Imp. Sulpizio AA RREEVVIIEEWW OOFF TTEEPPHHRROOSSTTRRAATTIIGGRRAAPPHHYY IINN CCEENNTTRRAALL AANNDD SSOOUUTTHHEERRNN IITTAALLYY DDUURRIINNGG TTHHEE LLAASSTT 6655 KKAA RRoobbeerrttoo SSuullppiizziioo11,,22,, GGiioovvaannnnii ZZaanncchheettttaa22,, MMaarrttiinnee PPaatteerrnnee33 && GGiiuusseeppppee SSiiaannii44 1 Dipartimento Geomineralogico, via Orabona 4, 70125, Bari, Italy 2 Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa, Italy 3 Lab. des Sciences du Climat et de l’Environm., CNRS-CEA, 91198 Gif sur Yvette, France 4 FRE 2566 Orsayterre Université Paris XI 91405 Orsay cedex ABSTRACT This work presents an attempt at correlating tephra layers through different proxies in central and southern Italy over the last 65 ka. On the basis of the recent refinement of stratigraphy of some Italian volcanoes (mainly Somma-Vesuvius and Phlegrean Fields) and new lacustrine and marine cores (from Lago Grande di Monticchio and south Adriatic sea) 35 dated tephra layers among terrestrial, lacustri- ne and marine settings are correlated. These correlations supply a detailed and comprehensive chronostratigraphic scheme previously not available. In particular, 9 tephra layers were related to the Somma-Vesuvius, 16 to the Phlegrean Fields, 3 to Ischia, and 1 to Procida, Etna, Lipari, Salina, Pantelleria and Palinuro seamount explosive activity. One tephra layer has an uncertain source between Ischia Island and Phlegrean Fields. Finally, dispersal maps of selected tephra layers are shown. RIASSUNTO Questo lavoro presenta un tentativo di correlazione di livelli di tephra di età minore di 65 ka rinvenuti in depositi marini e lacustri con i corrispondenti livelli piroclastici prossimali. L'area interessata dall'indagine comprende carote marine dai mari Tirreno, Adriatico, Ionio e dal Bacino di Bannock, mentre i dati dei tephra lacustri provengono da carote ottenute nei laghi di Monticchio, Vico, Mezzano, Nemi, Valle di Castiglione e da depositi di versante della conca del Fucino. Una carota proviene inoltre dalla laguna di Mljet in Croazia. Le cor- relazioni di dettaglio dei tephra marini e lacustri con i depositi prossimali sono state possibili grazie al recente raffinamento dei dati riguardanti la cronostratigrafia di alcuni vulcani italiani (in particolare Somma-Vesuvio e Campi Flegrei) e ai dati provenienti da nuove carote perforate nel mare Adriatico e nel Lago Grande di Monticchio. Dei 35 livelli di tephra correlati 9 appartengono ad eruzioni del Somma-Vesuvio, 16 ai Campi Flegrei, 3 ad Ischia e 1 a Procida, Etna, Lipari, Salina, Pantelleria e Palinuro seamount rispettivamente. Un solo livello di tephra risulta difficilmente discriminabile tra una origine flegrea o ischitana. Infine le mappe di dispersione di alcuni di questi livelli di tephra sono state tracciate sulla base dei dati prossimali e delle carote marine e lacustri distali. Keywords: Tephra layers, marine, lacustrine, proximal deposits, italian volcanoes, central Mediterranean sea. Parole chiave: Livelli di Tephra, Tephra marini, Tephra lacustri, vulcani italiani, Mediterraneo centrale. Il Quaternario Italian Journal of Quaternary Sciences 1166(1), 2003, 91-108 IINNTTRROODDUUCCTTIIOONN Over the last 50 years, tephra layers have been extensively investigated, since their widespread presen- ce in marine and lacustrine sediments are an invaluable tool used to support geochronological and climatological studies (Kennett, 1982; Mangerud et al., 1984; Bard et al., 1994; Paterne et al., 1990; Siani et al., 2001; Ton- That et al., 2001, among many others). Indeed, tephro- chronological studies provide precise chronostrati- graphic constraints for proxy records and their correla- tion. Moreover, they improve our knowledge of both the areas affected by pyroclastic deposition and the mass of erupted magmas in the past (Sparks & Huang, 1980). These data are of primary importance in volcanic hazard mitigation, as they are hardly obtained only from terre- strial data. This is especially true for the distal products of ancient eruptions. In the Mediterranean Sea, a lot of research has dealt with the study of marine cores from Tyrrhenian, Adriatic, Aegean or Levantine Seas. One of the earliest drilling expeditions in the area was carried out in 1947- 48 (Norin, 1958), but the first comprehensive study of tephra layers is that of Keller et al. (1978). Further on, a refinement of the data was provided by Paterne et al. (1986; 1988), McCoy & Cornell (1990), Fontugne et al. (1989), Vezzoli (1991), Calanchi et al. (1994), Siani et al. (2003) for the Tyrrhenian, Adriatic and South Ionian (Bannock Basin) seas. In particular, Paterne et al. (1986; 1988) and Paterne & Guichard (1993) provided a detailed chronological and geochemical record of tephra layers over the last 80,000 years. On the other hand tephra layers in lacustrine set- tings were investigated in detail in recent years, mostly inside the EU funded projects PALICLAS and EURO- MAARS (i.e. Narcisi, 1996; Calanchi et al., 1996a; 92 R. Sulpizio et al. Calanchi et al., 1996b; Watts et al., 1996; Narcisi, 1999a; Ramrath et al., 1999). Several sedimentary suc- cessions of some lakes from central and southern Italy were drilled and investigated by interdisciplinary resear- ch. In particular, seven lakes (Fig. 1) have been consi- dered in this work (Lakes of Mezzano, Vico, Albano, Nemi, Valle di Castiglione, Monticchio and Fucino basin), owing to the presence in their sediments of teph- ra layers of interest in the investigated time span (<65 ka). This large set of data on marine and lacustrine tephra can be profitably matched with the new strati- graphic, geochemical and chronological data obtained in recent years for some important Quaternary volcanoes of southern Italy, such as Somma-Vesuvius (Andronico et al., 1995; 1996; Cioni et al., 2003a), Phlegrean Fields (Orsi et al., 1996a; Di Vito et al., 1999; Pappalardo et al., 1999; Sulpizio et al., 2003), Mt Etna (Coltelli et al., 2000). This paper deals with a review of tephrochronolo- gic correlations among terrestrial (intended as deposits recognised on land, mostly in proximal sites), lacustrine and marine proxies of central-southern Italy, with the aim of proposing a comprehensive chronostratigraphic scheme of the tephra succession and dispersion for the last 65 ka. In particular, thephrochronologic correlations are better detailed for the last 18 ka, owing to the availa- bility of a major amount of data on both marine-lacustri- ne and terrestrial environments (Andronico et al., 1995; Narcisi, 1996; Di Vito et al., 1999; Siani et al., 2001; Wulf et al., 2001; Siani et al., 2003 ). However, the cor- relation in 18-65 ka time span are mainly based on the work of Sulpizio et al. (2003), which correlate several poorly-known terrestrial deposits to marine tephra of Adriatic and Tyrrhenian seas. TTHHEE TTEERRRREESSTTRRIIAALL RREECCOORRDD In the investigated time span (<65 ka) the explosi- ve activity of the Italian volcanoes was mainly concen- trated in the Neapolitan area (Rosi & Sbrana, 1987; Santacroce, 1987; Poli et al., 1987; Vezzoli, 1988; Andronico et al., 1995; Orsi et al., 1996a; Di Vito et al., 1999; Sulpizio et al., 2003), while few large explosive eruptions occurred at Mount Etna (Kieffer, 1979; Coltelli et al., 2000) and Eolian Islands (Keller, 1980; Pichler, 1980; Frazzetta et al., 1983; Crisci et al., 1991; Calanchi et al., 1993; De Astis et al., 1997; Gioncada et al., 2003). During this time span, the Roman Province, Mount Vulture and Roccamonfina volcanoes were not active, while Pantelleria was characterised by a very weak activity out the Green Tuff eruption (45 ka; Gillot, 1984; Civetta et al., 1984; Mahood & Hildreth, 1986; Orsi et al., 1991). The stratigraphic record of Neapolitan volcanoes has been improved in recent years, especially for the Late Pleistocene-Holocene. In particular, detailed sets of both stratigraphic, chronologic and geochemical data are available for Somma-Vesuvius (Santacroce, 1987; Andronico et al., 1995; Cioni et al., 2003a) and Phlegrean Fields (Rosi & Sbrana, 1987; Di Vito et al., 1999; Orsi et al., 1996a; Pappalardo et al., 1999; Sulpizio et al., 2003). Minor detail exists for the data from Ischia and Procida volcanoes (Vezzoli, 1988; Di Girolamo & Stanzione, 1973; Poli et al., 1987; Crisci et al., 1989; Orsi et al., 1996b). All these data allow the reconstruction of a general chronostratigraphic scheme of the activity of these volcanoes (Fig. 2). In the same figure the major explosive eruptions of Eolian Islands, Palinuro seamount and Etna volcano are also reported (Crisci et al., 1991; Calanchi et al., 1993; De Astis et al., 1997; Coltelli et al., 2000). From this chronostratigraphic scheme, the explosive activity of Somma-Vesuvius and Phlegrean Fields emerges characterising the last 18 ka, whereas Phlegrean explosive activity dominates the 18- 65 ka time span, with only few explosive events of Pantelleria, Ischia and Procida islands. Tables 1 and 2 summarises the chronology and the main lithological and chemical characteristics of the proximal pyroclastic deposits used in this work for the correlation with marine and lacustrine tephra layers. Figure 1 - Location map of the lacustrine and marine cores considered for this study. LMZ – Lago di Mezzano (Ramrath et al., 1999; Narcisi, 1999b); VICO – Lago di Vico (Narcisi, 1999b); PALB1E – Lago di Albano, Lago di Nemi and Valle di Castiglione (Calanchi et al., 1996a; Narcisi, 1999a); FUC – Conca del Fucino (slope deposits on the border of the basin; Narcisi, 1993); MON – Lago Grande di Monticchio (Narcisi et al., 1996; Wulf , 2000; Wulf et al., 2001); MLJ – Mljet Lagoon (Jahns & van den Bogaard, 1998); PAL948, PAL9466, CM9241, CM9242, RF9230 – Central Adriatic sea cores (Calanchi et al., 1998); KET8216, KET8218, MD90-917 – South Adriatic sea cores (Paterne et al., 1988; Fontugne et al., 1989; Siani et al., 2001; 2003); KET8003, 8004, 8011, 8019, 8022, ODP Leg 107 – Tyrrhenian sea cores (Paterne et al., 1988; Kallel et al., 1997; Calanchi et al., 1994); V10-69, RC9- 191 – Ionian sea cores (Keller et al., 1978); BAN – Bannock basin cores (Vezzoli, 1991). 93A review of tephrostratigraphy ... Figure 2 - Detailed chronostratigraphic scheme of Somma-Vesuvius and Phlegrean Fields volcanoes of the last 65 ka. In the Somma- Vesuvius chronostratigraphy are shown in Italic two eruptions attributed to Phlegrean Fields (Andronico, 1997; Zanchetta et al., 2000). Schemes of the main explosive eruptions of Etna, Eolian Islands, Ischia and Procida Islands are also shown. The explosive eruption of Palinuro seamount is enclosed in the Eolian Islands chronostratigraphy. Note the change in scale for ages older than 19 ka and for Eolian Islands column. In brackets are shown the published 14C or 39Ar/40Ar ages. a Deino et al. (1994); b Ton-That et al. (2001); c Pescatore and Rolandi (1981); d De Rita et al. (1991). 94 TTHHEE LLAACCUUSSTTRRIINNEE RREECCOORRDD In recent years seven lakes in central and southern Italy (Lakes Mezzano, Vico, Albano, Nemi, Valle di Castiglione, Fucino and Monticchio; Fig. 1) were drilled, mainly with the aim of studying environmental and climatic conditions in central-southern Italy in the past. Tephra layers recognised in these lacustrine envi- ronments have been investigated in detail by Calanchi et al. (1996a, b), Ramrath et al. (1999), Narcisi (1996; 1999a, b), Wulf (2000) and Wulf et al. (2001). The Lago Grande di Monticchio (Mt Vulture; Fig. 1) shows the most abundant and representative record of tephra layers, due to its location downwind of the Neapolitan volcanoes (Fig. 1). Narcisi (1996) provided the correla- tion of 13 tephra layers from the Lago Grande di Monticchio succession to the activity of Neapolitan vol- canoes, while Wulf (2000) and Wulf et al. (2001) repor- ted the same layers and several others not recognised by Narcisi (1996; Fig. 3). Indeed, Wulf et al. (2001) reported the occurrence of many tephra layers of unk- nown origin, but, unfortunately, they did not provided chemical analyses, thus preventing their correlations to terrestrial or marine correspondents. For this reason only the well-known and widespread tephra layers Y3 and Y1, together with the trachytic tephra of Agnano M. Spina, the latitic tephra of Solchiaro and the leucititic- tephrite-phonolite tephra of Pollena (AD 472) have been added to the Lago Grande di Monticchio succession reported by Narcisi (1996). The tephra layers recogni- sed in the Lago Grande di Monticchio cores pertain to the major explosive eruptions of Somma-Vesuvius and Phlegrean Fields, which occurred in the last 18 ka, whe- reas the origin of tephra layers in the 18-65 ka time span is less clear, even if the predominance of Phlegrean Fields and Ischia Island sources can be infer- red by geochemical data (Narcisi, 1996; Sulpizio et al., 2003; Fig. 3). Figure 3 shows some differences in respect to the previous correlations of tephra layers from Lago Grande di Monticchio made by Narcisi (1996). In particular, layer L3, previously attributed to the interplinian activity between Avellino and AD 79 eruptions of Somma- Vesuvius (Narcisi, 1996), has been correlated to the Avellino eruption of Somma-Vesuvius. This different cor- relation has been suggested by EDS chemical analyses (especially by the high content of Al2O3; Cioni et al., 2000) and dispersal of fall deposits of APs and Avellino R. Sulpizio et al. Table 1 - Chronology and main lithological characteristics of the proximal terrestrial deposits of the last 18.3 ka correlated to the marine and lacustrine tephra layers. a- 14C age from Andronico et al. (1995); b- 14C age from Siani et al. (2001; 2003); c- 14C age from Di Vito et al. (1999); d- 14C age from Calanchi et al. (1993). e-Lacustrine layer from Wulf et al. (2001), marine layer from Fontugne et al. (1989); f- Keller et al. (1978); g-Narcisi et al. (1996), attribution to Avellino eruption: this work; h-Siani et al. (2003); i-Calanchi et al. (1998); l- Paterne et al. (1988), Paterne & Guichard (1993), Paterne (1985).Characteristics of proximal deposits and lithology of juvenile frag- ments of Pollena, Pompeii, Avellino, Mercato, Greenish, Pomici di Base from Santacroce (1987); AP1-2 from Andronico & Cioni (2002); Astroni, Agnano P.P. and Neapolitan Yellow Tuff from Rosi & Sbrana (1987); Agnano M. Spina from de Vita et al. (1999); Gabellotto- Fiumebianco from Crisci et al. (1991); GM1 from Zanchetta et al. (2000); Upper Pollara from Calanchi et al. (1993); Lagno Amendolare from Andronico (1997); Biancavilla Ignimbrite from De Rita et al. (1991). EErruuppttiioonn AAggee CChhaarraacctteerriissttiiccss ooff pprrooxxiimmaall LLiitthhoollooggyy ooff jjuuvveenniillee ffrraaggmmeennttss IInnffeerrrreedd TTeepphhrraa ddeeppoossiittss ssoouurrccee llaayyeerr Pyroclastic fall deposit comprises Greenish-grey pumice: highly a thin basal layer of greenish-grey vesicular, porphyritic (lc+pyr+san). pumice followed by several layers Tephri-phonolitic chemical Somma- PPoolllleennaa AD 472 of dark grey scoria. Accidental composition. Dark grey scoria: highly Vesuvius Pollenae lithics are mainly carbonate and to incipiently vesicular, porphyritic lava fragments. Pyroclastic (lc+pyr+san). Leucititic-tephrite- flows abundant in proximal areas. phonolite chemical composition. Pyroclastic fall deposit comprises White-pinkish pumice: highly a basal layer of white-pinkish vesicular, moderately porphyritic pumice followed by an upper (san). Phonolitic chemical Somma- PPoommppeeiiii AD 79 layer of grey pumice. Accidental composition. Grey pumice: highly to Vesuvius Z1f lithics are mainly carbonate and moderately vesicular, moderately lava fragments. Pyroclastic flows porphyritic (san+pyr). Tephri- abundant in proximal areas. phonolitic chemical composition. Pyroclastic fall deposits comprise White pumice: highly vesicular, a thin basal layer of white pumice almost aphiric. Phonolitic chemical Somma- AAPP11--22 3,220±65a followed by an alternation of grey composition. Grey scoria: highly to Vesuvius L1-2g scoria and ash beds. Pyroclastic moderately vesicular, moderately flow deposits are very scarce. porphyritic (san+pyr). Pyroclastic fall deposit comprises a White pumice: highly vesicular, basal layer of white pumice followed porphyritic (san). Phonolitic chemical by an upper layer of grey pumice. composition. Grey pumice: highly to AAvveelllliinnoo 3,760±70a Accidental lithics are mainly moderately vesicular, porphyritic Somma- L3g carbonate and lava fragments with (san+pyr). Tephri-phonolitic chemical Vesuvius subordinate syenites, cumulates and composition. skarns. Pyroclastic flows abundant in proximal areas. 95A review of tephrostratigraphy ... EErruuppttiioonn AAggee CChhaarraacctteerriissttiiccss ooff pprrooxxiimmaall LLiitthhoollooggyy ooff jjuuvveenniillee ffrraaggmmeennttss IInnffeerrrreedd TTeepphhrraa ddeeppoossiittss ssoouurrccee llaayyeerr Massive deposit formed by light grey Highly vesicular, porphyritic AAssttrroonnii 33 3,820±50b pumice. Sparse accidental lithics, (san+plag+pyr+bt), light grey in Phlegrean 140-17h mainly lava fragments. Pyroclastic colour. Trachytic to alkali-trachytic in Fields flows abundant in proximal areas. composition. Pyroclastic fall deposit comprises Highly vesicular, porphyritic several poorly sorted pumice layers (san+plag+pyr+bt+lc). Pumice AAggnnaannoo 4,130±50c separated by thin, fine ash beds. fragments show a yellowish patina. Phlegrean AMSi MM.. SSppiinnaa Accidental lithics are hydrotermally Inner colour: grey; outer colour: Fields altered lava fragments. Pyroclastic yellowish-brown. Trachytic to alkali- flows abundant in proximal areas. trachytic chemical composition. GGaabbeelllloottttoo-- Several pumice and ash layers Highly vesicular, almost aphiric. Lipari 7,770±35b interbedded by massive and Colour: white. Rhyolitic chemical (Eolian) E1l FFiiuummeebbiiaannccoo cross-stratified ashes composition Islands) Pyroclastic fall deposit comprises Highly vesicular , almost aphyric. three main layers of white brown Colour: white. Phonolitic chemical pumice separated by thin, pinkish- composition. Somma- MMeerrccaattoo 8,010±35a brown ash beds. Accidental lithics V-1l are mainly lava fragments and Vesuvius subordinate carbonates. Pyroclastic flows abundant in proximal areas. PPaalliinnuurroo Co-ignimbrite deposits of brown, Variably vesicular glass shards of Palinuro 9,990±90b fine ash. trachytic composition 275-17 h SSeeaammoouunntt Accidental lithics are absent. Seamount Pyroclastic fall deposit comprises Highly vesicular , porphyritic three main layers of light brown (san+plag+pyr+bt). Pumice fragments AAggnnaannoo 10,480±90b pumice separated by thin, fine ash show a pinkish-brown patina. Inner Phlegrean C1l PP.. PP.. beds. Accidental lithics are lava colour: grey; outer colour: pinkish- Fields fragments. Pyroclastic flows brown. Trachytic chemical abundant in proximal areas. composition. Several pumice and ash layers Juvenile fragments are highly NNeeaappoolliittaann 12,100±170b interbedded by massive and vesicular, light grey in colour, almost Phlegrean C2s.l. l YYeellllooww TTuuffff cross-stratified ashes aphiric (san+pl+pyr+bt) and alkali- Fields /395-17h trachytic to latitic in composition. Pyroclastic fall deposit comprises an Highly vesicular, aphiric, light grey in alternation of three layers of vesicular colour. Trachytic chemical Phlegrean GGMM11 12,600±110b ash and light coloured pumice. composition. 405-17 h A thick co-ignimbrite ash layer forms Fields the upper part of the deposits. UUppppeerr Alternation of pyroclastic fall Highly vesicular, porphyritic Salina 12,750±140d and flow deposits that comprise (bt+pyr+hbl+ol+pl), white in colour. (Eolian E2l PPoollllaarraa white pumice. Dacitic chemical composition. Islands) Pyroclastic fall deposit comprises a Highly vesicular, aphiric. Colour light basal layer of white pumice followed to dark grey. Both types are trachytic LLaaggnnoo 13,070±90b by fine brown ashes. Upper layer in composition. Phlegrean 435-17h AAmmeennddoollaarree comprises mixed white and black Fields pumice. Sparse accidental lithics, mainly lava fragments. BBiiaannccaavviillllaa At least four ignimbritic flow units Highly to moderately vesicular. Mount 14,230±85b of ash and juvenile scoriae. Colour varies from light to dark grey. Y1 f/Et1l IIggnniimmbbrriittee Benmoreitic composition. Etna Pyroclastic fall deposit comprises Highly to moderately vesicular, almost an alternation of fine to coarse lapilli aphiric (san+pyr). Colour from light and ash layers. Different types of grey to dark green and brown. GGrreeeenniisshh 16,070±170b juvenile clasts mixed in the same Trachytic composition. Somma- L8 g/530- PPuummiiccee layer. Accidental lithics are lava Vesuvius 17h and carbonate fragments. Few pyroclastic flow deposits in proximal areas. Pyroclastic fall deposit comprises a White pumice: highly vesicular, white pumice basal layer followed by almost aphiric (san+pyr), trachytic PPoommiiccii ddii a black scoriae upper layer. Accidental composition. Black scoriae: Somma- 18,300±180a lithics are lava and carbonate moderately vesicular, aphiric, latitic 595-17h BBaassee fragments. Some pyroclastic composition. Vesuvius flow deposits in proximal areas. Segue Table 1 96 eruptions (Andronico & Cioni, 2002; Cioni et al., 2000). The correlation of layer L10 to the Sarno eruption was questioned by Sulpizio et al. (2003), on the basis of the attribution of the Sarno depo- sits to the distal products of the Pomici di Base eruption (Bertagnini et al., 1998; Andronico et al., 1995; 1996). Indeed, the layer L10 can be corre- lated to the TAU1-e eruption , very similar in lithology (light and dark coloured juvenile frag- ments; Table 2), chemical composition (trachy- tes-latites; Table 3) and age (about 24 ka) to the previously attributed Sarno eruption. Furthermore, the Codola eruption, previously reported as a Plinian eruption of Somma- Vesuvius (Santacroce, 1987), has been recently attributed to the activity of Phlegrean Fields, on the basis of lithology and dispersal of fall depo- sits (Andronico et al., 1995; 1996; Sulpizio et al., 2003). The recognition of tephra layers in cores from the other lakes is more sporadic and limited to the Somma-Vesuvius eruption of Avellino (Lago di Nemi and Lago di Albano), Biancavilla Ignimbrite (Lago di Albano, Lago di Mezzano and in the slope deposits on the flanks of the Fucino basin) and Neapolitan Yellow Tuff (Valle di Castiglione; Fig. 3). TTHHEE MMAARRIINNEE RREECCOORRDD Siani (1999) and Siani et al. (2001; 2003) provided a detailed study and correlation of 11 tephra layers of the last 18 ka from a core loca- ted in the Adriatic Sea (MD90-917; Fig. 1). Three of these tephra layers belong to the eruptions of Agnano M. Spina (tephra AMS/PF), Agnano Pomici Principali (tephra C1) and Biancavilla Ignimbrite (tephra Et1/Y1) previously recognised in marine cores (Keller et al., 1978; Paterne et al., 1988; Vezzoli, 1991; Calanchi et al., 1998). A fourth tephra of rhyolitic composition (tephra E1) has been correlated to the Gabellotto- Fiumebianco eruption of Lipari (Eolian Islands) on the basis of chemistry and chronology. The other seven tephra layers have been for the first time correlated to terrestrial proximal deposits, on the basis of their chemistry, lithology and chrono- logy (Table 1). Two of them (tephra 595-17 and 530-17) have been related to the Pomici di Base (Santacroce, 1987; Bertagnini et al., 1998) and Greenish (Santacroce, 1987; Cioni et al., 2003b) eruptions of Somma-Vesuvius respectively, whe- reas the tephra layer 275-17 has been related to the activity of Palinuro Seamount (Fig. 4 and Table 1). The other four tephra layers have been related to the Phlegrean Fields activity. In parti- cular the tephra layer 140-17 has been correlated to the Astroni eruption, while tephra layers 395- 17, 405-17, 435-17 clustered in a stratigraphic position very close to the previously recognised C2 tephra (Paterne et al., 1988; Calanchi et al., 1998), related to the Neapolitan Yellow tuff erup- tion (Paterne et al., 1988). Indeed, the accurate sampling of the core (every 3 cm; Siani, 1999; Siani et al., 2003) allowed to recognise three dif- R. Sulpizio et al. Figure 3 - Schematic correlation among tephra layers recognised in the lacu- strine cores considered in this study. See Fig. 1 for locations. * Recognised in the detrital deposits on the flanks of Fucino basin (Narcisi, 1993). L a g o G ra n d e d i M o n tic ch io V ic o M e zz a n o V a lle d i C a st ig lio n e , 97A review of tephrostratigraphy ... Table 2 - Chronology and main lithological characteristics of the proximal terrestrial deposits of the 18.3-65ka time span correlated to the marine and lacustrine tephra layers. m- 14C age from Paterne et al. (1988); n- 14C age from Sulpizio et al. (2003); o 14C and 39Ar/40Ar ages from Deino et al. (1994) and Ton-That et al. (2001); In Italic are shown the ages calculated by interpolation of 14C data in marine cores (Paterne et al. 1988; Paterne & Guichard, 1993). f-Keller et al. (1978); g-Narcisi et al. (1996); h-Siani et al. (2003); l-Paterne et al. (1988), Paterne & Guichard (1993), Paterne (1985); p-Calanchi et al. (1994). Characteristics of proximal deposits and lithology of juvenile frag- ments of TAU1-d, e, SMP1-a, c, d, e, CA1-a, SC2-a, SA3-a, SA2-a, Codola and S. Lucia from Sulpizio et al. (2003); Solchiaro/Taurano from Di Girolamo & Stanzione (1973) and Zanchetta et al. (2000); Schiava Pumice from Zanchetta et al. (2000); Campanian Ignimbrite from Rosi & Sbrana (1987); Green Tuff of Pantelleria from Mahood & Hildreth (1986); Green Tuff of Ischia from Vezzoli (1988). EErruuppttiioonn AAggee CChhaarraacctteerriissttiiccss ooff pprrooxxiimmaall LLiitthhoollooggyy ooff jjuuvveenniillee ffrraaggmmeennttss IInnffeerrrreedd TTeepphhrraa ((kkaa)) ddeeppoossiittss ssoouurrccee llaayyeerr Massive layer formed by well Poorly vesicular , sub-aphiric SSoollcchhiiaarroo 19.62±0.27m sorted, black, scoriaceous, coarse (amph+pyr+san). Inner colour: N3- Procida C4l //TTaauurraannoo lapilli. Sparse accidental lithics, Dark grey; outer colour: N5-Medium Island mainly lava fragments. grey. Latitic chemical composition. Basal layer formed by light Light coloured pumice: moderately coloured pumice followed by an vesicular, almost aphiric (amph+pyr). upper layer of black scoriae. Colour N5, medium grey. Trachytic Phlegrean L10g TTAAUU11--ee 24 Accidental lithics are scarce and chemical composition. Black scoriae: mainly are lava fragments. moderately vesicular, almost aphiric Fields C6l (amph+pyr). Colour N3, dark grey. Latitic chemical composition. Double alternation of fine grained, Highly to medium vesicular, aphiric, vesicular ash and light to dark grey pumice and scoria. Presence of pumice lapilli layers. Fine grained banded pumice fragments. Phlegrean L11g CCooddoollaa 25.1±0.4m pumice lapilli scatterly occur inside Color:5Y 8/1- Yellowish grey; Fields C8l the ash layers. Accidental lithics are N4-Medium dark grey. dark coloured lava fragments. Trachytic chemical composition. Massive ash with sparse, light grey Highly vesicular, aphiric, pumice. Phlegrean SSMMPP11--ee 25.82±0.27n pumice lapilli. Absence of coarse Color:5Y 8/1-Yellowish grey. Y3f accidental lithic fragments. Trachytic chemical composition. Fields Massive pyroclastic fall deposit of Highly vesicular, aphiric pumice. light brown pumice lapilli. Sparse Inner colour: 5Y 8/1-Yellowish grey; Phlegrean TTAAUU11--dd 27.8 accidental lithics mainly are lava outer colour: 10YR 8/2-Very pale orange. Fields 332-04l fragments. Trachytic chemical composition Massive pyroclastic fall deposit of Highly vesicular, porphyritic brown, scoriaceous, coarse lapilli (pyr+bt+san) scoria. Presence of with good sorting. Sparse cumulate xenoliths. Inner colour: 5Y Phlegrean SSMMPP11--dd 28.5 accidental lithics, mainly are lava 6/1-Light olive grey; outer colour: Fields 360-18l fragments. 10YR 6/2-Pale yellowish brown. Latitic chemical composition Alternation of 5 fine grained, light Highly microvesicular, sub-aphiric SScchhiiaavvaa brown, vesicular ash and 4 well (bt+san), pumice. Colour: N8-Very Ischia 3366 sorted, light grey pumice lapilli light grey. Trachytic chemical C-9l PPuummiiccee layers. Accidental lithic are scarce composition Island and are lava fragments. Basal pyroclastic fall layer followed by Pumice fragments are highly impressive pyroclastic flow deposits vesicular, moderately porphyritic CCaammppaanniiaann which form the ignimbrite s.s. Large (san+bt). Colour: from pinkish-brown Phlegrean IIggnniimmbbrriittee 37-41o variability of juvenile fragments, which to light grey. Trachytic chemical C13al comprise light coloured pumice and composition Fields dark, porphyritic scoriae. Accidental lithics are mainly lava fragments Basal massive layer of pumice Highly vesicular, sub-aphiric lapilli that graded into an alternation (san+bt+pyr), pumice. Tubular Phlegrean SSMMPP11--cc ~40 of ash and lapilli. Accidental lithics vesicles. Colour: 5Y 6/4-Dusty yellow. Fields C13bl are scarce and are lava fragments Trachytic chemical composition Massive, well to moderately sorted Highly vesicular, sub-aphiric Ischia layer of greyish pumice lapilli. (san+bt+pyr), pumice. Tubular Island/ SSMMPP11--aa 4422 Accidental lithics are scarce and vesicles. Colour: 5Y 6/1-Light olive Phlegrean C14l are lava fragments. grey. Trachytic chemical composition Fields Alternation of pyroclastic fall and GGrreeeenn TTuuffff 45 flow deposits, sometimes welded - Pantelleria Y6f in proximal areas. Alternation of brown fine grained Highly vesicular, sub-aphiric (san+bt), ash and light grey pumice lapilli pumice. Tubular vesicles. Inner layers. Fine grained pumice lapilli colour: 5Y 6/1-Light olive grey; outer Phlegrean SSaannttaa LLuucciiaa 47.5±2.6n scatterly occur inside the ash colour; 10YR 6/2-Pale yellowish Fields C15l layers. Accidental lithics are dark brown. Trachytic chemical coloured lava fragments. composition. ferent peaks of homogeneous glass shards in the 12-13 ka time span, correlable to the proximal pyroclastic deposits of Lagno Amendolare (tephra 435-17), GM1 (tephra 405-17) and Neapolitan Yellow Tuff (tephra 395- 17; Table 1). The record of tephra layers younger than 18 ka is completed by the recognition of E2, V1, Avellino and Z-1, respectively related to Pollara eruption from Salina Island (Eolian Archipelago; Paterne et al., 1988), Mercato, Avellino and AD 79 eruptions from Somma- Vesuvius (Keller et al., 1978; Paterne et al., 1988; Fontugne et al., 1989). Anyway, the correlations regar- ding two of these tephra layers need some further com- ments. Tephra layer Z-1 has been related to the AD 79 eruption from Somma-Vesuvius, even if Keller et al. (1978) reported a possible correlation with the Avellino eruption from Somma-Vesuvius (3.8 ka; Cioni et al., 1995; 2000). Anyway, mineralogical characteristics of tephra layer Z-1 (presence of melanite and leucite; Keller et al., 1978) rules out the possible correlation with Avellino deposits, characterised by the presence of sca- polite and nepheline (Cioni et al., 2000). Up to now the tephra layers RF93-30 (530), recognised in the Adriatic sea (Calanchi et al., 1998), has not been correlated to a precise Somma-Vesuvius explosive event due to its chemical similarity to both AD 79 and Avellino products (Calanchi et al., 1998). Indeed, both EDS chemical analyses of proximal deposits (Cioni et al., 2000), age of RF93-30 (530) tephra layer (>3660±100 yr BP; Calanchi et al., 1998) and diversity in dispersal of fall deposits (NE for Avellino, SE for AD 79 deposits; Cioni et al., 2000; Sigurdsson et al., 1985) support the correlation of RF93-30 (530) tephra layer to the Avellino eruption. The correlation of many of the tephra layers older than 18 ka with terrestrial deposits still remains difficult, with the only exceptions of the Solchiaro eruption from Procida island (tephra layer C4; Paterne et al., 1988; Paterne & Guichard,1993), Campanian Ignimbrite erup- tion from Phlegrean Fields (tephra layer Y5/C13; Keller et al., 1978; Paterne et al., 1988; Ton-That et al., 2001) and Green Tuff from Pantelleria (tephra layer Y6; Keller et al., 1978). Several authors (Keller et al., 1978; Paterne et al.,1988; Paterne & Guichard,1993; Calanchi et al., 1994; 1998) correlated numerous tephra layers of age between 18 and 65 ka from Tyrrhenian and Adriatic sea cores (Fig. 4) to different sources such as Etna, Eolian Islands and Ischia volcanoes, usually grouping together Phlegrean Fields and Somma-Vesuvius due to the chemical homogeneity of their products. However, the contribution of Somma-Vesuvius to the tephra record in the 18-65 ka is negligible, as testified by the lack of pyroclastic deposits of comparable age in the ter- restrial record (Fig. 2). On the basis of lithology, chemi- stry and chronology (Tables 2 and 3), Sulpizio et al. (2003) correlated fourteen tephra layers of age between 18 and 65 ka to terrestrial pyroclastic deposits from Phlegrean Fields, Ischia, and dubitatively Somma- Vesuvius (Fig. 5). These correlations allow to unravel some important points about the existence of many pri- mary vs secondary tephra layers in this time span (que- stioned by McCoy & Cornell, 1990 and Narcisi & Vezzoli, 1999) and the attribution of the tephra layers to precise volcanic sources, in many cases different to the previously hypotised (Keller et al., 1978; Paterne et al.; 1988; Paterne & Guichard, 1993; Calanchi et al., 1994). In particular, tephra layers C6 and C8 (Paterne, 1985; Paterne et al., 1988) have been correlated to the pyro- 98 EErruuppttiioonn AAggee CChhaarraacctteerriissttiiccss ooff pprrooxxiimmaall LLiitthhoollooggyy ooff jjuuvveenniillee ffrraaggmmeennttss IInnffeerrrreedd TTeepphhrraa ((kkaa)) ddeeppoossiittss ssoouurrccee llaayyeerr Massive, well to moderately sorted Highly vesicular, sub-aphiric layer of greyish brown coarse (san+bt+pyr), coarse pumice lapilli. pumice lapilli. Accidental lithics Tubular vesicles. Inner colour: 5Y Phlegrean CCAA11--aa 51 are scarce and are lava fragments. 6/1-Light olive grey; outer colour: Fields C16l 10YR 6/2-Pale yellowish brown. Trachytic chemical composition Mainly pyroclastic flow deposits, From highly to incipiently vesicular, sometimes welded in proximal porphyritic (san+pl+pyr). Colour from Ischia L14g GGrreeeenn TTuuffff 55 areas, rich in accidental lithics and whitish to yellowish. Trachytic blocks of poorly vesicular juvenile chemical composition. Island fragments. Alternation of grey, fine grained Fine grained, highly vesicular, sub- pumice lapilli and brown coarse aphiric (bt), pumice lapilli. Elongated Ischia SSCC22--aa 57 ash layers. Accidental lithics are shape. Tubular vesicles. Colour: 5GY C(i)6l scarce and are lava fragments. 6/1-Greenish grey. Trachytic chemical Island composition. Basal layer formed by brown, fine Highly vesicular, sub-aphiric (bt), ash followed by a well-sorted, pumice lapilli. Colour 5Y 6/4-Dusty Phlegrean C18l/Y7f/ SSAA33--aa 60.3 massive, yellowish brown pumice yellow. Trachytic chemical lapilli layer. Accidental lithics are composition. Fields T003p scarce and are lava fragments. Basal, dark coloured pumice lapilli Highly vesicular, sub-aphiric layer overlaid by black, vesicular, (bt+px+san), pumice. Inner colour: 5Y Somma- SSAA22--aa 62.3 fine ash with sparse fine pumice 4/1-Olive grey; outer colour: 10YR 666-04l lapilli. Accidental lithics are 6/2-Pale yellowish brown. Trachytic Vesuvius reddish lava fragments. chemical composition. Segue Table 2 R. Sulpizio et al. 99 EE rruu pp ttiioo nn TT AA UU 11 --ee LL 11 00 bb st . d e v. LL 11 00 aa st . d e v. CC 66 CC oo dd oo llaa st . d e v. LL 11 11 st . d e v. CC 88 w h ite a b la ck a L . g re ya (n = 2 ) D . g re ya S iO 2 6 3 .3 6 1 .7 8 6 4 .2 3 1 .2 3 6 3 .8 7 0 ,0 5 6 3 .5 8 5 8 .7 5 0 .0 4 6 0 .7 3 6 0 .0 1 0 ,0 5 6 0 .4 T iO 2 0 .5 6 0 .6 0 .3 9 0 .1 2 0 .4 1 0 .1 1 0 .3 2 0 .6 4 0 .0 1 0 .5 7 0 .5 5 0 .2 8 0 .2 3 A l 2 O 3 1 8 .0 2 1 9 .1 3 1 8 .3 6 0 .2 6 1 8 .2 4 0 .2 3 1 9 .4 1 8 .3 6 0 .0 2 1 8 .1 1 2 0 .5 6 1 .3 1 2 0 .0 2 F e 2 O 3 3 .2 1 3 .6 2 3 .2 6 0 .3 6 3 .2 1 0 .2 4 2 .6 6 4 .8 5 0 .4 4 4 .2 1 2 .7 9 1 .2 6 2 .6 9 M n O 0 .1 5 0 .1 6 0 .1 6 0 .1 2 0 .1 0 .1 - 0 .1 4 0 .0 1 0 .1 3 0 .0 9 0 .0 7 - M g O 0 .7 0 .6 5 0 .3 8 0 .1 8 0 .5 0 .2 2 0 .3 4 5 1 .1 2 0 .3 3 0 .8 6 0 .4 7 0 .4 3 0 .0 4 C a O 2 .2 9 2 .4 2 .1 3 0 .2 2 .0 2 0 .1 9 2 .2 4 5 4 .8 0 .3 8 3 .9 3 4 .7 3 0 .9 2 3 .1 5 N a 2 O 4 .3 8 4 .0 5 2 .1 4 0 .2 9 2 .3 9 0 .4 1 3 .3 8 3 .5 5 0 .6 6 3 .7 8 2 .9 2 0 .5 2 4 .3 8 K 2 O 7 .3 4 7 .5 3 8 .6 3 0 .6 3 8 .9 5 0 .4 5 8 .0 7 7 .7 1 .8 6 7 .5 6 7 .5 8 1 .3 6 9 .0 5 P 2 O 5 0 .0 6 0 .0 7 0 .3 5 0 .2 3 0 .2 8 0 .1 5 - 0 .1 3 0 .0 3 0 .1 1 0 .2 6 0 .1 7 - L .O .I . 4 .7 9 4 .5 2 3 .6 7 2 .6 5 6 .9 9 1 .5 5 - 3 .5 8 0 .0 6 2 .7 4 4 .6 2 1 .9 4 - N b 6 7 7 4 - - - - - 5 3 9 5 4 - - - Z r 4 5 8 5 0 4 - - - - - 3 0 9 3 0 3 1 5 - - - Y 3 8 4 3 - - - - - 3 1 4 3 0 - - - S r 8 6 1 9 1 6 - - - - - 1 1 2 5 9 5 1 0 3 7 - - - R b 2 3 4 2 4 2 - - - - - 2 8 4 1 6 2 8 3 - - - C e 2 7 0 2 8 4 - - - - - 1 3 3 1 2 1 4 2 - - - B a 1 0 3 6 1 0 9 1 - - - - - 1 8 1 7 4 0 0 1 5 0 6 - - - L a 1 5 2 1 4 7 - - - - - 7 3 6 7 4 - - - N i 3 4 - - - - - 6 1 6 - - - C r 3 4 - - - - - 1 0 2 7 - - - V 6 1 6 6 - - - - - 9 1 1 7 7 8 - - - C o 4 5 - - - - - 9 1 6 - - - T o ta l 1 0 0 .0 1 9 9 .9 9 1 0 0 .0 3 - 9 9 .9 7 - 9 9 .9 9 1 0 0 .0 1 - 9 9 .9 9 9 9 .9 6 - 9 9 .9 6 T o ta l A lk a li 1 1 .7 2 1 1 .5 8 1 0 .7 7 - 1 1 .3 4 - 1 1 .4 5 1 1 .2 5 - 1 1 .3 4 1 0 .5 - 1 3 .4 3 K 2 O /N a 2 O 1 .6 8 1 .8 6 4 .0 3 - 3 .7 4 - 2 .3 9 2 .2 6 - 2 2 .6 - 2 .0 7 SS MM PP 11 --ee YY 33 TT AA UU --dd aa 33 33 22 --00 44 SS MM PP 11 --dd st .d e v. 33 66 00 --11 88 XX RR FF EE DD SS (n = 2 0 ) 6 2 .0 2 6 2 .2 6 6 3 .8 1 6 3 .4 8 5 6 .4 5 5 9 .7 8 0 .7 3 6 0 .2 7 0 .3 5 0 .4 3 0 .4 9 0 .3 1 0 .7 4 0 .1 8 0 .1 1 0 .5 3 1 8 .6 6 1 8 .4 1 8 .0 7 1 9 .3 1 1 5 .4 1 1 8 .1 0 .3 6 1 9 .0 9 3 .2 3 .5 9 3 .0 6 2 .9 4 6 .0 5 4 .2 6 0 .3 4 .1 5 0 .1 5 0 .1 1 0 .1 3 - 0 .1 2 0 .0 6 0 .0 8 - 0 .7 0 .9 3 0 .5 8 0 .3 8 4 .8 3 1 .2 0 .1 9 0 .1 6 2 .4 2 .6 9 1 .8 3 2 .3 1 7 .8 8 3 .8 0 .4 2 3 .6 4 4 .2 4 .1 3 3 .9 6 3 .1 2 2 .4 6 4 .3 1 0 .1 9 3 .6 8 .2 7 .4 7 7 .9 8 8 .1 2 5 .7 4 8 .2 9 0 .2 7 8 .5 2 0 .1 1 - 0 .0 7 - 0 .3 3 - - - 2 .8 4 .5 4 4 .2 1 - 1 .9 9 - - - - 6 8 - 2 8 - - - - 5 4 2 - 2 3 5 - - - - 4 1 - 2 6 - - - - 3 4 4 - 5 5 5 - - - - 2 7 7 - 2 1 7 - - - - 2 2 9 - 9 6 - - - - 2 7 4 - 1 0 6 3 - - - - 1 3 1 - 4 8 - - - - 3 - 7 3 - - - - 5 - 2 0 2 - - - - 5 6 - 1 5 3 - - - - 5 - 2 1 - - - 9 9 .9 9 1 0 0 9 9 .9 8 9 9 .9 7 1 0 0 .0 1 1 0 0 - 9 9 .9 6 1 2 .4 1 1 .6 1 1 .9 4 1 1 .2 4 8 .2 1 2 .6 - 1 2 .1 2 1 .9 5 1 .8 1 2 .0 2 2 .6 2 .3 3 1 .9 2 - 2 .3 7 T a b le 3 - C h e m ic a l a n a ly se s o f th e p ro xi m a l p yr o cl a st ic d e p o si ts o ld e r th a n 1 8 .3 k a o f th e C a m p a n ia n a re a a n d t h e c o rr e la te d t e p h ra l a ye rs . E D S a n a ly se s fo r a ll la cu st ri n e a n d m a ri n e t e p h ra la ye rs . a -X R F c h e m ic a l a n a ly se s. n = n u m b e r o f a n a ly se d s a m p le s. 33 aa )) A review of tephrostratigraphy ... 100 EE rruu pp ttiioo nn SS cchh iiaa vvaa aa st . d e v. CC 99 SS MM PP 11 --cc aa CC 11 33 bb SS MM PP 11 --aa aa CC 11 44 SS .. LL uu ccii aa aa st . d e v. CC 11 55 CC AA 11 --aa aa st . d e v. CC 11 66 st . d e v. SS CC 22 --aa aa st . d e v. CC ((ii ))66 (n = 3 ) (n = 8 ) (n = 4 ) (n = 2 ) S iO 2 6 7 .7 1 0 .4 1 6 6 .1 6 6 0 .7 1 6 0 .9 8 6 2 .2 4 6 3 .1 4 5 9 .7 4 0 .3 5 6 1 .3 5 6 1 .0 9 1 .1 4 6 1 .6 3 0 .9 3 6 3 .4 6 0 .3 6 6 4 .3 7 T iO 2 0 .2 1 0 .0 1 0 .2 4 0 .4 8 0 .3 4 0 .4 7 0 .2 8 0 .5 1 0 .0 3 0 .2 9 0 .4 6 0 .0 5 0 .3 1 0 .0 9 0 .5 3 0 0 .1 3 A l 2 O 3 1 6 .4 2 0 .3 4 1 7 .8 2 1 8 .5 4 1 9 .3 4 1 9 .2 1 1 9 .2 1 8 .6 2 0 .6 9 1 9 .1 3 1 8 .0 7 0 .0 8 1 9 .0 9 0 .2 2 1 7 .7 8 0 .2 3 1 8 .5 5 F e 2 O 3 2 .2 7 0 .0 4 1 .9 8 3 .7 2 3 .2 5 3 .8 4 2 .5 8 5 .0 3 0 .2 5 3 .0 6 4 .4 5 0 .5 9 2 .9 7 0 .4 7 3 .8 6 0 .0 4 2 .3 9 M n O 0 .1 4 0 - 0 .1 5 - 0 .2 4 - 0 .1 5 0 .0 1 - 0 .1 4 0 - - 0 .3 2 0 .0 1 - M g O 0 .4 1 0 .0 1 0 .0 4 0 .5 8 0 .5 5 0 .5 6 0 .1 3 1 .2 4 0 .1 4 0 .1 3 1 .0 9 0 .1 8 0 .1 4 0 .0 7 0 .5 1 0 .0 4 0 .0 1 C a O 2 .2 9 0 .0 7 2 .2 6 3 .4 7 2 .5 2 1 .9 1 .5 4 3 .4 0 0 .1 9 1 .9 5 3 .0 7 0 .3 9 1 .8 4 0 .2 9 1 .6 2 0 .0 4 1 .5 6 N a 2 O 3 .7 9 0 .0 6 3 .6 3 .5 5 3 .4 4 .9 2 5 .7 6 3 .2 6 0 .3 4 6 .5 2 3 .3 7 0 .0 4 6 .2 7 0 .4 9 5 .5 9 0 .0 6 4 .9 9 K 2 O 6 .7 3 0 .1 1 7 .8 5 8 .7 3 9 .6 6 .5 5 7 .3 4 7 .8 8 0 .3 4 7 .5 3 8 .1 2 0 .2 1 7 .7 2 0 .5 4 6 .3 2 0 .1 7 .9 8 P 2 O 5 0 .0 3 0 - 0 .0 6 - 0 .0 7 - 0 .1 7 0 .0 2 - 0 .1 5 0 .0 4 - - 0 .0 4 0 - L .O .I . 3 .8 0 .0 8 - 3 .5 4 - 5 .3 9 - 3 .9 8 0 .6 1 - 4 .0 5 0 .5 4 - - 4 .5 6 0 .1 1 - N b 4 8 3 - 6 0 - 1 1 4 - 4 7 4 - 4 8 2 - - 1 5 7 2 - Z r 3 9 3 1 0 - 3 8 5 - 7 0 1 - 3 2 5 1 6 - 3 3 5 1 3 - - 1 0 2 6 8 - Y 2 7 2 - 3 5 - 6 0 - 3 0 3 - 3 2 1 - - 9 9 1 - S r 1 8 9 7 - 7 3 6 - 5 6 - 7 3 6 5 0 - 7 3 0 3 3 - - 3 5 1 3 - R b 3 8 3 8 - 3 1 7 - 3 5 2 - 2 6 1 1 9 - 2 5 9 1 3 - - 4 2 7 4 - C e 1 4 7 5 - 1 5 8 - 2 4 0 - 1 5 4 1 2 - 1 5 3 3 - - 4 6 8 1 1 - B a 9 2 3 - 7 6 8 - 1 8 - 1 2 0 3 1 6 8 - 1 0 7 3 7 2 - - 3 4 1 0 - L a 9 0 2 - 9 1 - 1 3 1 - 8 5 8 - 8 6 4 - - 2 5 2 3 - N i 4 2 - 4 - 4 - 6 3 - 5 2 - - 4 1 - C r 4 1 - 4 - 2 - 9 4 - 7 3 - - 3 2 - V 1 7 1 - 5 8 - 1 7 - 8 4 8 - 6 8 1 4 - - 1 5 1 - C o 3 1 - 5 - 5 - 1 0 1 - 8 2 - - 5 1 - T o ta l 1 0 0 - 9 9 .9 5 9 9 .9 9 9 9 .9 8 1 0 0 9 9 .9 7 1 0 0 - 9 9 .9 6 1 0 0 - 9 9 .9 7 - 1 0 0 .0 1 - 9 9 .9 8 T o ta l A lk a li 1 0 .5 3 0 .1 4 1 1 .4 5 1 2 .2 8 1 3 1 1 .4 7 1 3 .1 1 1 .1 3 0 .6 4 1 4 .0 5 1 1 .4 9 0 .2 2 1 3 .9 9 - 1 1 .9 1 0 .1 6 1 2 .9 7 K 2 O /N a 2 O 1 .7 8 0 .0 3 2 .1 8 2 .4 6 2 .8 2 1 .3 3 1 .2 7 2 .4 3 0 .1 8 1 .1 5 2 .4 1 0 .0 6 1 .2 3 - 1 .1 3 0 1 .6 st .d e v. SS AA 33 --AA aa CC 11 88 SS AA 22 --aa aa st .d e v. 66 66 66 --00 44 (n = 2 ) (n = 2 ) 1 .0 8 6 2 .3 6 1 .3 6 5 9 .2 4 0 .4 7 6 0 .8 0 .1 3 0 .4 5 0 .3 1 0 .6 6 0 0 .3 6 0 .0 7 1 8 .3 2 1 8 .9 6 1 7 .6 4 0 .1 1 9 .6 4 0 .2 2 3 .5 7 3 .1 7 5 .6 4 0 .2 6 3 .0 9 - 0 .1 8 - 0 .1 4 0 - 0 .0 2 0 .6 3 0 .3 2 2 0 .4 2 0 .0 9 0 .1 6 2 .1 5 2 .7 8 4 .7 9 0 .1 6 2 .5 9 0 .9 9 3 .9 9 3 .4 3 .3 1 0 .5 4 .9 3 0 .4 2 8 .3 4 9 .6 8 6 .3 6 0 .4 1 8 .4 7 - 0 .0 6 - 0 .2 3 0 .0 3 - - 3 .9 2 - 3 .0 4 0 .2 1 - - 6 4 - 4 5 7 - - 4 0 4 - 3 3 2 5 0 - - 4 1 - 3 6 3 - - 3 9 6 - 8 2 6 2 9 - - 2 7 6 - 2 0 8 1 1 - - 2 1 0 - 1 6 5 2 4 - - 1 4 9 - 1 1 5 8 1 4 1 - - 1 1 4 - 8 7 2 0 - - 3 - 1 0 5 - - 2 - 2 7 2 7 - - 3 4 - 1 0 6 1 - - 5 - 1 3 1 - - 9 9 .9 9 9 9 .9 8 1 0 0 - 9 9 .9 7 - 1 2 .3 3 1 3 .0 8 9 .6 7 0 .0 8 1 3 .4 - 2 .0 9 2 .8 5 1 .9 5 0 .4 2 1 .7 2 S e g u e T a b le 3 33 bb )) R. Sulpizio et al. clastic fall deposits of TAU1-e and Codola (Table 2) respectively, while the widely dispersed Y3 tephra layer (Keller et al., 1978) has been correlated to the co-ignim- brite deposit SMP1-e, dated at 25.82±0.27 ka (Tables 2 and 3). The attribution of tephra layer C8 to Codola eruption needs some comments. This tephra layer was recognised in cores KET 8004, 8011 and 8218 from Tyrrhenian and Adriatic seas, and dated at 26.7±0.8 ka (Paterne, 1985). Anyway, in more recent papers (Paterne et al., 1988; Paterne & Guichard, 1993) C8 101 Figure 4 - Schematic correlation among tephra layers recogni- sed in the marine cores considered in this study. See Figure 1 for locations. A review of tephrostratigraphy ... tephra layer is not reported, due to the misleading attribu- tion of tephra layer C10 to the Campanian Ignimbrite erup- tion made by Paterne et al. (1988) and the following “for- ced” adjustment of the strati- graphy of core KET 8004 on the basis of a C10 age of 33.5 ka (Paterne et al. , 1988). Indeed, new 14C and 39Ar/40Ar data aged the terrestrial Campanian Ignimbrite depo- sits to about 37-39 ka (Deino et al., 1994; De Vivo et al., 2001), in agreement with the new correlation of these depo- sits to tephra layer C13 (dated at about 41 ka; Ton-That et al., 2001). On the basis of these evidences the original stratigraphy of core KET 8004 reported by Paterne (1985) and age of tephra layer C8 of 26.7±0.8 ka have been consi- dered correct and adopted for the correlation with proximal deposits. Similar problems affect also the tephra layers 332-04 and 360-18, which have been correlated to the TAU1-d and SMP1-d pyrocla- stic fall deposits. These two tephra layers were dated at about 33.5-33.7 ka (Paterne et al., 1988), but these ages must not be considered cor- rect, being influenced by the double error introduced by the correlation of layer C10 to the Campanian Ignimbrite depo- sits and to the age of 33.5 ka attributed to its proximal terre- strial deposits (Paterne et al., 1988). On the basis of these considerations the original ages of 27.8 and 28.5 ka for tephra layers 332-04 and 360- 18 (Paterne, 1985) have been adopted. Moreover, an accurate inspection of chemical and stratigraphic data of C13 teph- ra layer shows the coexisten- ce of at least two different tephra with similar chemical composition (peralkalic trachy- te and trachyte; Paterne, 1985; Paterne et al., 1988), here labelled C13a and C13b (Tables 2 and 3). Indeed, only the C13a tephra layer belong to the Campanian Ignimbrite deposits, while the C13b teph- ra layer has been correlated to 102 Figure 5 - Schematic correlation among terrestrial deposits and tephra layers recognised in lacu- strine and marine cores. Dashed lines indicate the lack of tephra layer in lacustrine or marine cores. On the left of the terrestrial record column are shown the deposits from Phlegrean Fields activity, whereas on the right are shown the deposits of Somma-Vesuvius (Plain text), Ischia- Procida (Italic text) and Etna-Eolian Islands-Palinuro seamount-Pantelleria (underlined Italic text). The grey dashed box indicates the uncertainties in the age of Campanian Ignimbrite depo- sits. R. Sulpizio et al. the SMP1-c pyroclastic fall deposit, emplaced very close to the Campanian Ignimbrite eruption (Sulpizio et al., 2003). The recognition of SMP1-c deposits can also help in the unravelling the discussion about the single or multiple occurrence of Campanian Ignimbrite(s) (Paterne et al., 1988; Scandone et al., 1991; Narcisi & Vezzoli, 1999). As shown for the C2 tephra layer (Siani et al., 2003), this is probably due to the clustering of dif- ferent large explosive eruptions of similar chemical com- position occurred in a relatively short time span, which frequently results in a thick, single, marine tephra layer. The correlation of tephra layer C9 (dated at 36 ka; Paterne & Guichard, 1993) to the Schiava eruption is supported by the most evolved chemical composition in the whole set of data shown by both deposits (Table 3), while tephra layer C14 has been correlated to the SMP1-a pyroclastic fall deposit (Tables 2 and 3). The C15-C18 tephra layers were grouped in the Green Tuff Series by Paterne et al. (1988), and attribu- ted to the activity of the Ischia Island. Indeed, only the tephra layer C17 can be correlated to the Green Tuff eruption of Ischia, while the other tephra layer have been correlated to terrestrial proximal deposits on the basis of chronology, lithology and chemical composition (Tables 2 and 3). Among them the only tephra layer cor- relable to Ischia activity is the C(i)6, dated at 57 ka (Paterne et al., 1988), which correspond to the SC2-a pyroclastic fall deposit (Tables 2 and 3). The other teph- ra layers of the Green Tuff Series have been correlated to the explosive activity of Phlegrean Fields (Table 2; Sulpizio et al., 2003). In particular, C15 tephra layer has been correlated to the large explosive eruption of S. Lucia, dated at 47.5±2.6 ka (Sulpizio et al., 2003; Table 2), while C16 tephra layer has a terrestrial counterpart in the CA1-a pyroclastic fall deposit (Tables 2 and 3). Tephra layer C18 appear very widespread in the central Mediterranean cores, and correspond to the tephra layer 003 from ODP Leg 107-Site 650 (Calanchi et al., 1994), and to the tephra layer Y7 (Keller et al., 1978). It has an interpolated age of 60.3 ka (Paterne et al., 1988; Paterne & Guichard, 1993) and corresponds to the ter- restrial proximal deposit SA3-b (Tables 2 and 3). Finally, the oldest tephra layer correlated to a terrestrial counter- part is 666-04, dated at 62.3 ka by Paterne et al. (1988), which corresponds to SA2 pyroclastic fall deposit (Tables 2 and 3). CCOORRRREELLAATTIIOONNSS AAMMOONNGG DDIIFFFFEERREENNTT PPRROOXXIIEESS Figure 5 shows a schematic correlation among ter- restrial, lacustrine and marine proxies. It represents an up-to-date, detailed chronostratigraphic scheme of the last 65 ka, useful for the correlation of different archives in the Mediterranean region. Seventeen tephra layers were correlated in the last 20 ka among the three proxies, while two tephra layers (AP1-2) were correlated between proximal terrestrial and lacustrine proxies. Most of them are concentrated in the <4.5 ka and in the 10.5-20 ka time spans, with the occurrence of only two tephra layers (Mercato and E1 tephra layers) in the 4.5- 10.5 ka (Fig. 5). Other sixteen tephra layers were corre- lated in the 20-63 ka time span among terrestrial, mari- ne and lacustrine proxies. A cluster of five tephra layers occurs between 24-27 ka, whereas ten tephra layers, almost regularly spaced, characterise the >35 ka time span (Fig. 5). Moreover, sources from Neapolitan volca- noes dominated throughout the whole succession, with the occurrence of only two Eolian (E1/Gabellotto- Fiumebianco and E2/Pollara; Paterne et al., 1988; Calanchi et al., 1993; Siani et al., 2001; 2003) and Etnean (Y1/Et1/Biancavilla Ign.; Keller et al., 1978; Paterne et al., 1988) tephra. On the basis of the proposed correlations the dispersal areas of several of these tephra layers can be traced (Figs. 6 and 7). These areas, even broadly defi- ned and strongly dependent on the recognition of tephra in the marine and lacustrine cores, are generally in agreement with the main direction of dispersal of fall deposits of several well-known eruptions from Somma- Vesuvius and Phlegrean Fields, such as AD 79, Avellino, Agnano M. Spina, Mercato, Agnano P.P., Greenish, Pomici di Base, TAU1-e and S. Lucia (Figs. 6 and 7). In some cases, the dispersal areas indicate in Figures 6 and 7 comprise sites (i.e. cores) where the tephra layer has not been recognised. Several causes can account for this lack of recognition, such as settling of the marine tephra as multiparticle aggregates (Carey, 1997), erosion due to bottom currents or coring process. On the other hand, pyroclastic fall deposits are frequen- tly dispersed along a defined dispersal axis and the iso- pach maps enclose ellipse-shaped areas, even if chan- ges in dispersal axis is possible in very distal areas (Cas and Wright, 1987). In this way, in Figures 6 and 7 we traced the indicative dispersal areas on the basis of proximal isopachs, irrespective of the presence or not of the tephra layer in all the cores enclosed. Instead, broa- der and irregular dispersions characterise the tephra layers correlated to single (i.e. Campanian Ignimbrite) or clusters (Biancavilla, NYT) ignimbrite-forming eruptions (Fig. 6 and 7), due to the different eruptive dynamic and dispersal of volcanic clouds not linked to large convecti- ve columns (Cas and Wright, 1987). CCOONNCCLLUUDDIINNGG RREEMMAARRKKSS The proposed correlations highlights only part of the tephra layer record reported for the central Mediterranean region (i.e. Keller et al., 1978; Paterne et al., 1988; Vezzoli, 1991; Narcisi, 1996; Calanchi et al., 1998; Wulf et al., 2001), but more work is necessary to reach a comprehensive correlation among terrestrial, lacustrine and marine records. The correlations propo- sed in this work, although being as comprehensive as possible, intend to be preliminary. Indeed, it is only of transitory usefulness, because the knowledge of past activity for some Italian volcanoes is in tumultuous growth and in the near future new data will be available. In particular, the knowledge of stratigraphy and chrono- logy of tephra layers older than 18 ka of central- southern Italy need to be supported by extensive stu- dies on terrestrial records near volcanic centres. Specific studies should be addressed in this direction and it should be a specific task since active volcanoes are often studied only in respect to recent activity for the obvious purpose of hazard assessment. 103A review of tephrostratigraphy ... 104 66)) R. Sulpizio et al. 105 Figure 6 and 7 - Maps showing selected dispersal areas inferred from the recognition of tephra layers in lacustrine and marine cores. For deposits from sustained columns (fall deposits) the dispersal area has been traced using an ellipse with the same eccentricity of the proximal isopachs and delimited with a dashed line. The dashed areas in the Avellino, Agnano P.P. and S. Lucia maps indicate secon- dary lobes of dispersion of tephra. For co-ignimbrite deposit (Neapolitan yellow Tuffs, Biancavilla Ignimbrites and Campanian Ignimbrite) and for the Gabellotto-Fiumebianco eruption the shaded area indicates the present day limit of recognition of the respective tephra layers. Proximal isopach maps from: AD 79-Sigurdsson et al. (1985); Avellino-Cioni et al. (2000); Agnano M. Spina-de Vita et al. (1999); Mercato-Santacroce (1987); Agnano P.P.-Rosi & Sbrana (1987); Greenish-Cioni et al. (2003b); Pomici di Base-Bertagnini et al. (1998); TAU1-e-Sulpizio et al. (2003); Campanian Ignimbrite-Cornell et al. (1983); S. Lucia-Sulpizio et al. (2003). 77)) A review of tephrostratigraphy ... L'eruzione vesuviana delle “Pomici di Avellino” e la facies di Palma Campania (Bronzo antico). Territorio Storico e Ambiente 2. Centro Universitario Europeo per i Beni Culturali, Ravello, 61-82. Edipuglia, Bari. Cioni R., Levi S. & Sulpizio R. (2000) - Apulian bronze age pottery as a long distance indicator of the Avellino Pumice eruption (Vesuvius, Italy). In McGuire W.G., Griffiths D. & Stewart I (Eds): The Archaeology of the Geological Catastrophes. Geol. Soc. Special publications , 171, 159-177, Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A., Sulpizio R. & Andronico D. (2003a) - Assessing pyroclastic fall hazard through field data and numerical simulations: the example from Ve- suvius. J. Geophys. Res. 110088, doi:10.1029/2001 JB000642. Cioni R., Sulpizio R. & Garruccio N. (2003b) - Variability of eruption dynamic during a subplinian event: the Greenish Pumice of Somma-Vesuvius (Italy). J. Volcanol. Geotherm. Res. 124, 89-114. Civetta L., Cornette Y., Crisci G., Gillot P.Y., Orsi G. & Requiejo C.S. (1984) - Geology, geochronology and chemical evolution of the island of Pantelleria. Geol. Mag. 112211, 541-668 Coltelli M., Del Carlo P. & Vezzoli L. (2000) - Stratigraphic constraints for explosive activity in the past 100 ka at Etna volcano, Italy. Int. J. Earth Sciences. 8899, 665-677. Cornell W., Carey S. & Sigurdsson H. (1983) - Computer simulation of transport and deposition of the Campanian Y-5 ash. J. Volcanol. Geotherm. Res. 1177, 89-109. Crisci G.M., De Francesco A.M., Mazzuoli R., Poli G. & Stanzione D. (1989) - Geochemistry of recent vol- canics of Ischia Island, Italy: evidences of crystalli- zation and magma mixing. Chem. Geol. 7788, 15-33. Crisci G.M., De Rosa R., Esperanca S., Mazzuoli R. & Sonnino M. (1991) - Temporal evolution of a three component system: the Island of Lipari (Aeolian Arc, southern Italy). Bull. Volcanol. 5533, 207-221. De Astis G., La Volpe L., Peccerillo A. & Civetta L. (1997) - Volcanological and petrological evolution of Vulcano island (Aeolian Arc, southern Tyrrhenian Sea). J. Geophys. Res. B4, 110022, 8021- 8050. De Rita D., Frazzetta G. & Romano R. (1991) - The Biancavilla-Montalto ignimbrite (Etna, Sicily). Bull. Volcanol. 5533, 121-131. De Vivo B., Rolandi G., Gans A., Calvert A., Bohrson W.A., Spera F.J. & Belkin H.E. (2001) - New con- straints on the pyroclastic eruptive history of the Campanian volcanic plain (Italy). Mineralogy and Petrology. 7733, 47-65. Deino A.L., Courtis G.H., Southon J., Terrasi F., Campajola L. & Orsi G. (1994) - 14C and 39Ar/40Ar dating of the Campanian Ignimbrite, Phlegrean fields, Italy. Icog., Berkeley, CA, p. 77 (abstract). de Vita S., Orsi G., Civetta L., Carandente A., D'Antonio M., Deino A., di Cesare T., Di Vito M.A., Fisher R.V., Isaia R., Marotta E., Necco A., Ort M., Pappalardo L., Piochi L. & Southon J. (1999) - The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei (Italy). In Orsi G., Civetta L. & Valentine G.A. (Eds): Volcanism in the 106 RREEFFEERREENNCCEESS Andronico D. (1997) - La stratigrafia dei prodotti dell’eru- zione di Lagno Amendolare, Campi Flegrei, Napoli. Atti Soc. Toscana Sci. Nat. Pisa Mem., serie A, 110044, 165-178. Andronico D. & Cioni R. (2002) - Contrasting styles of Mt. Vesuvius activity in the period between Avellino and Pompeii plinian eruptions, and some implications for assessments of future hazards. Bull. Volcanol., 6644, 372-391. Andronico D., Calderoni G., Cioni R., Sbrana A., Sulpizio R. & Santacroce R. (1995) - Geological map of Somma - Vesuvius volcano. Per. Mineral., 6644, 77-78. Andronico D., Cioni R., Marianelli P., Santacroce R., Sbrana A. & Sulpizio R. (1996) - Introduction to Somma-Vesuvius. In Santacroce R., Rosi M., Sbrana A., Cioni R. & Civetta L. (Eds): Vesuvius Decade Volcano Workshop Handbook, September 17-22, p. 1-13, Naples. Bard E., Arnold M., Mangerud J., Paterne M., Labeyrie L., Duprat J., Mélières M., Sonstegaard E. & Duplessy J.C. (1994) - The North Atlantic atmo- sphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth. Planet. Sci. Letts. 112266, 275-287. Bertagnini A., Landi P., Rosi M. & Vigliargio A. (1998) - The Pomici di Base plinian eruption of Somma- Vesuvius. J. Volcanol. Geotherm. Res. 8833, 219- 239. Calanchi N., De Rosa R., Mazzuoli R., Rossi P. & Santacroce R. (1993) - Silicic magma entering a basaltic magma chamber: eruptive dynamics and magma mixing-an example from Salina (Aeolian islands, southern Tyrrhenian sea). Bull. Volcanol. 5555, 504-522. Calanchi N., Gasparotto G. & Romagnoli C. (1994) - Glass chemistry in volcaniclastic sediments of ODP Leg 107, Site 650, sedimentary sequence: provenance and chronological implications. J. Volcanol. Geotherm. Res. 6600, 59-85. Calanchi N., Dinelli E., Lucchini F. & Mordenti A. (1996a) - Chemostratigraphy of the Late Quaternary sediments from Lake Albano and Central Adriatic Sea cores (PALICLAS project). Mem. Ist. Ital. Idrobiol. 5555, 247-263. Calanchi N., Dinelli E., Gasparotto G. & Lucchini F. (1996b) - Etnean tephra layer in Albano Lake and adriatic Sea cores: new findings of Y-1 layer in the Central Mediterranean area. Acta Vulcanologica. 88, 7-13. Calanchi N., Cattaneo A., Dinelli E., Gasparotto G. & Lucchini F. (1998) - Tephra layers in Late Quaternary sediments of the central Adriatic Sea. Mar. Geol. 114499, 191-209. Carey S. (1997) - Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea. Geology. 99, 839-842. Cas R. & Wright J.W. (1987) - Volcanic successions: modern and ancient. Allen and Unwin, London, 528 pp. Cioni R., Morandi D., Sbrana A. & Sulpizio R. (1995) - L'eruzione delle pomici di Avellino: aspetti strati- grafici e vulcanologici. In Albore Livadie C. (Ed): R. Sulpizio et al. Campi Flegrei. J. Volcanol. Geotherm Res. 91, p. 269-301. Di Girolamo P. & Stanzione D. (1973) - Lineamenti geo- logici e petrologici dell’isola di Procida. Rendic. Soc. It. Min. Petr, 81-125. Di Vito M.A., Isaia R., Orsi G., Southon J., de Vita S., D’Antonio M., Pappalardo L. & Piochi M. (1999) - Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 9911: 221-246. Fontugne M., Paterne M., Calvert S.E., Murat A., Guichard F. & Arnold M. (1989) - Adriatic deep water formation during the Holocene: implication for the reoxygenation of the deep Eastern Mediterranean sea. Paleoceanography. 44, 199- 206 Frazzetta G., La Volpe L. & Sheridan M. (1983) - Evolution of the Fossa cone, Vulcano. J. Volcanol. Geotherm. Res. 1177: 329-360 Gillot P.Y. (1984) - Datations par la methode du potas- sium-argon des roches volcaniques récentes (Pleistocene et Holocene). Contribution à l'étude chronostratigraphique et magmatique des provin- ces volcaniques de Campanie, des îles Eoliennes, de Pantelleria (Italie du Sud) et de la Reunion (Océan Indien). Thèse Dr Sc Paris Sud: 249 pp Gioncada A., Mazzuoli R., Bisson M. & Pareschi M.T. (2003) - Petrology of volcanic products younger than 42 ka on the Lipari-Vulcano complex (Aeolian Islands, Italy): an example of volcanism controlled by tectonics. J. Volcanol. Geotherm. Res. 112222, 191-220. Kallel N., Paterne M., Labeyrie L., Duplessy J.C. & Arnold M. (1997) - Temperature and salinity records of the Tyrrhenian Sea during the last 18,000 years. Palaeogeogr. Palaeoloclimatol. Palaeoecol. 8844, 191-215. Keller J., Ryan W.B.F., Ninkovich D. & Altherr R. (1978) - Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geol. Soc. Am. Bull. 8899, 591-604 Keller J. (1980) - The island of Salina. Rend. Soc. Ital. Mineral. Petrol. 3366, 489-524 Kennet J. (1982) - Marine tephrochronology. In: Emiliani E. (Ed): The Sea. Wiley and Sons, 1373-1436 Kieffer G. (1979) - L'activité de l'Etna pendant les der- nières 20 000 ans. C. R. Acad. Sci. Paris. 228800DD, 1023-1026 Jahns S. & van den Boogard C. (1998) - New palynologi- cal and tephrostratigraphical investigations of two salt lagoons on the island of Mljet, south Dalmatia, Croatia. Veget. Hist. Archaeobot. 77, 219-234. Mahood G.A., & Hildreth W. (1986) - Geology of the peralkaline volcano at Pantelleria, strait of Sicily. Bull. Volcanol. 4488, 143-172. Mangerud J., Lie S.E., Furnes H., Kristiansen I.L. & Lomo A. (1984) - A Younger Dryas ash bed in western Norway and its possible correlations with tephra in cores from the Norwegian Sea and the North Atlantic. Quat. Res. 2211, 85-104. McCoy F. & Cornell W. (1990) - Volcaniclastic sediments in the Tyrrhenian basin. In: Kastens K.A., Mascle J. et al. (Eds): Proc. ODP. Sci. Results, 107, 291- 305. College Station, TX Ocean drilling Program. Narcisi B. (1993) - Segnalazione di un livello piroclastico di provenienza etnea nell'area del Fucino (Italia Centrale). Il Quaternario. 66, 87-92. Narcisi B. (1996) - Tephrochronology of a Late Quaternary lacustrine record from the Monticchio maar (Vulture volcano, Southern Italy). Quat. Sci. Rev. 1155, 155-165 Narcisi B. (1999a) - Neapolitan Yellow Tuff tephra in the lacustrine sediments of the Valle di Castiglione crater (Alban Hills). Acta Vulcanologica. 1111, 265- 269. Narcisi B. (1999b) - Nuovi ritrovamenti del tephra tardi- glaciale etneo in Italia Centrale. Il Quaternario. 1122, 69-78. Narcisi B. & Vezzoli L. (1999) - Quaternary stratigraphy of distal tephra layers in the Mediterranean-An overview. Global Planet. Change. 2211, 31-50. Norin E. (1958) - The sediments of the Tyrrhenian Sea. Swedish Deep-Sea Exped. Repts., 1947-1948. 88, 4-136. Orsi G., Ruvo L. & Scarpati C. (1991) - The recent explosive volcanism at Pantelleria. Geol. Rundschau. 8800, 187-200. Orsi G., de Vita S. & Di Vito M. (1996a) - The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 7744, 179-214. Orsi G., Piochi M., Campajola L., D’Onofrio A., Gialanella L. & Terrasi F. (1996b) - 14C geochrono- logical constraints for the volcanic history of the island of Ischia (Italy) over the last 5000 years. J. Volcanol. Geotherm. Res. 7711, 249-257. Pappalardo L., Civetta L., D’Antonio M., Deino A., Di Vito M., Orsi G., Caradente A., de Vita S., Isaia R. & Piochi M. (1999) - Chemical and Sr-isotopical evolution of the Phlegrean magmatic system befo- re the Campanian Ignimbrite and the Neapolitan Yellow Tuff eruptions. J. Volcanol. Geotherm. Res. 9911, 179-214. Paterne M. (1985) - Reconstruction de l'activitè explosive des volcans de l'Italie du Sud par tèphrochronolo- gie marine. Thèse Dr. Sciences Paris Sud, 144 pp. Paterne M., Guichard F., Labeyrie J., Gillot P.Y. & Duplessy J.C. (1986) - Tyrrhenian Sea tephrachro- nology of the oxygen isotope record for the past 60 000 years. Mar. Geol. 7722: 259-285. Paterne M., Guichard F. & Labeyrie J. (1988) - Explosive Activity of the South Italian volcanoes during the past 80 000 years as determined by marine teph- rochronology. J. Volcanol. Geotherm. Res. 3344, 153-172. Paterne M., Labeyrie J., Guichard F., Mazaud A. & Maitre F. (1990) - Fluctuation of the Campanian explosive activity (South Italy) during the past 190,000 years, as determined by marine tephroch- ronology. Earth Planet. Sci. Letts. 9988, 166-174 Paterne M. & Guichard F. (1993) - Triggering of volcanic pulses in the Campania area, south Italy, by perio- dic deep magma influx. J. Geophys. Res. 9988, 1861-1873. Pescatore T., Rolandi G. (1981) - Osservazioni prelimi- nari sulla stratigrafia dei depositi vulcanoclastici nel settore SW dei Campi Flegrei. Boll. Soc. Geol. It. 110000, 233-254. Pichler H. (1980) - The Island of Lipari. Rend. Soc. Ital. Mineral. Petrol. 3366, 415-440. 107A review of tephrostratigraphy ... Poli S., Chiesa S., Gillot P.Y. & Guichard F. (1987) - Chemistry versus time in the volcanic complex of Ischia (Gulf of Naples, Italy): Evidence of succes- sive magmatic cycles. Contrib. Mineral. Petrol. 9955, 322-335. Ramrath A., Zolitschka B., Wulf S. & Negendank J.F.W. (1999) - Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). Quat. Sc. Rev. 1188, 977-992. Rosi M. & Sbrana A., Eds. (1987) - Phlegraean Fields. CNR Quad. Ric. Sci. 111144 ((88)), 175 Santacroce R., Ed. (1987) - Somma-Vesuvius. CNR Quad. Ric. Sci. 111144((99)) 230. Scandone R., Bellucci F., Lirer L. & Rolandi G. (1991) - The structure of the campanian Plain and the acti- vity of the Neapolitan volcanoes (Italy). J. Volcanol. Geotherm. Res. 4488, 1-31. Siani G. (1999) - Estimation de l'âge 14C du réservoir des eaux de surface de la Méditerranée pendant les derniers 18 000 ans. Relations avec la circula- tion océanique. Thèse, Université de Paris-Sud Orsay. 171. Siani G., Paterne M., Michel E., Sulpizio R., Sbrana A., Arnold M. & Haddad G. (2001) - Sea-Surface radiocarbon reservoir age changes since the last glacial maximum. Science. 229944, 1917-1920. Siani G., Sulpizio R., Paterne M. & Sbrana A. (2003) - Detailed tephrochronology for the last 18,000 years in the south adriatic deep-sea sediments: correlations with terrestrial deposits. Quat. Sc. Rev. Submitted. Sigurdsson H., Carey S., Cornell W. & Pescatore T. (1985) - The eruption of Vesuvius in A.D. 79. National Geographic Research. 11 (3), 332-387. Sparks R.J.S. & Huang T.C. (1980) - The volcanological significance of deep-sea ash layers associated with ignimbrites. Geol. Magaz. 111177, 425-436. Sulpizio R., Zanchetta G. & Di Vito M.A. (2003) - The Late Pleistocene pyroclastic deposits of the southern Campanian Plain: insights on their sour- ces and relationships with tephrostratigraphy. Int. Journ. Earth Sc. Submitted Ton-That T., Singer B. & Paterne M. (2001) - 40Ar/39Ar dating of latest Pleistocene (41 ka) marine tephra in the Mediterranean Sea: implications for global climate records. Earth Planet. Sci. Letts. 118844, 645- 658. Vezzoli L. (1988) - Island of Ischia. CNR Quad. Ric. Sci. 111144((1100)), 230. Vezzoli L. (1991) -Tephra layers in Bannock Basin (Eastern Mediterranean). Mar. Geol. 110000, 21-34. Watts W.A., Allen. J. R.M. & Huntley B. (1996) - Vegetation history and climate of the Lastglacial period at Laghi di Monticchio, southern Italy. Quat. Sc. Rev. 1155, 133-153. Wulf S. (2000) - Das tephrochronologische referenzpro- fil des Lago Grande di Monticchio. PhD thesis. Universitat Potsdam. In German. Wulf S., Brauer A., Frank U., Mingram J. & Negendank J.F.W. (2001) - Detailed stratigraphy of the italian explosive volcanism in sediments of Lago grande di Monticchio. Cities on Volcanoes 2, Auckland, New Zealand, February 22-26th, 2001. Poster with abstract. Zanchetta G., Di Vito M., Fallick A.E. & Sulpizio R. (2000) - Stable isotopes of pedogenic carbonate from Somma-Vesuvius area, southern Italy, over the last 18 ka: palaeoclimatic implications. J. Quat. Sc. 1155, 813-824. 108 Ms. ricevuto il 20 novembre 2002 Testo definitivo ricevuto il 3 giugno 2003 Ms. received: November 20, 2002 Final text received: June 3, 2003 R. Sulpizio et al.