 (n = 20) 20062 (n = 18) 2007 (n = 17) Albumin (g/dl) 2.9 ± 0.5 3.8 ± 0.5 3.4 ± 0.4 ALP (U/l) 255.9 ± 99.1 338.1 ± 151.1 297.3 ± 125.5 AST (U/l) 62.4 ± 17.5 87.1 ± 18.6 103.7 ± 42.5 BUN (mg/dl) 3.4 ± 1.0 5.0 ± 2.4 3.4 ± 1.9 Ca (mg/dl) 7.9 ± 1.2 10.2 ± 0.4 10.5 ± 0.9 CK (U/l) 111.8 ± 76.6 238.8 ± 175.6 328.9 ± 267.1 GGT (U/l) 10.2 ± 5.7 16.2 ± 6.2 15.5 ± 22.3 Globulins (g/dl) 3.3 ± 0.8 4.6 ± 1.0 5.1 ± 0.7 Glucose (mg/dl) 102.6 ± 20.3 79.7 ± 20.6 72.0 ± 18.8 LDH (U/l) 161.5 ± 37.8 275.2 ± 58.2 310.5 ± 53.3 Mg (mg/dl) 2.0 ± 0.1 2.4 ± 0.1 2.4 ± 0.1 P (mg/dl) 3.7 ± 0.2 4.7 ± 0.3 4.3 ± 0.2 TSP (g/dl) 6.1 ± 1.1 8.4 ± 0.8 8.5 ± 0.6 T���� 3. M��� ± �������� ��v������ ��� ����� �������� ����y��� �� ����� ������ ����� �������� �� northwest Wyoming during winter 2005-2007. 1ALP = alkaline phosphate; AST = aspartate aminotransferase; BUN = blood urea nitrogen; Ca = calcium; CK = creatine kinase; GGT = gamma-glutanyl transferase; LDH = lactate dehydrogenase; Mg = magnesium; P = phosphorous; TSP = total serum protein. 2ALP, CK, and Mg (n = 17). ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 157 ������ ����� w��� ����w ���� ��v�� �� 2005 and 2007 (Table 3). The annual means of serum Mg exceeded the lower normal limit threshold for domestic ruminants (1.8 mg/ dl) in all years (Table 3); 12% (7 of 57) were ����w ���� ��v��. T���� w�� v�������� �� ��� ���������� �� moose with PCV, Hb, TSP, Ca, and P values ����w ����� �������� ��� A���k�� ����� considered to be in average-above average condition (Table 4). Most moose fell below the average thresholds for Hb, Ca, and P; approximately 50% and 33% were below average for PCV and TSP, respectively. Mean Hb concentrations were lower in all years and PCV was lower in 2006 and 2007 (Table 2, Table 4). Serum levels of Ca and P were lower in all years and TSP was lower in 2005, but higher than the average threshold in 2006 and 2007 (Table 3, Table 4). O� ��� 13 ����� �������� ���������� analyzed, 2 exhibited a marginally signifi� cant relationship with rump fat depth (n = 43 moose; α = 0.05). Aspartate aminotransferase (r� = -0.339, P = 0.041; Fig. 1) and LDH (r� = -0.327, P = 0.049; Fig. 2) were both negatively correlated with depth of rump fat. The enzyme CK was partially correlated and negatively related to rump fat (r� = -0.317, P = 0.057); however, when the single CK value >1000 U/l was removed, the direction �� ����������� ��v����� ��� ��� ������������ was insignificant (r� = 0.237, P = 0.130). W��� B��������� ����������� w��� �������, ��� ������������ �����v�� ���w��� ���� ���, AST, and LDH were insignificant. No sig� nificant relationship was observed between rump fat and any hematological parameter (n = 38 moose). Serum and Hair Trace Mineral Analyses Serum Cu, Fe, and Zn were detected in all moose (Table 5), whereas Mn and Mb had ��v��� ����w ��� MDL ��� w��� ����������. There were no among-year differences in Cu (P = 0.329), but differences were found for Fe (f(2,47) = 3.79, P = 0.030) and Zn (f(2,47) = 25.1, P <0.005). No consistent increasing Parameter1 (units) n Range R��������2 Proportion below reference PCV/HCT (%) 51 35.1 � 50.0 50 0.51 Hb (g/dl) 51 12.1 � 18.6 18.6 0.88 TSP (g/dl) 58 3.6 � 7.5 7.5 0.33 Ca (mg/dl) 58 5.2 � 10.4 10.4 0.81 P (mg/dl) 58 2.1 � 5.2 5.2 0.78 Table 4. Total adult female moose sampled (n), range, and the proportion of the sample that was below the reference value for Alaskan moose considered to be in average-above average condition for 5 ����� ���������� ���� ��� ��������� ����������. 1PCV = packed cell volume; Hb = hemoglobin; TSP = total serum protein; Ca = calcium; P = phos� �������. 2Values for Alaskan moose in average-above average condition (Franzmann and LeResche 1978). y = -0.095x + 34.322 R2 = 0.099, P = 0.041 12 18 24 30 36 42 48 54 35 45 55 65 75 85 95 105 115 125 135 145 155 Aspartate aminotransferase (U/l) R um p fa t ( m m ) Fig. 1. Scatterplot describing the relationship between rump fat depth (mm) and aspartate ami� notransferase (U/l) concentrations of captured adult female moose in northwest Wyoming, winter 2005-2007 (n = 43). T�� ������������ was significant at the α = 0.05 level, but became insignificant when Bonferroni corrections were applied (α = 0.004). MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 158 or decreasing patterns were observed for the annual means of Fe and Zn. When compared �� �������� ���������, ������� ����� w��� deficient in Cu during all years and deficient in Zn in 2005 and 2007 (Table 5). When examined individually, a high proportion of moose were deficient in Cu and Zn (Table 5); only in 2006 were moose (n = 15) above the Zn deficiency threshold. Annual means of serum Fe exceeded the 1.1 ppm threshold during all years; only 2% (1 of 50) of individual moose were below this level (Table 5). Hair concentrations of As, Cd, Co, Hg, M�, N�, S�, T�, V, ��� S� w��� �����������y ����w MDL, w������ ��� ������� ��� ������� able levels of Ba, Cr, Cu, Fe, Mn, Pb, and Zn (Table 5). There were no among-year differ� ences in Cu (P = 0.279), Mn (P = 0.429), and Pb (P = 0.080); differences were found for Ba (f(2,56) = 3.34, P = 0.043), Cr (f(2,56) = 4.80, P = 0.012), Fe (f(2,56) = 4.52, P = 0.015), and Zn (f(2,56) = 11.80, P < 0.005). No consistent in� creasing or decreasing patterns were observed in concentrations of Ba, Cr, and Zn, but Fe T��� Element (units) S����� �y�� 2005 2006 2007 Published deficiency levels (ppm) Proportion ����w deficiency ��v�� Copper (ppm) S���� 0.51 ± 0.09 0.46 ± 0.14 0.45 ± 0.10 < 0.61,2 0.84 Hair 4.76 ± 0.72 4.63 ± 0.56 4.43 ± 0.65 < 6.72 1.00 Iron (ppm) S���� 2.78 ± 0.38 2.33 ± 0.74 2.32 ± 0.46 < 1.11 0.02 Hair 26.35 ± 16.70 19.12 ± 8.32 15.37 ± 6.54 ≤ 402 0.95 Zinc (ppm) S���� 0.58 ± 0.13 1.42 ± 0.60 0.71 ± 0.09 < 1.01 0.70 Hair 82.64 ± 7.74 89.49 ± 3.52 89.86 ± 2.98 < 1001 1.00 Manganese (ppm) Hair 1.09 ± 0.16 0.79 ± 0.08 1.00 ± 0.25 < 5.01 1.00 Barium (ppm) Hair 1.29 ± 0.74 1.79 ± 0.63 1.73 ± 0.64 C������� (ppm) Hair 1.73 ± 0.55 1.39 ± 0.20 1.57 ± 0.29 Lead (ppm) Hair 0.17 ± 0.09 0.11 ± 0.06 0.26 ± 0.35 Table 5. Annual mean ± standard deviation, published deficiency levels, and the proportion of sampled adult female moose that were deficient in micro- and macronutrients analyzed in serum and hair from northwest Wyoming during winter 2005-2007. No published deficiency levels were reported ��� ������, ��������, ��� ����. 1Deficiency level for cattle and sheep; Mn levels are indicative of slight deficiency (McDowell 2003). 2Deficiency level for cattle (Puls 1994). y = -0.027x + 33.218 R2 = 0.083, P = 0.049 12 18 24 30 36 42 48 54 50 150 250 350 450 Lactate dehydrogenase (U/l) R um p fa t ( m m ) Fig. 2. Scatterplot describing the relationship between rump fat depth (mm) and lactate de� hydrogenase (U/l) concentrations of captured adult female moose in northwest Wyoming, winter 2005-2007 (n = 43). T�� ������������ was significant at the α = 0.05 level, but was insignificant when Bonferroni corrections were applied (α = 0.004). ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 159 concentrations showed a generally decreasing pattern; 2007 means were significantly lower than in 2005. Annual means for Cu, Fe, Zn, and Mn were below the deficiency thresholds for domestic ruminants in all years (Table 5). When examined individually, all moose were deficient in Cu, Zn, and Mn, and all but 3 moose were below the deficiency threshold for Fe (Table 5). DISCUSSION Blood Parameters and Rump Fat Although PCV, Hb, TSP, Ca, and P have been used to evaluate habitat quality and the nutritional status of Alaskan moose (Fran� zmann and LeResche 1978), we, like Keech et al. (1998) with Alaskan moose, found none of ����� ���������� w��� ���������� w��� S����� moose rump fat depth. Our results suggest that the serum enzymes AST and LDH may be good predictors of Shiras moose condition as indexed by ultrasonic rump fat measurements. Even though neither variable was significant w��� ��� B��������� ���������� w�� �������, they were significant at the α = 0.05 level and the negative relationship between AST and ���� ��� �� ���������� w��� ���v���� w��k w��� Alaskan moose . Keech et al. (1998) suggested ���� ������� ��v��� �� AST w��� ��������v� �� ����� ���� w��� �� ������ ��y����� ��������� w���� ��k��y ������� ����� �������������y �� disease. Although this may be true, AST and LDH are indicators of muscle or organ damage generally associated with exertional myopathy (EM; Williams and Thorne 1996). Levels of AST ��� S����� ����� w��� ��� ��������v� �� EM ��� w��� w��� ����w v����� �������� for bighorn sheep that were stressed or sub� sequently developed EM (Kock et al. 1987). A����������y, ��v��� �� AST w��� w��� ����w normal values reported for moose (Haigh et al. 1977) which suggests that EM had little influence on these relationships. The negative relationships that we ob� served between AST, LDH, and rump fat are consistent with increased utilization of body proteins from muscle and organ tissues as lipid �����v�� ������� �� ���� �������. C����� �� ��. (1992) observed a similar trend in which lean rats utilized greater amounts of muscle protein during phase II fasting (i.e., protein sparing) ���� ��� ����� ����. W���� w� �����v�� � marginally significant relationship between two serum enzymes and rump fat depth, as with caribou (Rangifer tarandus; M������ �� al. 1987), elk (Cook et al. 2001), and moose (Keech et al. 1998), we cannot identify a set �� ����� ���������� �� S����� ����� ���� ��� curately reflects nutritional status as an index of rump fat. Because not all managers have ������ �� �� ���������� �� �v������ ����� ���������, ������� �v�������� �� ����� ��������� ����� ������� w�������� ����� ����� ������� ��� ���� �����y ��������. Although rump fat depth should be in� ��������� w��� ������� ����� w� �������� in a slightly different location than previous studies, our field measurements indicated that ����� �� ��� ����y ���� w��� �� ������v��y good physical condition. Furthermore, the �������k� ���� w��� ���� �� ������ �������� ����� �������� �� ��� ���� �������� �� ���� moose were oftentimes difficult to locate, suggesting that most study animals carried high amounts of subcutaneous fat. When �������� �� ���� ��� �� ����� �������� �� early to mid-March in Alaska (Keech et al. 1998, Bertram and Vivion 2002, Boertje et al. 2007), this population displayed nearly 2X more rump fat. Although we were unable to ������� ���� ��� ��� ����� w��� ��� w������ calves-at-side during capture, other studies found that cow moose with greater amounts of rump fat were not tending calves (Testa and Adams 1998, Keech et al. 2000). Since calf recruitment has declined for approximately 20 years (Becker 2008), the high rump fat values may reflect fewer cows with calves. W���� ���� ��� ��y �� � ������ ��������� �� ����������v� ������� w����� ����� ������� tions, it appears to be an insensitive index of fitness when compared across populations MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 160 (Boertje et al. 2007). Additionally, Heard et al. (1997) suggested that moose populations living in relatively harsh environments, or in areas with low forage quality or quantity, may have a higher fat-fertility threshold than moose populations living in milder climates with quality forage. Thus, our high rump fat values may indicate a population needing to maintain high fat levels to realize their optimal reproductive potential. Nonetheless, a larger sample size collected across multiple locations may provide researchers and managers with ���� �������� ��������� �� �������� ���� ��� ��v�� ��� ����������v� ����������� ��� moose in Wyoming. As with evaluations of elk condition (Cook et al. 2001), the thick� ness of specific muscles measured via ultra� sonography could provide an additional index ���� w��� ���� ��� ����� �� ���v��� � ���� �������� ���������� �� ��� ��y����� ��������� (i.e., protein versus fat catabolism) of Shiras ����� �����������. Although we are confident that most ���������� ������������ w��� �������� ���������y, ������� �������� w��� ������ �y other professionals sent images for their ��������������. W� w��� ���� �� v������� ��� ������������ �� ��� ����� ������ ����� ���� was euthanized during capture and another that died within a month of capture; both had high ������� �� ������������ ���. N����������, �� �� �������� ���� ��������������� �������� because we had insufficient training and may have measured the wrong tissue layer for some �����, ���������y ����� w��� ������ ��� �����v�� (Cook et al. 2007). Similarly, the difference �� BCS ���w��� 2005 ��� ����� y���� ��k��y resulted from inexperience in the application of this subjective method, as well as multiple individuals scoring moose in 2005. For con� �������y, ��� ������ ���� �������� w��� ��� scoring method palpated moose and provided the BCS scores in 2006 and 2007; this approach ��k��y ������� v�������� �� ����� y����. M���� ���� ��� ����y ���� �������� �� �� in marginal physical condition based on the 5 blood parameters (PCV, Hb, TSP, Ca, and P) ���������� �� ���������� �� ����������� ������ of moose (Franzmann and LeResche 1978). This suggests that habitat conditions may be slightly suboptimal, but it is clear that condi� tions are not extreme. When compared to Alaskan moose considered in good-excellent condition (Franzmann and LeResche 1978), ���� ����� ������ ����� w��� ����w ��� reference values for PCV, Hb, Ca, and P and above the reference value for TSP. When these ����� ���������� w��� ������� �������� �� �� expanding, highly productive population and ��� ���� w�� �� ���� ��������� ���� A���k� (i.e., populations on the extremes; Franzmann et al. 1987), moose from the study area fell in ��� ������. B������ ����� ���������� v��y across winters of differing severity (Ballard et al. 1996), are best used to identify popula� tions at nutritional extremes (Franzmann at el. 1987), and are not always representative of other indices of physical condition (Keech et al. 1998), their efficacy in assessing condition �� ���y ����������� �� ��k��y �������. Micro- and Macronutrients Adult female moose in the study area ex� ������� ������ v�������� �� �����y ��� ������ ��� macronutrients. These results suggest that the nutritional quality of moose browse exhibits ������� ������ v��������. I�����, ����������� in Alaska and Sweden have reported high an� ���� v�������� �� ��� ������� ������� �� ����� browse (Oldemeyer et al. 1977, Ohlson and Staaland 2001). It has been suggested that a ��v�����y �� ���w�� ������� ��� ������ ���� the nutritional requirements of moose than a single, highly abundant species (Oldemeyer et al. 1977, Miquelle and Jordan 1979, Ohl� ��� ��� S������� 2001). M���� �� ��� ����y area utilized low-elevation, riparian habitats dominated by large communities of willow intermixed with small stands of conifers and aspen during winter (Becker 2008), suggesting that willow composed a high proportion of the winter diet. If willows are deficient in certain ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 161 nutrients, moose that consume high quantities of willow may also be deficient in these ele� ments. Direct analysis of forage quality is a more precise indicator of deficiency in most cases (McDowell 2003), thus future investiga� tions may explore potential links between diet diversity and nutritional deficiencies on winter and summer ranges of Shiras moose. Since moose acquire nutrients directly from the plants they consume (McDowell 2003), ��w �������������� �� ���� �������� in serum and hair suggest nutritional limita� ����� ���������� w��� ����� ������� �� ��� ����y ����. O�� ������� �������� ���� w����� forage may have been limited in Cu, Zn, Mn, and P. Deficiencies in any nutrient are most likely to occur during winter when the avail� ability and mineral content of forage is most limited (Kubota et al. 1970, Oldemeyer et al. 1977, Ohlson and Staaland 2001). Increased intra- and interspecific competition for lim� ited winter forage (O’Hara et al. 2001) may exacerbate existing nutritional deficiencies due to overutilization of resources (Barboza et al. 2003). For example, overabundant free- ranging elk would remove preferred vegetation and reduce forage quality earlier in winter in willow-dominated, riparian range in the B������ V����y. Moose may be highly susceptible to nu� tritional deficiencies (Murray et al. 2006), and although Cu, Zn, Mn, and P deficiencies are extremely difficult to diagnose in wild popula� tions, the physiological imbalances that they ��y ������ ����� ��v� ������������ ������ �� ��� ����������� �� ��� ����������, �����������y the developing fetus and calf. While we cannot conclude that low or marginal Cu has been the ������y ����� �� ��� ������ ����� �������, �� remains a possible contributing factor because �������������� �� ����� ��� ���� ��������� � potential deficiency among moose in the study ����. M��� C� �� ������ �� ��� ��v��, ��� w��� levels are <20 μg/g, serum and hair become sensitive indicators of Cu deficiency among domestic ruminants (Combs 1987, Blakley et al. 1992, McDowell 2003). Copper is an essential nutrient for the developing fetus, and fetal demand of Cu greatly increases during the final trimester of pregnancy (Puls 1994, McArdle 1995, Rombach et al. 2003); the ��k������� �� ����������v� ������� ���������y increases if maternal Cu is deficient (Hidiro� glou and Knipfel 1981, McDowell 2003). S���� C� ��v��� �� ����� ���� ��� ����y ���������� w��� ������� �� ��v��� �������� in Cu deficient elk that experienced reduced adult survival and poor recruitment (Gogan et al. 1989). Although we did not observe faulty hoof keratinization associated with Cu deficiency, ����� ��� ������� ����������v� ������ (Becker 2008) similar to populations from the Kenai Peninsula, Alaska (Flynn et al. 1977), the north slope of Alaska (O’Hara et al. 2001), and Minnesota (Custer et al. 2004). However, low C� ��v��� ����� w��� ��� ����������� ��� ��� reduced reproductive success among pregnant moose in northwest Wyoming (Becker 2008). I� ��y �� ���� ��� ��������v� ������� �� ������ sors (i.e., low quality forage, moderate physical ���������, ��v���������� ����������) ���� ��� third trimester of pregnancy combined with potential deficiencies in several other nutrients (i.e., Mn, Zn, P) created physiological imbal� ances (Frank et al. 1994) that compromised ����������v� �����������. Concentrations of Mn in hair and Zn in serum and hair indicated a potential deficiency in the study area. All hair samples suggested a deficiency in these nutrients while approxi� mately two-thirds of moose were serum Zn deficient. All moose that were above serum Zn deficiency thresholds were sampled in 2006; however, these higher levels were likely � ������ �� ������ ������������� ���� ������ rect collection procedures (Puls 1994). In domestic ruminants, clinical signs of Mn and Zn deficiencies include reduced reproductive performance and calf survival (Hidiroglou 1979, Hidiroglou and Knipfel 1981, McDowell 2003). To our knowledge, clinical signs of Mn MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 162 and Zn deficiencies have not been observed �� w��� ����� �����������. T�� ����������y �� using serum and hair to assess dietary intake of Mn and Zn is relatively low (Smart et al. 1981, Combs 1987, McDowell 2003), but the possibility remains that deficiencies occurred �� ��� ����y ����������. The low serum P observed in the sample population in 2005 and 2007 may have been partially due to the effect of capture. Although Franzmann and LeResche (1978) did not observe changes in serum P concentrations during their study, Karns and Crichton (1978) observed a decrease in P in caribou from ��� ���� �� ������� �� �������. O�� ������� techniques may have delayed sample collec� tion in some moose causing a decrease in P concentration. Nonetheless, McDowell (2003) noted that P has to be consistently below the deficiency threshold to consider a population deficient. Since moose were not deficient all 3 years of the study, further investigation ap� ����� w��������. Parasites and Disease Insignificant loads of endoparasites in fecal samples and tick counts suggested a ������v��y ��w ����������� �� w����� ���k� �� ���� �� ��� ����y ����. T�� ��w ���k ������ may have been due partially to inexperience in identifying the nymph stage which is com� mon during February. However, patterns �� ���� ������������� ��� ���� �� M���� ��� April (Lankester and Samuel 1997, Samuel 2004) also suggest relatively low tick loads �� ����� ���� ��� �������� ���� �� ��� ����y area, whereas moose occupying winter ranges further south appear to carry higher tick loads. F���� �����v������ ��������� ���� ���w ��v�� remained longer into spring on the northern winter ranges, but disappeared rapidly to the south. Snow cover during April adversely affects tick reproductive success (Drew and Samuel 1986) whereas warm, dry spring ���������� ��y ������� ���k ��������� ��� following autumn (Samuel 2004). The 6 disease antigens did not appear to play a large role in the dynamics of moose in northwest Wyoming. Brucellosis seropreva� lence in elk was 12.5% in the Buffalo Valley (Barbknecht 2008), thus there was potential for transmission on winter range. However, experimental studies of brucellosis in moose �������� ���� ���y ��y �� � �������� ���� ��� ��� ������� ������� ��������� ����� �� ����� mortality (Forbes et al. 1996). Deaths as� �������� w��� ����������� ��������� ��v� ��� been observed among moose in the Greater Yellowstone Ecosystem (Cook and Rhyan 2003), but due to the rapid progression of the �������, �������� �y������ �� ��������� ��y ��� �� �����v�� ����� �� �����. ACKNOWLEDGEMENTS Funding was provided by Teton County Conservation District, Wyoming Animal Damage Management Board, Wyoming De� partment of Transportation, Wyoming Game and Fish Department, and Wyoming Gover� nor’s Big Game License Coalition/Wildlife Heritage Foundation of Wyoming. We thank Bridger-Teton National Forest, Grand Teton National Park, Wyoming Game and Fish Department, and Yellowstone National Park for logistical support and our pilots G. Lust (Mountain Air Research [retired]), D. Savage (Savage Air Services), and D. Stinson (Sky Aviation) for their expertise in the air. We wish to acknowledge the efforts of numerous personnel who assisted with field, office, and logistical support, especially C. Anderson, D. Brimeyer, S. Dewey, T. Fuchs, H. Harlow, W. Hubert, S. Kilpatrick, T. Kreeger, F. Lindzey, W. Long, S. Smith, and T. Thurow. We also ����k W. E�w����, T. C������, M. R������k, R. Siemion, and others from the Wyoming State Veterinary Laboratory for diagnostic analyses and guidance. T. Schuff provided assistance with ultrasonography and C. C. Schwartz was always available for thought- provoking discussions about animal nutrition. A. E. B���k�����, E. J. W���, ��� ������ ��v� ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 163 improved this manuscript through their con� �������v� ��v��w�. REFERENCES Arnemo, J. m., T. J. Kreeger, ��� T. Soveri. 2003. Chemical immobilization of free- ranging moose. Alces 39: 243-253. BAllArd, W. B., P. J. mAcQuArrie, A. W. FrAnzmAnn, ��� P. r. KrAuSmAn. 1996. E������ �� w������ �� ��y����� ��������� �� ����� �� ������������� A���k�. A���� 32: 51-59. BArBKnechT, A. E. 2008. Ecology of elk parturition across winter feeding oppor� �������� �� ��� ����������� ������� ���� of Wyoming. M.S. Thesis, Iowa State University, Ames, Iowa, USA. BArBozA, P. S., e. P. romBAch, J. e. BlAKe, ��� J. A. nAgy. 2003. C����� ������ of muskoxen: a comparison of wild and �����v� �����������. J������ �� W������� Diseases 39: 610-619. BecKer, S. A. 2008. Habitat selection, ���������, ��� ���v�v�� �� S����� ����� in northwest Wyoming. M.S. Thesis, University of Wyoming, Laramie, Wyo� ming, USA. BerTrAm, m. r., ��� m. T. vivion. 2002. M���� ��������y �� ������� �������� Alaska. Journal of Wildlife Management 66: 747-756. BlAKley, B. r., J. c. hAigh, ��� W. d. mc- cArThy. 1992. Concentrations of copper �� ������� �� w����� ������ �� S��k����� �w��. T�� C������� V��������y J������ 33: 549-550. BoerTJe, r. d., Kellie, K. A., c. T. SeATon, m. A. Keech, d. d. young, B. W. dAle, l. g. AdAmS, ��� A. r. AdermAn. 2007. Ranking Alaska moose nutrition: Sig� nals to begin liberal antlerless harvests. Journal of Wildlife Management 71: 1494-1506. Brimeyer, d. g., ��� T. P. ThomAS. 2004. His� tory of moose management in Wyoming and recent trends in Jackson Hole. Alces 40: 133�143. cherel, y., J. P. roBin, A. heiTz, c. cAlgAri, ��� y. l. mAho. 1992. Relationships ���w��� ����� �v���������y ��� ������� utilization during prolonged fasting. Journal of Comparative Physiology B 162: 305�313. comBS, D. K. 1987. Hair analysis as an indica� ��� �� ������� ������ �� ��v�����k. J������ of Animal Science 65: 1753-1758. cooK, r. c., J. g. cooK, d. l. murrAy, P. zAger, B. K. JohnSon, ��� m. W. grATSon. 2001. D�v�������� �� ��������v� ������ �� ����������� ��������� ��� R��ky M���� tain elk. Journal of Wildlife Management 65: 973-987. _____, T. R. STePhenSon, W. L. meyerS, J. G. cooK, ��� L. A. ShiPley. 2007. Validating ��������v� ������ �� ����������� ������ ���� ��� ���� ����. J������ �� W������� Management 71: 1934-1943. cooK, W., ��� J. rhyAn. 2003. B���������� vaccines and non-target species. Pages 61- 65 in T. J. Kreeger, editor. Brucellosis in E�k ��� B���� �� ��� G������ Y����w����� Area. Greater Yellowstone Interagency Brucellosis Committee, 17-18 September 2002, Jackson, Wyoming, USA. cuSTer, T. W., e. cox, ��� B. grAy. 2004. Trace elements in moose (Alces alces) ����� ���� �� �����w������ M��������, USA. The Science of the Total Environ� ment 330: 81-87. dreW, m. l., ��� W. m. SAmuel. 1986. R����������� �� ��� w����� ���k, Derma- centor albipictus, ����� ����� ���������� �� A������, C�����. C������� J������ �� Zoology 64: 714-721. Flynn, A., ��� A. W. FrAnzmAnn. 1987. M������ ������� ������� �� N���� A����� ��� �����. Sw����� W������� R������� (Supplement) 1: 289-299. _____, _____, P. d. ArneSon, ��� J. l. oldemeyer. 1977. Indications of copper ���������y �� � ������������� �� A���k�� moose. Journal of Nutrition 107: 1182- MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 164 1189. ForBeS, l. B., S. v. TeSSAro, ��� W. leeS. 1996. Experimental studies on Brucella abortus in moose (Alces alces). J������ of Wildlife Diseases 32: 94-104. FrAnK, A., v. gAlgon, ��� l. r. PeTerSSon. 1994. Secondary copper deficiency, �������� ���������y ��� ����� ������� imbalance in the moose (Alces alces L.): Effect of anthropogenic activity. Ambio 23: 315-317. FrAnzmAnn, A. W. 1977. Condition assess� ment of Alaskan moose. Proceedings of ��� N���� A������� M���� C��������� and Workshop 13: 119-127. _____. 1985. Assessment of nutritional status. Pages 239-259 in R. J. Hudson and R. G. White, editors. Bioenergetics of Wild Herbivores. CRC Press, Boca Raton, Florida, USA. _____, A. Flynn, P. d. ArneSon, ��� J. l. olde- meyer. 1974. Monitoring moose mineral ���������� v�� ���� ������� ����y���. Proceedings of the North American Moose C��������� ��� W��k���� 10: 1�21. _____, ��� r. e. lereSche. 1978. Alaskan ����� ����� ������� w��� �������� �� ��������� �v��������. J������ �� W������� Management 42: 334-351. _____, ��� c. c. SchWArTz. 1985. Moose twinning rates: a possible population ��������� ����������. J������ �� W������� Management 49: 394-396. _____, _____, ��� d. c. JohnSon. 1987. Moni� toring status (condition, nutrition, health) �� ����� v�� �����. Sw����� W������� Research (Supplement) 1: 281-287. gogAn, P. J. P., d. A. JeSSuP, ��� m. AKeSon. 1989. Copper deficiency in tule elk at Point Reyes, California. Journal of Range Management 42: 233-238. hAigh, J. c., r. r. STeWArT, g. WoBeSer, ��� P. S. mAcWilliAmS. 1977. Capture �y�����y �� � �����. J������ �� ��� A������� V��������y M������ A���������� 171: 924-926. heArd, d., S. BArry, g. WATTS, ��� K. child. 1997. Fertility of female moose (Alces alces) in relation to age and body com� position. Alces 33: 165-176. hidiroglou, M. 1979. Trace element de� ���������� ��� ��������y �� ���������: � ��v��w. J������ �� D���y S������ 62: 1195-1206. _____, ��� J. e. KniPFel. 1981. Maternal-fetal relationships of copper, manganese, and ������ �� ���������. A ��v��w. J������ �� Dairy Science 64: 1637-1647. houSTon, D. B. 1968. The Shiras moose in Jackson Hole, Wyoming. Technical Bul� letin No. 1. Grand Teton Natural History Association, Moose, Wyoming, USA. _____. 1969. A note on the blood chemistry of Shiras moose. Journal of Mammalogy 50: 826. KArnS, P. d., ��� v. F. J. crichTon. 1978. Effects of handling and physical restraint �� ����� ���������� �� w������� �������. Journal of Wildlife Management 42: 904-908. Keech, m. A., r. T. BoWyer, J. m. ver hoeF, r. d. BoerTJe, B. W. dAle, ��� T. r. STePhenSon. 2000. L��� ������y ������ quences of maternal condition in Alaskan moose. Journal of Wildlife Management 64: 450�462. _____, T. r. STePhenSon, r. T. BoWyer, v. vAn BAllenBerghe, ��� J. m. ver hoeF. 1998. Relationships between blood-serum v�������� ��� ����� �� ���� ��� �� A���k�� moose. Alces 34: 173-179. KnighT, D. L. 1994. Mountains and Plains: The Ecology of Wyoming Landscapes. Yale University Press, New Haven, Con� necticut, USA. KocK, m. d., r. K. clArK, c. e. FrAnTi, d. A. JeSSuP, ��� J. d. WehAuSen. 1987. Effects of capture on biological parameters in free- ranging bighorn sheep (Ovis canadensis): �v�������� �� ������, �������� ��� ���� �����y �������� ��� ������������� �� ����������� ���v�v��. J������ �� W������� ALCES VOL. 46, 2010 BECKER ET AL. – MOOSE CONDITION IN WYOMING 165 D������� 23: 652�662. Kreeger, T. J. 2000. Xylazine-induced aspira� ���� ��������� �� S����� �����. W������� Society Bulletin 28: 751-753. _____, W. h. edWArdS, e. J. WAld, S. A. BecKer, d. Brimeyer, g. FrAlicK, ��� J. Berger. 2005. Health assessment of Shiras moose immobilized with thiafen� tanil. Alces 41: 121-128. KuBoTA, J., S. rieger, ��� v. A. lAzAr. 1970. Mineral composition of herbage browsed �y ����� �� A���k�. J������ �� W������� Management 34: 565-569. lAnKeSTer, m. W., ��� W. m. SAmuel. 1997. Pests, parasites, and diseases. Pages 479-517 in A. W. Franzmann and C. C. Schwartz, editors. Ecology and Management of North American Moose. Smithsonian Institute Press, Washington, D.C., USA. mcArdle, H. J. 1995. The metabolism of copper during pregnancy – a review. Food Chemistry 54: 79-84. mcdoWell, L. R. 2003. M������� �� A����� and Human Nutrition. Second edition. E���v��� S������ B.V., A��������, N����������. mcJAmeS, S. W., J. F. KimBAll, ��� T. h. STAn- ley. 1994. Immobilization of moose with A-3080 and reversal with nalmefene HCl or naltrexone HCl. Alces 30: 21-24. meSSier, F., J. huoT, F. goudreAulT, ��� A. v. TremBlAy. 1987. Reliability of blood ���������� �� ������ ��� ����������� ������ of caribou. Canadian Journal of Zoology 65: 2413�2416. miQuelle, d. g., ��� P. A. JordAn. 1979. T�� ���������� �� ��v�����y �� ��� ���� �� moose. Proceedings of the North Ameri� ��� M���� C��������� ��� W��k���� 15: 54-79. murrAy, d. l., e. W. cox, W. B. BAllArd, m. S. lenArz, T. W. cuSTer, T. BArneTT, ��� T. K. Fuller. 2006. Pathogens, ����������� ���������y, ��� ������� ������ ences on a declining moose population. Wildlife Monographs 166. o’hArA, T. m., g. cArroll, P. BArBozA, K. mueller, J. BlAKe, v. WoShner, ��� c. WilleTTo. 2001. M������ ��� ���vy ����� ������ �� ������� �� � ��������y �v��� ��� ���� ����������� �� � ����� ���������� �� A���k�. J������ �� W������� D������� 37: 509-522. ohlSon, m., ��� h. STAAlAnd. 2001. M������ ��v�����y �� w��� ������: �������� ��� ���� for moose. Oikos 94: 442-454. oldemeyer, J. l., A. W. FrAnzmAnn, A. l. BrundAge, P. d. ArneSon, ��� A. Flynn. 1977. Browse quality and the Kenai ����� ����������. J������ �� W������� Management 41: 533-542. PulS, r. 1994. Mineral Levels in Animal Health: Diagnostic Data. Sherpa Inter� ��������, C��������k, B������ C�������, C�����. romBAch, e. P., P. S. BArBozA, ��� J. e. BlAKe. 2003. Costs of gestation in an Arctic ruminant: copper reserves in muskoxen. Comparative Biochemistry and Physiol� ogy Part C 134: 57-168. SAmuel, W. m. 2004. W���� A� � G����: W����� T��k� ��� M����. F��������� �� A������ N����������. E�������, A������, C�����. SchWArTz, c. c., S. l. cAin, S. Podruzny, S. cherry, ��� l. FrATTAroli. 2010. C��� trasting activity patterns of sympatric and allopatric black and grizzly bears. Journal of Wildlife Management 74: In Press. SeAl, u. S., ��� r. l. hoSKinSon. 1978. M�������� ���������� �� ������� ��������� and capture stress in pronghorns. Journal of Wildlife Management 42: 755-763. _____, m. e. nelSon, l. d. mech, ��� r. l. hoSKinSon. 1978. Metabolic indicators �� ������� ����������� �� ���� M�������� ���� �����������. J������ �� W������� Management 42: 746-754. SmArT, m. e., J. gudmundSon, ��� d. A. chriSTienSen. 1981. Trace mineral defi� �������� �� ������: � ��v��w. T�� C������� MOOSE CONDITION IN WYOMING – BECKER ET AL. ALCES VOL. 46, 2010 166 Veterinary Journal 22: 372-376. STePhenSon, T. r. 2003. Physiological ecol� ogy of moose: nutritional requirements ��� ������������ w��� ������� �� ���y ��������� ����������. F������ A�� �� Wildlife Restoration Research Final Per� formance Report. Project 1.52. Alaska D��������� �� F��� ��� G���, J�����, Alaska, USA. _____, K. J. hunderTmArK, c. c. SchWArTz, ��� v. vAn BAllenBerghe. 1993. Ultra� sonic fat measurements of captive yearling bull moose. Alces 29: 115-123. _____, _____, _____, ��� _____. 1998. Pre� dicting body fat and body mass in moose with ultrasonography. Canadian Journal of Zoology 76: 717-722. STeWArT, r. r., ��� A. Flynn. 1978. Mineral ������� ��v��� �� S��k�����w�� ����� hair. Proceedings of the North American M���� C��������� ��� W��k���� 14: 141�156. TeSTA, J. W., ��� g. P. AdAmS. 1998. Body condition and adjustments to reproduc� tive effort in female moose (Alces alces). Journal of Mammalogy 79: 1345-1354. WAlliSdevrieS, M. F. 1998. Habitat quality and the performance of large herbivores. Pages 275-320 in M. F. W�����D�V����, J. P. Bakker, and S. E. Van Wieren, editors. Grazing and Conservation Management. Kluwer Academic Publishers, Dordrecht, N����������. WeBer, B. J., m. l. WolFe, g. c. WhiTe, ��� m. m. roWlAnd. 1984. Physiologic re� sponse of elk to differences in winter range quality. Journal of Wildlife Management 48: 248-253. WilliAmS, e. S., ��� e. T. Thorne. 1996. Exertional myopathy (capture myopathy). Pages 181-193 in A. F����������, L. N. Locke, and G. L. Hoff, editors. Nonin� �������� D������� �� W�������. S����� edition. Iowa State University Press, Ames, Iowa, USA.