24 Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 1: 24–41, 2016, ISSN 2543-8832 Pavel Širka1*, Ingrid Turisová1, Anna Petrášová2 1 Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica 974 01, Slovakia, *pavel.sirka@umb.sk 2 Clementisa 214, 981 01 Hnúšťa, Slovakia Bryophytes of Cu-mine heaps in the vicinity of Banská Bystrica (Central Slovakia) Introduction Mine heaps and wastes created by mining industry are one of the extreme habitats made by human activity. For plants mine heaps are distinctive habitats with speci�c ecological conditions: the lack of soil as well as nutrients and moisture. Mine heaps are characterized by a skeletal substrate from 52.90%–87.38% and a lack or complete absence of humus layer (Banásová, 1976). In addition, compared to natural soils, mine heaps contain a higher content of heavy metals. All these conditions signi�cantly limit the list of plant species and vegetation types that can grow on such habitats (Baker et al., 1988; Banásová, Hajdúk, 2006). In Slovakia, a land with rich mining history, there are numerous old mine heaps – remainders of exploitation of di�erent ores. On mine heaps, we encounter plant succession which takes place in strange and complex conditions consequently form- ing new, unknown or very little known plant communities (Banásová, 1976). Because mine heaps originate from di�erent space of time, the vegetation formed on them is present in di�erent successional stages (Banásová, 1983). Banásová (1976) stated that plants on mine heaps mostly colonize depressions or parts with more disintegrated material that are more humid and where dead plant material accumulates, forming raw humus. �us a mosaic vegetation cover is formed. On mine heaps perennial plants predominate, while annual and biannual plants occur sparsely. On the rock surface and among grass and herbs grow tolerant species of bryophytes and lichens. Mine heaps with anomalous metal content are like ecological islands because in comparison to their surroundings they have a very speci�c vegetation. �roughout many decades some plants (immigrants) that had no ability to adapt were excluded by natural evolution. A result of this evolution is B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 25 Fig. 2. Location of Ľubietová, Staré Hory and Špania Dolina within Slovakia (Source: by courtesy of Turisová et al., 2014) Fig. 1. Initial succesional stage with bryophytes (Photo. I. Turisová) P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 26 a small group of plants with strange species combination capable of existing in these phytotoxical conditions. Bryophytes represent a very signi�cant group of organisms that sensibly react and indicate changes in the natural environment, especially changes of anthropogenic character (Kubinská et al., 2001). In recent decades they have been successfully used as biomonitors of heavy metal accumulation throughout Europe (Harmens et al., 2013). Bryophytes play an important role in primary successional stages when colonizing anthropogenic substrate (Fig. 1), where they signi�cantly participate in soil cover for- mation. Some bryophyte communities may be particularly important as a successive stage to some other vegetation types. Bryophytes are o�en omitted in botanical stud- ies, especially those of mine heaps. �e aim of this article is to present basic information on bryophyte species compo- sition in the chosen metal-contaminated areas in central Slovakia. Materials and methods Study area �ree mine heaps near the city of Banská Bystrica in central Slovakia were studied: Podlipa (cadaster Ľubietová), Richtárová (cadaster Staré Hory) and Maximilián in the village of Špania Dolina (Fig. 2). Mine heap Ľubietová – Podlipa (Fig. 3) is situated in the north-eastern part of Slov- enské Stredohorie Mts which include the northern part of neovolcanic massif Poľana and the northern part of Veporské vrchy (Mazúr, Lukniš, 2002). �e mine heap lies approximately 1 km to the east of the center of the village on the southern slope of Vy- soká (995 m a.s.l.). �e Podlipa deposit was dug by 18 tunnels ranging from 570–700 m a.s.l. (Bergfest, 1951). In the dump material the content of copper was stated to be from 0.9–2.4 mass percent. �e mine heap represents an area visibly changed by the historic exploitation of copper ore especially from 15th and 16th century until the end of the 19th century (Koděra, 1990). Small mining activities persisted until the beginning of the 20th century when the last mining works were shut down in April 1915 during the First World War (Andráš, 2009). �e whole body of the mine heap is surrounded by forest and is drained in a thalweg of Zelená valley by a brooklet which draws on the water from the hillsides and also water percolating in the mine heap sediment into a  shallow depression. From here the water is led to a  �ood pool on the base of the mine heap through a system of wooden and tinny channels (Andráš et al., 2007). On this mine heap the substrate mostly has a high proportion of rock and vegetation cover is poorly developed (only on about 10% of the dump-�eld area). In a mosaic of plant communities, especially on less steep slopes with shallow soil, dominate spe- cies-poor grassland islets with Agrostis capillaris and Acetosella vulgaris or only islets B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 27 of bryophytes with lichens in steep areas and places with a thin soil layer. Flat areas are colonized by groups of pioneer tree species dominated by Pinus sylvestris, sporadically by Quercus petraea and Picea abies. Černý (2015) recorded here a total of 74 taxa of vascular plants. Mining region Špania Dolina – Staré Hory is geographically divided into two parts: northern (Staré Hory) and southern (Špania Dolina). �ey are named a�er two most distinguished sites where copper and silver ore mining was carried out throughout several centuries. �e border between the northern and southern part of the min- ing area is formed by a  narrow ridge dividing the valley of Richtársky potok from Veľká Zelená valley, with Zelený potok crossing through it (Mazúrek, 1989). Area of Špania Dolina ore �eld represents one of the historically most distinguished copper mining deposits in Europe. �e mineralization forms a  4 km long and 1.5 km wide vein stretching between Panský diel (1100 m a.s.l.) on the south and Staré Hory on the north to the east of Starohorský potok (Michňová, Ozdín, 2010). �e �rst written reports of ore mining in the area of Staré Hory and Špania Dolina are from the 11th century (from the year 1006), although on the deposit Piesky copper is proven to be mined already in the Late Stone Age (Točík, Bublová, 1985). At �rst, copper and silver ore was mined in Staré Hory (historical deposit Haliar). Later, the mining expanded further south in Richtárová and Špania Dolina (Koděra et al., 1990). A�er depleting the surface portions the mining was gradually transferred to underground mining from the mid-14th century. Maximum development of copper ore mining with an ex- tremely valuable silver content was in the years 1496–1546. Since the 17th century, mining gradually declined until it completely disappeared in the early 20th century (Jeleň et al., 2009). During the years 1963–1964, old mine heaps (originating from the 16th – 19th century) in the area of village Richtárová were re-mined by surface mining, which signi�cantly changed the original con�guration (Mazúrek, 1989). Mine heaps in Staré Hory – Richtárová part (Fig. 4) �ll the Richtársky potok valley lenghtwise and they are mine heaps in a natural valley, unlike the mine heap in Špania Dolina which represents a sloping mine heap (Dobríková, 2011). Turisová et al. (2014) recorded a total of 147 taxa of vascular plants and 13 taxa of lichens from the mine heap Richtárová and 83 taxa from Maximilián. �e representation of higher plants in waste dump-�eld Richtárová is relatively low and they cover about 30% of the area. Vegetation is concentrated mainly in �eld depressions, on even surfaces or in the areas with �ne substrate. Vegetation is incoherent and forms a mosaic pattern. On consider- ably exposed parts of the heap grow only lichens and mosses. Dominant plant species on this mine heap are Agrostis capillaris (sometimes forming a relatively continuous cover), Silene dioica, Acetosella vulgaris and Arabidopsis arenosa. Dominant trees are Picea abies and Pinus sylvestris (Štrba et al., 2014). Similarly, on the mine heap Max- imilián (Fig. 5) vegetation is present individually and in islets and a total vegetation P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 28 Fig. 3. Mine heap Podlipa (Photo. P. Širka) Fig. 4. Mine heap Richtárová (Photo. I. Turisová) cover reaches 30%–40%. On a relatively �at top part of the mine heap a forest habitat is established in which the highest plant diversity was recorded. On surfaces without humus and �ne earth grow only lichens – the most dominant group of organisms on the mine heap, represented mostly by genera Rhizocarpon, Cladonia, Cetraria, Lecano- ra and Peltigera. B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 29 �e most wide-spread grass is also Agrostis capillaris which o�en forms monocul- tural overgrowth among lichens. Among herbs the most frequent species are Arabi- dopsis arenosa, Acetosella vulgaris and Silene dioica. Pioneer tree species such as Betula pendula, Salix caprea, Picea abies, Pinus sylvestris and Abies alba are present sporad- ically. �ey o�en have a  dwar�sh appearance, deformed shape or weakened vitality (Aschenbrenner et al., 2011). Methods �e �eld survey of chosen mine heaps was conducted in November and December of 2013, using the method of the Zürich-Montpellier school (Braun-Blanquet, 1964) ad- justed to bryophytes. A total of 54 relevés were made. A standard surface size of 1 m2 was chosen for all relevés. �e sites were chosen randomly. Bryophytes were determined ac- cording to Pilous, Duda (1960) and Smith (2004). Nomenclature follows Hill et al. (2006) and Ros et al. (2007). Species cover-abundance was recorded using the extended nine- grade Braun-Blanquet scale (Westho�, van der Maarel, 1973): r – 1–2 individuals with insigni�cant cover-abundance; + – cover-abundance not higher than 1%; 1 – 1%–5% cover-abundance; 2 m – cover-abundance about 5%; 2a – 5%–15% cover-abundance; 2b – 15%–25% cover-abundance; 3 – 25%–50% cover-abundance; 4   – 50%–75% cover-abundance; 5 – 75%–100% cover-abundance. �e list of all relevés is presented in Appendix 1, the information contains respectively: relevé number, short habitat description, geographical coordinates, altitude, slope, terrain exposure (using a GPS device Garmin – Oregon 600), tree layer cover (E3), shrub layer cover (E2), herb layer Fig. 5. Mine heap Maximilián (Photo. I. Turisová) P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 30 cover (E1), moss layer cover (E0), total number of recorded bryophyte species and date of collection. Results and discussion A total of 45 bryophytes species were identi�ed in 54 relevés in the invesigeted areas (Tab. 1). Tab. 1. �e list of recorded bryophyte species; P – mine heap Podlipa, R – mine heap Richtárová, M – mine heap Maximilián; number of relevés and cover (shown in brackets) Name of species Localities Abietinella abietina (Hedw.) M. Fleisch. P: 3(1), 4(2a), 5(1), 8(1); R: 28(2a) Amblystegium serpens (Hedw.) Schimp. P: 4(1); R: 24(1), 25(1), 3w1(1) Aulacomnium palustre (Hedw.) Schwägr. P: 20(1) Barbilophozia barbata (Schmidel ex Schreb.) Loe- ske P: 5(1) Barbula unguiculata Hedw. R: 22(2m), 26(2a), 30(1) Brachytheciastrum velutinum (Hedw.) Ignatov & Huttunen R: 30(2a); M: 39(1), 47(1) Brachythecium albicans (Hedw.) Schimp. P: 2(2a), 4(1), 8(1), 18(2m); R: 34(r), 36(1); M: 53(+) B. rivulare Schimp. R: 23(2a) B. rutabulum (Hedw.) Schimp. P: 11(1), 14(2a), 15(2b) B. salebrosum (Ho�m. ex F. Weber & D. Mohr) Schimp., nom. cons. P: 2(1), 11(2a); R: 24(2a), 25(2m), 26(1), 29(1), 30(1); M: 43(2a), 51(1) Bryum caespiticium Hedw. P: 3(2m), 6(1); R: 25(1), 26(1); M: 49(1) B. capillare Hedw. P: 20(2a); R: 21(2b), 23(2b), 30(2a) B. moravicum Podp. P: 4(+), 18(1); R: 32(1); M: 39(1), 47(1) Calliergonella cuspidata (Hedw.) Loeske P: 20(+) Campylopus intro�exus (Hedw.) Brid. M: 48(3), 49(1), 50(2a) Ceratodon purpureus (Hedw.) Brid. P: 4(r), 6(1), 12(2a); R: 24(1), 26(2a), 27(2a), 28(2a), 29(2a), 31(2a), 33(2a), 34(2m), 36(1); M: 38(2a), 39(2a), 40(+), 41(1), 43(3), 45(1), 47(2a), 48(1), 49(1), 51(2m), 52(2a), 54(2a) Cirriphyllum piliferum (Hedw.) Grout R: 35(1) Climacium dendroides (Hedw.) F. Weber & D. Mohr P: 2(1), 5(2m), 7(1), 8(2a); R: 28(1) Dicranella heteromalla (Hedw.) Schimp. P: 20(1) Dicranum montanum Hedw. P: 13(1); M: 38(+) D. scoparium Hedw. P: 6(2m), 7(1), 9(1); R: 30(3), 31(2m); M: 40(2a), 50(2a), 51(1), 52(2a), 53(2a), 54(2a) Didymodon fallax (Hedw.) R.H. Zander R: 32(1) Drepanocladus aduncus (Hedw.) Warnst. R: 24(2a) Grimmia pulvinata (Hedw.) Sm. M: 37(+) Hylocomium splendens (Hedw.) Schimp. P: 6(1), 7(2m), 17(1); R: 30(1), 31(1), 34(2m), 36(1); M: 53(2m) B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 31 Hypnum cupressiforme Hedw. P: 4(2m), 5(1), 6(2a), 9(1); M: 39(2a), 40(2a), 44(3), 47(+), 51(2m), 53(3), 54(2a) Lophocolea bidentata (L.) Dumort. P: 11(1) Oxyrrhynchium hians (Hedw.) Loeske R: 29(1) Plagiomnium a�ne (Blandow ex Funck) T.J. Kop. P: 7(2a), 11(1), 19(r); R: 30(1), 33(1), 35(2a); M: 53(2a) P. cuspidatum (Hedw.) T.J. Kop. P: 4(1), 5(1), 6(r), 8(2b), 14(r) Pleurozium schreberi (Willd. ex Brid.) Mitt. P: 2(2a), 4(2a), 6(2a), 7(1), 9(1), 17(2a), 18(2m); R: 30(2m), 31(1), 34(2a), 36(2m) Pohlia cruda (Hedw.) Lindb. P: 9(1), 10(2b), 13(1), 19(2a); R: 21(1), 23(1), 24(1), 25(1), 28(2m), 30(2a), 31(2m), 36(2a); M: 39(1), 41(2a), 42(1), 46(2b), 49(1) P. drummondii (Müll. Hal.) A.L. Andrews P: 1(3), 2(1), 16(2a), 20(1) Polytrichastrum formosum (Hedw.) G.L. Sm. P: 2(2m), 9(1), 17(1); R: 28(2a), 31(1), 36(2m); M: 51(1), 53(2m), 54(2a) Pterigynandrum �liforme Hedw. M: 40(1) Racomitrium canescens (Hedw.) Brid. P: 8(2m), 19(1); R: 24(1), 25(1), 26(1), 27(1); M: 38(2a), 41(1), 43(1) R. lanuginosum (Hedw.) Brid. P: 5(1); M: 39(1) Rhytidiadelphus squarrosus (Hedw.) Warnst. P: 5(2a), 17(2a), 20(1); R: 30(1), 34(2a), 35(r), 36(2m) R. triquetrus (Hedw.) Warnst. R: 34(2a) Sciuro-hypnum populeum (Hedw.) Ignatov & Hut- tunen R: 33(1) S. re�exum (Starke) Ignatov & Huttunen P: 5(2a) Schistidium apocarpum (Hedw.) Bruch & Schimp. R: 26(1); M: 51(1) Syntrichia ruralis (Hedw.) F. Weber & D. Mohr P: 5(2a), 8(1); R: 27(1), 28(+) �uidium delicatulum (Hedw.) Schimp. P: 6(1), 8(+); R: 26(1) Tortella tortuosa (Hedw.) Limpr. M: 38(1), 39(1), 45(3), 47(1) On the mine heap Ľubietová – Podlipa a total of 31 bryophyte species were recorded (29 mosses and 2 liverworts). �is area is the species-richest among studied. �e highest number of species (10) was noticed in one relevé (No. 5), while only one species was recorded in 5 relevés. �e highest frequency on this mine heap had species Pleurozium schreberi (present in 7 relevés) and Plagiomnium cuspidatum (5). Ceratodon purpureus as a characteristic species for this type of habitat was present in 3 relevés. Species with the highest cover (25%) was Pohlia drummondii in relevé No. 1, followed by Pohlia cruda (20% – relevé No. 10) and Brachythecium rutabulum (20% – relevé No. 15). On the mine heap Staré Hory – Richtárová a  total of 29 species of mosses were recorded. �e highest number of species (10) was present in one relevé (No. 30), one species was recorded only in one relevé. To the most frequently occured species be- long Ceratodon purpureus (9) and Pohlia cruda (8). �e species with the highest cover are: Dicranum scoparium (30% – relevé No. 30) and Bryum capillare (25% – relevé No. 21 and 20% – relevé No. 23). P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 32 Species-poorest mine heap was Maximilián in Špania Dolina where we found only 20 species of mosses. �e highest number of species present in a relevé was 7 (relevé No. 39) and one species was recorded in 4 relevés. Few species had the highest cover compared to other studied areas: Hypnum cupressiforme (40% – relevé No. 53 and 30% – relevé No. 44), Ceratodon purpureus (35% – relevé No. 43), Tortella tortuosa (30% – relevé No. 45) and Campylopus intro�exus (30% – relevé No. 48). �e most frequent species was Ceratodon purpureus (present in 12 relevés) and Hypnum cupressiforme (7). A total of 11 moss species were present on all three mine heaps: Brachythecium albicans, B. salebrosum, Bryum caespiticium, B. moravicum, Ceratodon purpureus, Di- cranum scoparium, Hylocomium splendens, Plagiomnium a�ne, Pohlia cruda, Polytri- chastrum formosum and Racomitrium canescens, while 9 bryophyte species were found only on Podlipa (Aulacomnium palustre, Barbilophozia barbata, Brachythecium rutab- ulum, Calliergonella cuspidata, Dicranella heteromalla, Lophocolea bidentata, Plagiom- nium cuspidatum, Pohlia drummondii and Sciuro-hypnum re�exum), 8 on Richtárová (Barbula unguiculata, Brachythecium rivulare, Cirriphyllum piliferum, Didymodon fallax, Drepanocladus aduncus, Oxyrrhynchium hians, Rhytidiadelphus triquetrus and Sciuro-hypnum populeum) and 4 on Maximilián (Campylopus intro�exus, Grimmia pulvinata, Pterigynandrum �liforme and Tortella tortuosa). �e most frequent spe- cies on all studied sites was Ceratodon purpureus, recorded in 24 relevés altogether, followed by Pohlia cruda (17) and Dicranum scoparium, Hypnnum cupressiforme and Pleurozium schreberi (all present in 11 relevés). �e genus with the highest number of species was Brachythecium (B. albicans, B. rivulare, B. rutabulum and B. salebrosum). Hypnum cupressiforme was the species with the highest overall cover (40% – relevé No. 53), but was not recorded on mine heap Richtárová. Species with the highest cover that were present on all three studied sites (at least 2a – 5%–15% cover-abundance) were Brachythecium salebrosum, Ceratodon purpureus, Plagiomnium a�ne and Pohlia cruda. According to Kubinská et al. (2001) none of the species recorded in our survey belongs to the “Red list of bryophytes of Slovakia”. According to Kubinská, Janovicová (2001) species Campylopus intro�exus (found in our �eld survey only on Maximilián) belongs to invasive species in Slovakia. As a general rule in our studied areas, relevés with the highest number of species were situated in sites with deeper soil layer such as the ecotone between the mine heap and forest habitat or on sites with lower inclination. �is is evident by the pres- ence of species typical for humid and shady habitats such as Climacium dendroides, Dicranum scoparium, Hylocomium splendens, Rhytidiadelphus squarrosus etc. (Pilous, Duda, 1960). On the contrary, relevés with o�en only one species present lie more or less on bare rocky sites with species such as Ceratodon purpureus, Pohlia cruda, P. drummondii, Racomitrium canescens, Tortella tortuosa, or species from genus Bryum. B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 33 Štrba et al. (2014) but also Dobríková (2011) reported several bryophyte species from mine heap Richtárová in Staré Hory: Abietinella abietina, Ceratodon purpureus, Dicranum scoparium, Hylocomium splendens, Plagiomnium a�ne, P. undulatum, Pleu- rozium schreberi, Pohlia cruda, Polytrichastrum commune, P. formosum, Racomitrium canescens, R. lanuginosum, Rhytidiadelphus squarrosus, R. triquetrus and �uidium tamariscinum. On the mine heap Maximilián in Špania Dolina genera such as Di- cranum, Hylocomium, Plagiomnium, Pleurozium, Polytrichastrum, Rhytidiadelphus and �uidium had the highest abundance (Aschenbrenner et al., 2011). Data on bryo- phytes from the mine heap Podlipa in Ľubietová have not been published yet. A high heavy metal content in soil has a strong selection pressure on vegetation. Most plant species are not capable of adapting. �ere is, however, a  small group of plants – specialists, that could tolerate these soils (Ernst, 1974; Ernst et al., 1992). Studies have shown that tolerant ecotypes are formed within a certain species that are adapted to these habitats. In recents years it has been discovered that some species of grasses, herbs and also lichens form tolerant ecotypes (Bačkor et al., 1998; Bačkor, Váczi, 2002). Among bryophytes such tolerant ecotypes were reported in Ceratodon purpureus, Pohlia drummondii and Pleurozium schreberi from mine heaps in Staré Hory, Gelnica and Smolník (Banásová, 2006; Banásová et al., 2007) or Brachythecium albicans in Banská Štiavnica (Banásová et al., 2012). All these species were noted in the investigated areas. A tolerant ecotype was also reported in Ceratodon purpureus (Jules, Shaw, 1994), Funaria hygrometrica Hedw. (Shaw, 1988) and in two liverworts, March- antia polymorpha L. (Briggs, 1972) and Solenostoma crenulata (Sm.) Mitt. (Brown, House, 1978). Shaw (1990) stated that Funaria hygrometrica forms copper-tolerant ecotypes, although tolerance to other metals (e.g. zinc and cadmium) appears to be due mostly to cross-tolerance and generally vigorous growth. Shacklette (1967) stated that some bryophyte species have been known to occupy substrates with greater than the normal content of copper or other metals. �ese spe- cies are commonly known in literature as copper mosses (Limpricht, 1895; Morton, Gams, 1925; Persson, 1956; Schatz, 1955; Brooks et al., 1985), although some are as- sociated with metals other than copper and some are liverworts, not mosses. Schatz (1955) considered copper mosses to be more properly termed “sulfur mosses” be- cause of their frequent linkage with sulfur compounds of copper, lead, zinc, and iron, as well as with sulfur deposits at mineral springs. Persson (1956) proposed that the controlling factor for the distribution of the copper mosses was the low pH (3.4–4.3) and observed that copper mosses were never found over ultrama�c substrates (high pH) despite the high concentrations of heavy metals in these rocks and soils. John- son-Groh (1987) also pointed out the importance of microclimate. Širka (2014) reported a signi�cant amount of Cu accumulated in the species Pohlia drummondii from the mine heap Podlipa in Ľubietová (4010.3 mg/kg) compared to P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 34 �uidium delicatulum (8.5 mg/kg), and the mean value of Cu concentration in the substrate (3253 mg/kg). Since bryophytes do not have a  well developed cuticle and root system like vascular plants and rely mostly on atmospheric deposition for nour- ishment, there is much controversy as to whether copper itself (or other heavy metal for that matter) is indeed the controlling factor for the distribution of bryophytes on metal-contaminated sites. Fernández (2013) and Brown (1995) concluded that mosses remain in a state of unstable equilibrium between inputs and outputs of contaminants and do not integrate metals from deposition and that this equilibrium of the concen- trations of elements in moss cannot be studied by only considering the total concen- trations of contaminants in the tissues as it is known that contaminants may be located in di�erent cell compartments. According to Brooks et al. (1985) it is possible that the “preference” shown by some mosses for sites contaminated by heavy metals is a result of two factors: an acquired resistance to toxic ions, and a low tolerance to competition from other species outside contaminated sites. Results by Jules, Shaw (1994) give some indication that there might be a biological cost associated with metal-tolerance in Cer- atodon purpureus. In their study smelter plants produced fewer stems and fewer game- tangia on the control treatment than on the contaminated treatment and although this result may be, in fact, due to other di�erences between the studied sites (e.g. nutrient content), their evidence is suggestive of a  cost. Similarly, Shaw (1990) demonstrat- ed that metal-tolerant Funaria hygrometrica individuals form stems more slowly on normal (uncontaminated) treatments than non-tolerant individuals. �e tendency of these mosses to grow on mineralized substrates might be a species characteristic, not a generic one (Shacklette, 1967). According to Jules, Shaw (1994) bryophytes can bet- ter adapt to heterogeneous environments than angiosperms as they have higher levels of phenotypic plasticity, rather than small-scale genetic responses. Strong conclusions cannot be made as to lack of evidence at present. Acknowledgements �e article was �nancially supported by grant scheme VEGA 1/0538/15 Conclusions A total of 45 species of bryophytes (43 mosses and 2 liverworts) in 54 releves were found in three mine heaps with copper-rich substrate in central Slovakia that had a similar bryophyte species composition. Species-richest mine heap was Podlipa (31 recorded species), while species-poorest mine heap was Maximilián (20 recorded species). Most frequent species were Ceratodon purpureus, Pohlia cruda, Dicranum scoparium, Hypnum cupressiforme and Pleurozium schreberi. Hypnum cupressiforme was the species with the highest overall cover. We con�rmed that bryophytes play an B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 35 important role in the initial stages of the succession process on anthropogenically cre- ated habitat types, as with lichens they formed a major component of the vegetation cover on mine heaps where any kind of mining activity was ended centuries ago. �eir detailed study in relation to phytoextraction or phytostabilization of heavy metals may be used in succession management process aimed at restoring the environment, par- ticularly the soil and air. References Andráš, P., Jeleň, S., Križáni, I. (2007). Cementačný účinok drenážnej vody z haldového poľa Ľubie- tová-Podlipa. Mineralia Slovaca, 39(4), 303–308. [In Slovak] Andráš, P., Rusková, J., Rusko, M., Lichý, A., Križáni, I. (2009). Vplyv banskej činnosti v okolí Ľubietovej na krajinu. Žilina: STRIX, n. f., 128. [In Slovak] Aschenbrenner, Š., Turisová, I., Štrba, T. (2011). Flóra a vegetácia haldového poľa v Španej Doline. Acta Universitatis Matthiae Belii, Sekcia Environmentálne manažérstvo, 13(2), 48–57. [In Slovak] Bačkor, M., Váczi, P. (2002). Copper tolerance in the lichen photobiont Trebouxia erici (Chlorophyta). Environmental and Experinmental Botany, 48, 11–20. DOI: 10.1016/S0098-8472(02)00004-7 Bačkor, M., Hudák, J., Bačkorová, M. (1998). Comparison between growth response of autotrophic and heterotrophic populations of lichen photobiont Trebouxia irregularis (Chlorophyta) on Cu, Hg and Cd chlorides treatment. Phyton, 28, 239–250. Baker, A., Brooks, R., Reeves, R. (1988). Growing for gold and copper and zinc. New Scientist, 10, 44–48. Banásová, V. (1976). Vegetácia medených a  antimónových háld. (Vegetation of copper and antimony mine heaps). Biologické práce, Bratislava, 22, 1–109. [In Slovak] Banásová, V. (1983). Die Vegetation auf Pyrithalden und der Gehalt an Cu, Pb, Zn, As, Ag, Fe und S in den P�anzen und im Boden. Biologia, 38, 469–480. Banásová, V. (2006). Rastliny na banských odpadoch. In: Tvorba a  hodnotenie nebezpečného banského znečistenia. Modra, 6. http://www.banskeodpady.sk/�les/Viera%20 Ban%C3%A1sov%C3%A1.pdf. [In Slovak] Banásová, V., Hajdúk, J. (2006). Príspevok k vegetácií banských háld z malokarpatských rudných ložísk. Bulletin Slovenskej Botanickej Spoločnosti, 28, 203–210. [In Slovak] Banásová, V., Čiamporová, M., Nadubinská, M. (2007). Heavy metal localities and their vegetation in Slo- vakia. Institute of Botany, Slovak Academy of Science, Bratislava, 8. http://www.metaltolerantplants. sav.sk/Publications/HM_ sites_Slovakia.pdf. Banásová, V., Ďurišová, E., Nadubinská, M., Gurinová, E., Čiamporová, M. (2012). Natural vegetation, metal accumulation and tolerance in plants growing on heavy metal rich soils, Bio-Geo Interactions in Metal-Contaminated Soils. Berlin–Heidelberg: Springer-Verlag. Bergfest, A. (1951). Baníctvo v Ľubietovej na medenú rudu. Banská Štiavnica: Manuskript – Ústredný banský archív pre Slovensko-Central Mining Archive, 89. [In Slovak] Braun-Blanquet, J. (1964). P�anzensoziologie, Grundzüge der Vegetationskunde. Wien and New York: Springer-Verlag. [In German] Briggs, D.A. (1972). Population di�erentiation in Marchantia polymorpha L. in various lead pollution levels. Nature, 256, 166–167. Brooks, R.R., Malaisse, F., Empain, A. (1985). �e heavy metal-tolerant �ora of southcentral Africa, a multidisciplinary approach. Rotterdam: A.A. Balkema. P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 36 Brown, D.H., House, K.L. (1978). Evidence of a  copper tolerant ecotype of the hepatic Solenostomum crenulatum. Annals of Botany, 42, 1383–1392. Brown, D.H. (1995). Sequential elution procedures for establishing the cellular distribution patterns of metals in cryptogamic plants. In: M. Munawar, O. Hänninen, S. Roy, N. Munawar, L. Kärenlampi, D. Brown (eds.), Bioindicators of environmental health. Amsterdam: SPB Academic Publishing. Černý, J. (2015). Flóra meďných háld pri Ľubietovej [Bachelor �esis]. Depon. in Matej Bel University in Banská Bystrica, Faculty of Natural Sciences, Faculty of the Environment, 49. [In Slovak] Dobríková, D. (2011). Vplyv geogénnych faktorov na fytocenózu. Matej Bel University in Banská Bystri- ca, Faculty of Natural Sciences, Department of Biology and Ecology, 71. [In Slovak] Ernst, W.H.O. (1974). Schwermetallvegetation der Erde. Stuttgart: Gustav Fischer Verl. Geobot. sel. [In German] Ernst, W.H.O., Verkleij, J.A.C., Schat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248. Fernández, J.Á., Pérez-Llamazares, A., Carballeira, A., Aboal, J.R. (2013). Temporal variability of metal uptake in di�erent cell compartments in mosses. Water Air Soil Pollution, 224, 1481–1490. DOI: 10.1007/s11270-013-1481-9 Harmens, H., Norris, D., Mills, G. and the participants of the moss survey. (2013). Heavy metals and ni- trogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe. Bangor, UK: ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, 63. Hill, M.O, Bell, N., Bruggeman-Nannenga, M.A., Brugués, M., Cano, M.J., Enroth, J., Flatberg, K.I., Frahm, J.P., Gallego, M.T., Garilleti, R., Guerra, J., Hedenäs, L., Holyoak, D.T., Hyvönen, J., Ignatov, M.S., Lara, F., Mazimpaka, V., Munöz, J., Söderström, L. (2006). An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology, 28, 198–267. DOI: 10.1179/174328206X119998 Jeleň, S., Galvánek, J., Andráš, P., Bendík, A., Beláček, B., Bozalková, I., Gaál, Ľ., Gajdoš, A., Háber, M., Konečný, V., Križáni, I., Luptáková, J., Mazúrek, J., Michal, P., Soták, J., Staňová, S., Šimo, V., Šurka, J. & Wetter, R. (2009). Náučno-poznávací sprievodca po geologických a geogra�ckých lokalitách stred- ného Slovenska. Banská Bystrica: Geologický ústav SAV, 320. [In Slovak] Johnson-Groh, C.L. (1987). Ecology of terricolous and corticolous bryophytes and lichens in relation to vascular plant communities and microclimate in central Iowa forests. Retrospective �eses and Dis- sertations, Paper 8660, 201. Jules, E.S., Shaw, A.J. (1994). Adaptations to metal-contaminated soils in populations of the moss Cera- todon purpureus: Vegetative growth and reproduction expression. American Journal of Botany, 81(6), 791–797. Koděra, M. (1990). Topogra�cká mineralógia Slovenska I – III. Bratislava: Veda 1. [In Slovak] Kubinská, A., Janovicová, K. (2001). Invázne machorasty. Životné Prostredie, 35(2), 100–101. [In Slovak] Kubinská, A., Janovicová, K., Šoltés, R. (2001). Červený zoznam machorastov Slovenska. In: D. Baláž, K. Marhold, P. Urban (eds.), Červený zoznam rastlín a živočíchov Slovenska. Štátna ochrana prírody Slovenskej republiky, 20(Suppl), 31–43. [In Slovak] Limpricht, K.G. (1895). Die Laubmoose Deutschlands, Österreichs und der Schweiz. 4. Band, II Abt. Bry- ineae. Leipzig. [In German] Mazúr, E., Lukniš, M. (2002). Geomorfologické jednotky. M 1: 1 000 000. In: Atlas krajiny Slovenskej re- publiky. Ministerstvo životného prostredia SR, Bratislava & Slovenská agentúra životného prostredia, Banská Bystrica, 88. [In Slovak] Mazúrek, J. (1989). Ťažobný prírodno-technický systém v banskej oblasti Špania Dolina – Staré Hory. Stredné Slovensko 8. Prírodné vedy, 23–68. [In Slovak] B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 37 Michňová, J., Ozdín, D. (2010). Primárna hydrotermálna mineralizácia na lokalite Polkanová. Mineralia Slovaca, 42, 69–78. [In Slovak] Morton, F., Gams, H. (1925). Höhlenp�anzen [Cave plants], Volume 5 of Kyrle. Georg, editor, Speläologis- che Monographien.Vienna: Verlag Eduard Hölzel. [In German] Persson, H. (1956). Studies in “copper mosses”. Journal Hattori Botanical Laboratory, 17, 1–18. Pilous, Z., Duda, J. (1960). Klíč k určování mechorostů ČSR. Praha: ČSAV, 569. [In Czech] Ros, R.M., Mazimpaka, V., Abou-Salama, U., Ale�, M., Blockeel, T.L., Brugués, M., Cano, M.J., Cros, R.M., Dia, M.G., Dirkse, G.M., El Saadawi, W., Erdag, A., Ganeva, A., Gonzáles-Mancebo, J.M., Her- rnstadt, I., Khalil, K., Kürschner, H., Lanfranco, E., Losada-Lima, A., Refai, M.S., Rodriguéz-Nuñez, S., Sabovljević, M., Sérgio, C., Shabbara, H., Sim-Sim, M., Söderström, L. (2007). Hepatics and an- thocerotes of the Mediterranean, an annotated checklist. Cryptogamie, Bryologie, 28(4), 351–437. Shacklette, H.T. (1967). Copper mosses as indicators of metal concentrations. Geological Survey Bulletin, 1198-G. Schatz, A. (1955). Speculations on the Ecology and Photosynthesis of the “Copper Mosses”. �e Bryolo- gist, 58(2), 113–120. Shaw, A.J. (1988). Genetic variation for tolerance to copper and zinc within and among of the moss, Fu- naria hygrometrica. Hedw. New Phytologist, 109, 211–222. Shaw, A.J. (1990). Metal tolerances and cotolerances in the moss, Funaria hygrometrica Hedw. Canadian Journal of Botany, 68, 2275–2282. Smith, A.J.E. (2004). �e Moss Flora of Britain and Ireland, 2nd ed. Cambridge: Cambridge University Press. Širka, P. (2014). Bryo�óra medených háld v okolí Banskej Bystrice. [Master thesis] Depon. in Matej Bel University in Banská Bystrica, Faculty of Natural Sciences, Department of Biology and Ecology. [In Slovak] Štrba, T., Turisová, I., Aschenbrenner, Š. (2014). Flora and vegetation of a copper mine heap in Richtárová (�e Starohorské Vrchy Mts., Slovakia). Annales UMCS, Biologia, 69(1), 29–39. Točík, A., Bublová, M. (1985). Príspevok k zaniknutej ťažbe medi na Slovensku. Štúdijné Zvesti Archeo- logického ústavu, 21, 47–135. [In Slovak] Turisová, I., Štrba, T., Andráš, P., Aschenbrenner, Š. (2014). Floristic composition on the abandoned cop- per heaps in central Slovakia. Romanian Journal of Mineral Deposits, 87(1), 61–64. Westho�, V., van der Maarel, E. (1973). �e Braun-Blanquet approach. In: R.H. Whittaker (ed.), Ordina- tion and classi�cation of communities, Handbook of vegetation science, 5th ed. �e Hague: Dr. W. Junk b. v. Publishers, 617–726. P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 38 Appendix 1 �e list of all relevés (explanation in the “Methods”). Ľubietová – Podlipa (P) 1. bare coarse scree; 48°44’45.63” N, 19°23’4.04” E; 611 m; 0°; -; E0 25%; 1; 8.11.2013 2. shrubland with pioneer tree species and moderately developed soil; 48°44’45.84” N, 19°23’2.94” E; 617 m; 5°; NE; E2 35%; E1 15%; E0 25%; 6; 8.11.2013 3. dry �ne scree with slightly developed soil; 48°44’45.54” N, 19°23’3.48” E; 611 m; 0°; -; E1 5%; E0 7%; 2; 8.11.2013 4. sparse vegetation on medium-sized scree with moderately developed soil; 48°44’47.90” N, 19°23’5.69” E; 628 m; 15°; NE; E3 25%; E1 15%; E0 35%; 8; 8.11.2013 5. shrubland vegetation with developed soil; 48°44’48.06” N, 19°23’5.34” E; 625 m; 15°; E; E2 60%; E1 35%; E0 40%; 10; 8.11.2013 6. shrubland vegetation with moderately developed soil; 48°44’47.64” N, 19°23’5.04” E; 624 m; 0°; -; E2 50%; E1 25%; E0 30%; 7; 8.11.2013 7. sparse shrubland vegetation with moderately developed soil; 48°44’47.28” N, 19°23’4.38” E; 624 m; 0°; -; E2 20%; E1 40%; E0 20%; 6; 8.11.2013 8. sparse shrubland with moderately developed soil; 48°44’47.04” N, 19°23’3.84” E; 624 m; 0°; -; E2 35%; E1 5%; E0 35%; 6; 8.11.2013 9. tree cover with Picea abies on coarse scree but developed soil; 48°44’47.34” N, 19°23’2.94” E; 629 m; 20°; NE; E3 85%; E1 5%; E0 13%; 5; 8.11.2013 10. bare coarse scree; 48°44’48.36” N, 19°23’4.92” E; 631 m; 20°; SW; E0 15%; 1; 8.11.2013 11. grassland on coarse scree but moderately developed soil; 48°44’51.96” N, 19°23’10.14” E; 657 m; 10°; E; E1 90%; E0 15%; 4; 8.11.2013 12. bare coarse scree; 48°44’51.24” N, 19°23’9.60” E; 653 m; 10°; S; E0 10%; 1; 8.11.2013 13. bare medium-sized scree on steep slope; 48°44’53.77” N, 19°23’9.81” E; 676 m; 50°; SW; E0 3%; 2; 8.11.2013 14. grassland on coarse scree but moderately developed soil; 48°44’50.10” N, 19°23’8.94” E; 643 m; 5°; S; E1 95%; E0 10%; 2; 8.11.2013 15. grassland on coarse scree but moderately developed soil; 48°44’49.74” N, 19°23’8.28” E; 640 m; 0°; -; E1 97%; E0 15%; 1; 8.11.2013 16. shady sparse grassland on medium-sized scree with slightly developed soil; 48°44’48.60” N, 19°23’7.20” E; 633 m; 5°; SW; E1 10%; E0 8%; 1; 8.11.2013 17. tree cover with Picea abies on developed soil; 48°44’43.80” N, 19°23’5.34” E; 613 m; 7°; NW; E3 90%; E1 20%; E0 30%; 4; 8.11.2013 18. sparse tree cover with Picea abies on developed soil; 48°44’42.42” N, 19°23’3.00” E; 595 m; 0°; -; E3 70%; E 1 5%; E0 12%; 3; 8.11.2013 19. sparse vegetation cover on �ne scree and slightly developed soil; 48°44’42.84” N, 19°23’2.76” E; 596 m; 0°; -; E1 15%; E0 7%; 3; 8.11.2013 20. shady and wet vegetation cover with moderately developed soil; 48°44’42.06” N, 19°23’3.18” E; 595 m; 0°; -; E3 65%; E2 8%; E1 35%; E0 17%; 6; 8.11.2013 Staré Hory – Richtárová (R) 21. bare scree on steep slope; 48°49’40.20” N, 19°8’0.12” E; 580 m; 60°; NW; E0 25%; 2; 23.11.2013 22. bare scree on steep slope; 48°49’40.08” N, 19°7’59.70” E; 583 m; 60°; N; E0 5%; 1; 23.11.2013 23. wet grassland vegetation cover on skeletal soil; 48°49’39.84” N, 19°8’0.18” E; 581 m; 20°; NE; E1 60%; E0 30%; 3; 23.11.2013 B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 39 24. sparse vegetation cover on coarse scree; 48°49’39.72” N, 19°8’0.42” E; 582 m; 10°; W; E1 10%; E0 20%; 6; 23.11.2013 25. sparse shrubland vegetation cover with high portion of forest litter and slightly developed soil; 48°49’38.34” N, 19°7’59.58” E; 589 m; 15°; N; E2 25%; E1 7%; E0 35%; 5; 23.11.2013 26. �at surface with sparse herbaceous cover on skeletal soil; 48°49’38.88” N, 19°7’59.04” E; 588 m; 0°; -; E1 25%; E0 30%; 7; 23.11.2013 27. sparse moss cover on coarse scree; 48°49’38.94” N, 19°7’58.86” E; 591 m; 15°; E; E1 5%; E0 15%; 3; 23.11.2013 28. moss cover on steep slope with coarse scree; 48°49’38.46” N, 19°7’58.80” E; 592 m; 50°; E; E1 3%; E0 50%; 6; 23.11.2013 29. herbaceous and moss cover on coarse scree; 48°49’38.04” N, 19°7’58.32” E; 595 m; 30°; NW; E1 20%; E0 15%; 3; 23.11.2013 30. dense moss cover in a tree overgrowth with Picea abies on skeletal soil; 48°49’36.90” N, 19°7’58.27” E; 601 m; 10°; NW; E3 75%; E1 30%; E0 85%; 10; 23.11.2013 31. overgrown coarse scree slope with pioneer tree species; 48°49’35.29” N, 19°7’57.40” E; 613 m; 30°; E1 25%; E0 65%; NW; 7; 23.11.2013 32. bare �ne scree in the center of the mine heap; 48°49’31.08” N, 19°7’53.58” E; 651 m; 5°; N; E0 6%; 2; 23.11.2013 33. sparse vegetation cover on �ne scree; 48°49’31.97” N, 19°7’52.40” E; 656 m; 7°; NE; E1 15%; E0 10%; 3; 23.11.2013 34. tree cover with Picea abies on a steep slope with developed soil and dense moss cover; 48°49’29.46” N, 19°7’53.40” E; 663 m; 20°; NE; E3 99%; E1 2%; E0 55%; 6; 23.11.2013 35. dense grassland vegetation; 48°49’28.44” N, 19°7’54.30” E; 664 m; 0°; -; E1 95%; E0 10%; 3; 23.11.2013 36. dense moss cover on coarse scree; 48°49’26.99” N, 19°7’55.71” E; 669 m; 20°; NE; E0 40%; 7; 23.11.2013 Špania Dolina – Maximilián (M) 37. bare coarse scree; 48°48’31.04” N, 19°8’8.61” E; 764 m; 45°; SW; E0 1%; 1; 19.12.2013 38. bare coarse scree; 48°48’31.74” N, 19°8’8.40” E; 773 m; 45°; W; E0 15%; 4; 19.12.2013 39. coarse scree with slightly developed soil; 48°48’32.04” N, 19°8’8.46” E; 775 m; 10°; S; E1 10%; E0 25%; 7; 19.12.2013 40. coarse scree with slightly developed soil; 48°48’32.64” N, 19°8’9.18” E; 784 m; 0°; -; E1 5%; E0 20%; 4; 19.12.2013 41. coarse scree with slightly developed soil; 48°48’31.74” N, 19°8’11.70” E; 777 m; 5°; SW; E0 15%; 3; 19.12.2013 42. bare coarse scree; 48°48’31.43” N, 19°8’13.26” E; 775 m; 5°; S; E0 1%; 1; 19.12.2013 43. moss cover on coarse scree with slightly developed soil; 48°48’31.50” N, 19°8’15.00” E; 776 m; 5°; S; E0 40%; 3; 19.12.2013 44. coarse scree with high portion of forest litter; 48°48’31.86” N, 19°8’12.96” E; 780 m; 5°; NW; E1 3%; E0 30%; 1; 19.12.2013 45. bare coarse scree; 48°48’31.20” N, 19°8’9.18” E; 766 m; 40°; S; E0 30%; 2; 19.12.2013 46. bare coarse scree; 48°48’31.86” 19°8’8.64” E; 774 m; 30°; N; E1 2%; E0 15%; 1; 19.12.2013 47. coarse scree with slightly developed soil; 48°48’32.10” N, 19°8’8.46” E; 775 m; 30°; N; E1 5%; E0 12%; 5; 19.12.2013 48. coarse scree with slightly developed soil and higher portion of forest litter; 48°48’33.12” N, 19°8’8.58” E; 789 m; 0°; -; E1 7%; E0 30% 2; 19.12.2013 49. coarse scree with slightly developed soil; 48°48’33.18” N, 19°8’8.40” E; 789 m; 0°; -; E1 3%; E0 10%; 4; 19.12.2013 50. coarse scree with slightly developed soil and high portion of forest litter; 48°48’33.30” N, 19°8’7.74” E; 788 m; 0°; -; E0 25%; 2; 19.12.2013 P av el Š irk a, In gr id T ur is ov á, A nn a P et rá šo vá 40 51. vegetation cover with Picea abies on coarse scree and moderately developed soil; 48°48’33.42” N, 19°8’7.62” E; 788 m; 0°; -; E3 20%; E2 40%; E1 15%; E0 30%; 6; 19.12.2013 52. coarse scree with moderately developed soil and high portion of forest litter; 48°48’33.48” N, 19°8’7.20” E; 787 m; 0°; -; E0 25%; 2; 19.12.2013 53. tree cover with Picea abies and dense moss cover on developed soil; 48°48’34.20” N, 19°8’7.14” E; 794 m; 15°; W; E3 90%; E1 10%; E0 70%; 6; 19.12.2013 54. tree cover with Picea abies and dense moss cover on developed soil; 48°48’34.02” N, 19°8’4.50” E; 780 m; 10°; S; E3 75%; E2 7%; E1 5%; E0 45%; 4; 19.12.2013 B ryophytes of C u-m ine heaps in the vicinity of B anská B ystrica (C entral S lovakia) 41 Abstract �e knowledge of bryophytes growing on metal-contaminated sites is still insu�cient in Slovakia. �is study deals with bryophyte �ora of three mine heaps (Podlipa, Richtárová and Maximilián) with cop- per-rich substrate. A total of 54 relevés was made, in which a total of 45 bryophyte species (43 mosses and 2 liverworts) was recorded. Species-richest mine heap was Podlipa with 31 bryophyte species (29  mosses and 2 liverworts) and species-poorest was Maximilián with 20 species of mosses. 11 species were mutual for all three mine heaps, while 9 species where present only on Podlipa, 8 on Richtárová and 4 on Maximilián. �e most representative bryophytes, in terms of their occurrence and cover, are Ceratodon purpureus, Pohlia cruda, Dicranum scoparium, Hypnum cupressiforme, Pleurozium schreberi, Brachythecium salebrosum and Plagiomnium a�ne. Occurence of bryophytes on metal-contaminated sites was discussed. Key words: bryophytes, mine heaps, Ľubietová, Staré Hory, Špania Dolina, central Slovakia Received: [2016.04.16] Accepted: [2016.09.30] Mszaki z hałd kopalni miedzi w okolicach Bańskiej Bystrzycy (centralna Słowacja) Streszczenie Na Słowacji nadal niewystarczająca jest znajomość mszaków rosnących na terenach zanieczyszczonych metalami, takimi jak miedź. Niniejsze badania dotyczą �ory mszaków trzech hałd kopalnianych (Podlipa, Richtárová i Maximilián), o podłożu bogatym w ten metal. Na analizowanym terenie wykonano 54 zdjęcia �tosocjologiczne, w których łącznie stwierdzono 45 gatunków mszaków (43 mchy i 2 wątrobowce). Najbo- gatsza gatunkowo okazała się być hałda kopalniana z Podlipa, na której odnotowano 31 gatunków mszaków (29 mchów i 2 wątrobowce), a najuboższa hałda Maximilián z 20 gatunkami mchów. Jedynie 11 gatunków było wspólnych dla wszystkich trzech hałd kopalnianych, natomiast tylko 9 gatunków występowało wyłącz- nie na hałdzie Podlipa, 8 na Richtárovej i 4 na Maximilián. Najczęstszymi mszakami, zarówno pod wzglę- dem występowania, jak i pokrycia w płatach były: Ceratodon purpureus, Pohlia cruda, Dicranum scoparium, Hypnum cupressiforme, Pleurozium schreberi, Brachythecium salebrosum i Plagiomnium a�ne. Słowa kluczowe: mszaki, hałdy kopalniane, Ľubietová, Staré Hory, Spania Dolina, centralna Słowacja Information on the authors Pavel Širka Majored in ecology at the Faculty of Natural Sciences, Department of Biology and Ecology, Matej Bel University in Banská Bystrica. He is currently in 3rd year of Ph.D. studies. His dissertation thesis deals with bryophyte assemblages on mine heaps in Slovakia with di�erent mineral content of substrate in relation to chosen biotic and abiotic factors. Ingrid Turisová In her current scienti�c work she is focused on plant indication and bioaccumulation of heavy metals in a disturbed environment, botanical and ecological analysis of grassland habitats and their management. She collaborates in the studies of vegetation in the concept of ecological landscape integrity. Anna Petrášová Until 2015 she worked as a lecturer at the Faculty of Natural Sciences, Department of Biology and Eco- logy, Matej Bel University in Banská Bystrica, where she was engaged mainly in the studies of bryophyte �ora and didactics of biology. She currently serves in a  managerial position at an elementary school, where in addition to managerial work she also works as a teacher.