7 Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 2: 7–26, 2017, ISSN 2543-8832 DOI: 10.24917/25438832.2.1 Jan Przemysław Kubik*, Beata Barabasz-Krasny Department of Botany, Institute of Biology, Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland, *shemgodd@gmail.com The succession of abandoned glades and its impact on the diversity of flora in Beskid Mały Mountains (Southern Poland) Introduction For hundreds of years, pasturage was the most optimal way of maintaining pasture plant communities. �e animal species bred on pastures in Beskidy Mountains, which included sheep, goats, cows, and oxen. In the 18th century, when shepherding was at its peak, tens of thousands of cattle were kept and bred in the Beskidy Mountains. �e primeval beech and �r forest provided feed for animals during summer and winter as well as wood for fuel and for construction of pens, huts, and houses. �e animals that grazed on the pastures naturally mowed the plants and fertilised the soil, and, at the same time, they provided a livelihood to the shepherds. �e shepherding industry that developed was based on products made from ewe’s milk, meat, wool, leather, and it constituted the backbone for the development of local economies and local commu- nities. In the shepherding huts, butter and cheeses were produced – both so� cheeses such as ‘bundz’ and ‘bryndza’ as well as hard cheeses such as ‘oscypek’ (Leszczyński, 1932; Pawłowska, 1965; Gołek et al., 2015). In the second half of 19th century, the shepherding industry began to decline. �e shepherds, who depended on primeval forest as a  source of feed for their animals, started to feel the e�ects of the industrial revolution. �e forest owners began to cut down trees for construction materials. Spruce trees were planted in place of prime- val forest tree species, which grew much faster but could not be used as feed for the animals (Pawłowska, 1965). On top of that, more and more pastures were converted into farm �elds, and the farmers also began to set up their farms at higher altitudes in the mountains. Shepherding experienced its greatest decline at the beginning of 20th century. It slightly rebounded a�er the First World War; however, as a  result of fast economic changes in the countryside, the era of extensive shepherding came to an end at that time (Kufa, 2005; Gołek et al., 2015). Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 8 Poland economic transformation, which took place in 1980s and 1990s, took a  heavy toll on the Polish farming industry as whole. Due to drops in prices of agricultural products, the pro�tability of farming activities signi�cantly declined during that time. For example, in south-eastern Poland, the sheep population de- clined by 86% between 1987 and 1996. In addition, during those years, production shi�ed from state-owned enterprises into the private sector (Cach-Czaja, 1998). At that time, many Polish farmers reduced the pasture areas by either fallowing them or turning them into farm �elds to produce crops mostly for their own needs (Os- tromęcki, Piechota, 1996). �e abandonment of pastures and the discontinuation of mowing and grazing by animals resulted in the gradual degradation of meadows and pastures, which began to accumulate the overgrown plant matter and dead plant remains (Kornaś, 1990). Additionally, such fallowed pastures experienced uncon- trolled growth of pasture weeds as Rumex alpinus, Juncus sp., leading to reduction and, ultimately, complete disappearance of plants for grazing and valuable plant spe- cies (Gołek et al., 2015). �e aim of this paper is to prove that cessation of grazing, mowing, and other us- able treatments on mountain glades in the Beskid Mały Mountain range results in the reduction of �oristic diversity of meadows and pasture areas. Study area �e studied area includes the mountain massif of Łamana Skała (929 m.a.s.l.) – 49°45′49.0″N; 19°23′45.7″E and Leskowiec (918 m.a.s.l.) – 49°47′19.0″N; 19°26′36.4″E, in Beskid Mały (Southern Poland). �e Łamana Skała Group is a part of the Beskid Mały Mountain range, positioned in its central part. It is located to the east from the Kocierz Group, ranging from the Beskidek Pass to the Skawa River valley, and includes the Leskowiec massif (Truś, 2008). According to physiogeographic regionalisation by Kondracki (2011), this area belongs to the Beskidy Zachodnie (Western Beskidy) Macroregion, and the Beskid Mały Mezoregion. According to geobotanical division of Poland by W. Szafer, the studied area belongs to Zachodnio-Karpacki (Western Car- pathian) Section, the Beskidy Region, and the Śląsko-Babiogórski Sub-region (Szafer, Zarzycki, 1977). In terms of landscape, the Beskid Mały is a group of larger and smaller mountain ranges, valleys, as well as a  number of saddles and passes. It spans two altitudi- nal zones – the �ysch-plateau zone (pogórze �iszowe) (300–600 m.a.s.l.) and the mixed-forest zone (regiel dolny) (600–1150 m.a.s.l.). �e hillsides, especially on the northern side of the range, are quite steep (between 15° and 30°), while crests and peaks are rather �at. �e mountains are being shaped by various erosion processes, including �ysch landslides, wearing down by water, washout of farm �elds, ero- The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 9 sion attributable to changes in temperature, etc. �e area consists in 90% of hard sandstone and shale (łupki godulskie) of medium and lower levels, which formed during Lower Cretaceous epoch. Numerous valleys are covered by brown earth (mostly clays), which, in combination with large number of springs, creeks, and rivers, is conducive to agriculture (Ziemońska, 1973; Matuszczyk, 1981). Besides brown soils (which represent approx. 90% of soils), the Beskid Mały also has podso- lic soils (approx. 5%), rusty soils, and aerosols. �e area also features alluvial soils, delluvial soils, luvisolic soils, pseudo-gley soils, and gley soils (Forest Management Plan…2006/2015). According to division by M. Hess (1965), the studied area spans two horizon- tal mountainous vegetation regions, corresponding to the following two altitudinal zones: the �ysch-plateau zone (250–600 m.a.s.l.), with an average annual temperature of +8°C, a total annual precipitation of 800 mm, and a vegetation period length of 220 days, and the mixed-forest zone (600–1100 m.a.s.l.), with an average annual tempera- ture of +4°C, a total annual precipitation of 1400 mm, and a vegetation period length of 170 days. Such areas experience frequent and very strong winds, especially in early spring and autumn, the intensity of which is increasing with altitude. Methods Studies were conducted from January to October 2015 and from May to July 2016. 54 squares (plots) with area of 25 m2 each (5×5 m) were randomly designated on south- ern slopes of Leskowiec and Łamana Skała massif in the Beskid Mały. �e following information was recorded for each plot: the name of the township/glade, geographic coordinates, altitude in meters above sea level, and the date and time of conducting the �oristic survey. Geographic coordinates for the plots were taken from a GPS de- vice and veri�ed with use of a tourist map of Beskid Mały in the scale of 1:50000 (2014). Altitude in meters above sea level was read from the ‘Altimeter’ application and veri- �ed with the aforementioned tourist map (Appendix 1 – Tab. 1). To determine the botanic composition of each plot, the Klapp (1965) estimation method was used. �is method was used to determine the percentage share of species in each plot with accuracy of about 1%. All the species that were identi�ed in the given plot were recorded in the following sequence: grasses, legumes, other herb spe- cies, as well as trees and shrubs. �e share of individual species within the group was estimated, starting with the most commonly occurring ones. �e species whose share was less than 1% were assigned with the ‘+’ sign. �e samples of species, which were not identi�ed directly in the �eld, were collected and then identi�ed in the laboratory of the Department of Botany, the Institute of Biology of the Pedagogical University of Kraków. During �eld work, particular attention was paid to di�erences between the Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 10 glades that were used and those which were unused. Areas located directly beneath power lines as well as areas transformed by human activities or defaced by animals, e.g., by boars were not included in the research. Bogs and waterlogged meadows and glades on which activities are conducted only partially, e.g., where self-planted trees or shrubs are cut down and removed, were also excluded from the research. �e �oristic data from all the analysed plots were entered in the TURBOVEG da- tabase, and then they were subjected to hierarchical numerical classi�cation (Gauch, 2012) based on the percentage coverage of species. Classi�cation was performed with use of MULVA-5 so�ware package (Wildi, Orlóci, 1996). Similarities among plots were calculated according to van der Maarel’s formula, and then the plots were grouped using the Ward’s method (Minimum Variance Clustering). �is method uses the vari- ance analysis approach to estimate distance between cluster centres (Dzwonko, 2007). In the obtained dendrogram, the groups of plots, which had the same quantitative coverage of species, were separated. For the individual groups of plots, weighted average values of Ellenberg indicator values were calculated, based on percentage coverage by species, for light (L), moisture (F), soil pH (R), and nitrogen content in soil (N) (Ellenberg et al., 1992). In addition, Shannon-Weaver general diversity indicators (H) (Shannon-Weaver, 1963), Pielou uniformity indicators (J) (Pielou, 1975), and dominance indicators (C) (Simpson, 1949; Shannon, Weaver, 1963) were compared. For biodiversity indicators, a�er Lev- ene’s previous test, the statistical signi�cances between the groups were determined using the Kruskal-Wallis nonparametric test (for H and J) and the one-way ANOVA parametric test (p < 0.05). Plant names according to Mirek et al. (2002). Fig. 1. Classi�cation of the studied plots based on the percentage coverage of species; A – pasture with Nardus stricta; B – hay-meadow; C – unused plots with Pteridium aquilinum; D – unused plots with shrubs The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 11 Results Hierarchical numerical classi�cation, which was performed on the basis of percent- age species coverage in the plots, yielded the following four utility-�oristic groups: A  – pasture with Nardus stricta, B – hay-meadow, C – unused plots with Pteridium aquilinum, and D – unused plots with shrubs (Fig. 1). �e �oristic characteristics and the quantitative share of species in the aforementioned groups are shown in tables 2–5 (Appendix 1). �e �rst two groups distinguished on the study area were A – pasture with Nardus stricta, and B – hay-meadow, which include the glades on which grazing, mowing and other usable treatments are still conducted. �ey have a higher average number of spe- cies in the plots – ranging from 21 to 22 (Tab. 6). �ey are dominated by grasses such as Festuca rubra and Poa trivialis (Appendix 1 – Tab. 2–3). �e other two groups of plots (C and D) are unused glades. �e highest total number of species was recorded in unused plots with shrubs D – 69, and the lowest was recorded in unused plots with Pteridium aquilinum C (Fig. 2). Fig. 2. Total number of species in �oristic tables (Appendix 1 – Tab. 2–5) of the distinguished groups of plots 42 53 37 69 10 17 5 22 0 20 40 60 80 pasture with Nardus stricta hay-meadow unused plots with Pteridium aquilinum unused plots with shrubs Number of plots Number of species �e comparison of diversity, uniformity, and dominance indicators (Tab. 6) has shown that the highest value of the (H) indicator was recorded in pasture with Nardus stricta, and the lowest was recorded in unused plots with Pteridium aq- uilinum. �e greatest uniformity was recorded in unused plots with shrubs and Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 12 pasture with Nardus stricta, and the smallest in unused plots with Pteridium aqui- linum. �e highest dominance indicator was recorded in unused plots with Pterid- ium aquilinum and in unused plots with shrubs, the lowest in multi-species plots of hay-meadow. Tab. 6. Average values of Shannon-Weaver general diversity indicators – H, uniformity – J and domi- nance – C, calculated for groups of plots distinguished on studied glades of Beskid Mały; in column for H and J no statistical signi�cance with Kruskal-Wallis test, p < 0.05; for C – a, b statistical signi�cance with Tukey test, p < 0.05 Group name of plots Average number of species in plot ± SD Biodiversity indicators (values and ranges) H J C A – pasture with Nardus stricta 21 ±5.37 2.69 2.48–3.04 0.91 0.79–1.07 0.07ab 0.03–0.17 B – hay-meadow 22 ±2.43 2.68 2.32–3.02 0.87 0.75–1.01 0.05b 0.04–0.09 C – unused plots with Pteridium aquilinum 18 ±3.27 2.46 2.09–2.81 0.86 0.74–0.97 0.11ab 0.06–0.14 D – unused plots with shrubs 18 ±3.94 2.62 2.07–2.86 0.91 0.78–0.99 0.11a 0.04–0.44 Tab. 7. Average values of Ellenberg indicators (light – L, moisture – F, soil pH – R, nitrogen content in soil – N) calculated for groups of plots distinguished on studied glades of Beskid Mały Group name of plots Ellenberg indicators (values and ranges) L F R N A – pasture with Nardus stricta 7.13 6.96–7.33 5.68 5.37–6.03 5.20 4.65–6.07 5.04 4.71–5.68 B – hay-meadow 7.10 6.81–7.41 5.50 5.25–5.88 5.90 5.33–6.52 5.68 4.90–6.43 C – unused plots with Pteridium aquili- num 6.56 6.14–7.04 5.44 5.20–5.79 3.99 3.65–4.19 4.06 3.73–4.46 D – unused plots with shrubs 6.71 5.81–7.43 5.92 4.96–7.08 4.59 2.78–6.50 4.68 3.60–6.38 �e comparison of average values of Ellenberg indicators (Tab. 7) has shown that the greatest number of photophilous species occurred in plots of pastures with Nardus stricta, and the smallest number of such species occurred in unused plots with Pterid- ium aquilinum. In those plots, the values of indicators for light (L) were lowest. �e highest average indicator for moisture (F) was recorded in unused plots with shrubs, and the lowest was recorded in plots with Pteridium aquilinum. �e highest average values of soil pH indicator (R) and the nitrogen content in soil (N) were recorded in hay-meadows, and the lowest values of those indicators were recorded in plots with Pteridium aquilinum. The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 13 Discussion Pastures and glades in Beskidy Mountains were created arti�cially as a result of graz- ing, mowing, and other usable treatments conducted by the people who had been migrating to that area since the Middle Ages. Initially, their activities were limited to cutting down forests in valleys and at the foothills of mountain ranges, to set up farm �elds. Later periods, namely 14th and 15th centuries, witnessed the wave of Vlach mi- grations that came from Romania along the Carpathian arc. �ey began to cut down forests at higher altitudes to make space for pastures, some of which were still used as recently as the beginning of the 20th century. Extensive pasturage activities resulted in the emergence of diverse plant communities, which are categorised as semi-natural (Pelc, 1958; Pawłowska, 1965). �ey were dominated by domestic species that needed a  speci�c form of human activities, such as mowing or shepherding (Gołębiowski, 1990; Michalik, 1990). In the past, the areas covered by the botanical composition survey mostly included Gladiolo-Agrostietum (Br.-Bl. 1930) Pawł. et Wal. 1949 mead- ows at di�erent stages of their transition towards Anthoxantho-Agrostietum Sillinger 1933 pastures mentioned in, among others, Czech sources – Hájek (2007) but not mentioned by Matuszkiewicz (2007), as well as poor in nutrients Hieracio-Nardetum Kornaś 1955 n.n. em. Balcerk. 1984 swards. �e direction of the transition of those phytocoenoses depended on the manner of their usage, and the intensity of usage and maintenance activities conducted (Zwolińska, 1960; Kornaś, 1990; Rozbrojová et al., 2010; Gołek et al., 2015). �e botanical composition of one of the groups that was determined on the ana- lysed area, referred to in this study as pasture with Nardus stricta – A (Appendix 1 – Tab. 2), is similar to Hieracio-Nardetum Kornaś 1955 n.n. em. Balcerk. 1984 sward (Matuszkiewicz, 2007), which had been said to occur in that area. �e phytocoe- noses of that kind usually developed in places with extensive sheep pasturage and with insu�cient organic fertilisation, and this is con�rmed by relatively lower values of the soil nitrogen (N) indicator among other used plots (Tab. 7). �e soils, on which such plant communities emerge, are barren and poor in nutrients. �ey give hay of very poor quality, and they very quickly grow over when unused. Such swards serve the erosion-prevention function. Nardus stricta is a grass with very thin leaf-blades, whose roots and shoots are very closely packed together at the base of the plant. In the past, pastures with Nardus stricta were a very widespread plant community that developed on the areas with pasturage activities. Currently, they are becoming increasingly hard to come by, and they occupy small surfaces. �ey can still be found next to shepherds huts, in sheep-pens, and on the edges of the glades (Michalik, 1990; Rozbrojová et al., 2010; Gołek et al., 2015). �eir relatively high species richness shows in the dynamic changes occurring here as a result of the cessation of traditional management (Tab. 6). Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 14 Other species identi�ed in the plots of that type include Potentilla anserina, Festuca rubra, Anthoxanthum odoratum, and Carex rostrata (Appendix 1 – Tab. 2). �e most important plant community of the mountain glades of the mixed-forest zone in the Western Carpathians is still the Gladiolo-Agrostietum meadow (Kornaś, 1967; Kornaś, Medwecka-Kornaś, 1967). Until recently, this plant community dom- inated on almost every mountain glade. Currently, due to discontinuation of usage of the glades, the patches of typical Gladiolo-Agrostietum meadows are becoming in- creasingly rare. Gladiolo-Agrostietum is a  plant community of hay-meadows, which better serve as a  source of hay rather than a  pasture. It develops on glades that are moved once or twice a  year, where the grazing takes place only a�er mowing, and which are fertilised on regular basis by setting up sheep-pens or scattering the manure. �is plant community is characterised by a  large number of species, reaching more than 50 �owering plant species per 100 m2. �e dominating species include primarily grasses, including but not limited to Agrostis capillaris, Dactylis glomerata, Arrhen- atherum elatius, Festuca rubra, and Anthoxanthum odoratum. �is plant community also features perennial plants such as Gladiolus imbricatus, Lychnis �os-cuculi, Heracle- um sphondylium, Achillea millefolium, Leontodon hispidus, Hypericum perforatum as well as Alchemilla sp. (Kotońska, 1991; Pacyna, 2004; Gołek et al., 2015). Many of the aforementioned species were recorded in group B, which was referred to in this article as ‘used hay-meadow’ (Appendix 1 – Tab. 3). However, contrary to typical Gladiolo-Agrostietum meadow, this group did not have Gladiolus imbricatus. It was found to contain numerous species of grasses for grazing and a group of legumes, proving that the analysed plots are useful from the agricultural standpoint. Neverthe- less, this group of plots shows certain symptoms of meadow degradation because of the presence of species such as Anthoxanthum odoratum or Nardus stricta. �e most probable hypothesis is that, as a  result of incorrect care, this type of meadows are gradually turning into Anthoxantho-Agrostietum pastures which, according to some authors, are becoming increasingly common throughout Beskidy (Gołek et al., 2015). �is plant community usually emerges as a result of discontinuation of usage or in- adequate fertilisation of hay-meadows. Although they are considered pasturable plant communities, only extensive farming activities are conducted on them. �e di�er- ence between typical used hay-meadows and Anthoxantho-Agrostietum pasture is in terms of its physiognomy, namely, its vegetation is much lower and less abundant. �is plant community is dominated by quite low and feeble grasses, such as Agrostis capillaris, Festuca rubra, and Anthoxanthum odoratum. Anthoxantho-Agrostietum is gradually replacing Gladiolo-Agrostietum meadows to become a  dominating feature of many glades (Gołek et al., 2015). �e plots which were included in the hay-meadow group (Appendix 1 – Tab. 3) are most likely the various stages of transition of Gladio- lo-Agrostietum towards Anthoxantho-Agrostietum. The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 15 A�er discontinuation of grazing, mowing, and other usable treatments, mountain glades experience secondary succession consisting in, among others, the return of for- ests to the areas previously occupied by them (Fig. 3). �e changes that ensue involve not only plants but the entire landscape (Kornaś, 1990; Kaźmierczakowa, Poznańska, 1992; Zarzycki, Kaźmierczakowa, 2007; Zarzycki, 2008; Barabasz-Krasny, 2010). Ini- tially, the overall number of species increases because the patches now contain plants from various communities – meadows and pastures as well as shrubs and trees (Rad- kowski, Barabasz-Krasny, 2007; Barabasz-Krasny, 2010). An example of this in the current �oristic studies of the Beskidy glades is ‘unused plots with shrubs’ – group D. �is group has the highest number of species in the �oristic table among all four distinguished groups and a high value of the general diversity (H) and dominance (C) indicators (Fig. 2; Tab. 6). When the photophilous species associated with open areas are completely eliminated, the general species diversity of such plots will also decline (Zarzycki, Kaźmierczakowa, 2007; Barabasz-Krasny, 2010), especially since some clearly dominant species are in plots of this group now, e.g., Rubus sp., Vaccinium myrtillus (Appendix 1 – Tab. 5). Although unused plots with shrubs are characterised by large general diversity, the average number of species in the plot has been relatively low, which is evidence for the instability of �oristic composition and dynamically oc- curring species replacement processes. Fig. 3. Former Hala Rzycka – now completely covered with forest; October 2015 (Photo. J. Przemysław Kubik) Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 16 Similar processes were observed in plots characterised by a  presence of a  single dominating plant, namely unused plots with Pteridium aquilinum (Appendix 1 – Tab. 4; Fig. 4). In those plots, the meadow species still occur but in lower quantities, be- cause they are overshadowed and dominated by Pteridium aquilinum. �is clearly af- fects the general species diversity of such phytocoenoses (Appendix 1 – Tab. 4; Tab. 6). In this case, photophilous plant species, which are typical to open areas, are eliminated even before the plots are overgrown by shrubs and trees, as con�rmed by the lowest light indicator value (L) for this group of plots (Tab. 7). Additionally, the acidi�cation of the soil and the reduction of the nitrogen content, which appear from unfavourable �ora changes as a result from the cessation of the use of meadows and pastures and the abandonment of care treatments, also promote the process of species elimination. Conclusions �e results obtained through the conducted research con�rm the thesis that the ces- sation of grazing, mowing, and other usable treatments leads to the disappearance of abundant meadow phytocoenoses as well as the depletion and loss of their diversity. Unused plots are characterised by lower average number of species. �e plants that grow on them usually include trees and shrubs, which supplant grasses and other spe- Fig. 4. Unused plot with Pteridium aquilinum – plot No 50: Zamczysko Jaskinia Lodowa I (Photo. J. Przemysław Kubik) The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 17 cies typical for hay-meadows. Cessation of grazing and other usable treatments results among other in reduction of the average number of species in plot, the increase of dominance indicators, and the reduction of pH and nitrogen content in soil. References Barabasz-Krasny, B. (2011). Zróżnicowanie roślinności i  sukcesja wtórna na odłogach wielkopowierzch- niowych Pogórza Przemyskiego. Kraków: Wydawnictwo Instytutu Botaniki im. W. Szafera PAN. [In Polish] Beskid Mały, tourist map, scale 1:50000 – Beskid Mały, Mapa turystyczna, skala 1:50000 (2014). VIII. Kraków: Wydawnictwo Compass. [In Polish] Cach-Czaja, K. (1998). Przemiany ilościowo jakościowe w owczarstwie południowo-wschodniej Polski. Zeszyty Naukowe Akademii Rolniczej w Krakowie, Seria Sesja Naukowa, 329(53), 193–197. [In Polish] Dzwonko, Z. (2007). Przewodnik do badań �tosocjologicznych. Vademecum Geobotanicum. Poznań- Kraków: Wydawnictwo Sorus. [In Polish] Ellenberg, H., Weber, H., Dull, R., Wirth, V., Werner, W., Paulissen, D. (1992). Zegerverte von P�anzen in Mitteleuropa. Scripta Geobotanica, 18, 1–258. [In German] Forest Management Plan for the Sucha Forestry District… (2006/2015) – Plan Urządzania Lasu dla Na- dleśnictwa Sucha, Obręb: Sucha sporządzony na okres od 1 stycznia 2006 r. do 31 grudnia 2015 r. Biuro Urządzania Lasu i Geodezji Leśnej Oddział w Krakowie. [In Polish] Gauch, H.G. (1982). Multivariate Analysis in Community Ecology. Cambridge: Cambridge University Press. Gołek, S., Hutyra, S., Kiereś, M., Kulik, K., Michałek, J., Michniok, J., Rosiek, B., Smolarska, A., Sobala, M., Wilczek, Z., Zarzycki, W. (2015). Podręcznik dobrych praktyk pasterskich. Projekt LIFE12 NAT/ PL/000081 – Ochrona zbiorowisk nieleśnych na terenie Beskidzkich Parków Krajobrazowych. Będzin: Zespół Parków Krajobrazowych Województwa Śląskiego. [In Polish] Gołębiowski, T. (1990). Rośliny gór i pogórzy. Warszawa: Wydawnictwo Sport i Turystyka. [In Polish] Hájek, M. (2007). TDC02 Anthoxantho odorati-Agrostietum tenuis Sillinger 1933. In: M. Chytrý (ed.), Vegetace České republiky. 1. Travinná a keříčková vegetace. Praha: Academia, 200–203. [In Czech] Hess, M. (1965). Piętra klimatyczne w Polskich Karpatach Zachodnich. Zeszyty Naukowe UJ, Prace Geo- gra�czne, 155(11), 1–268. [In Polish] Kaźmierczakowa, R., Poznańska, Z. (1992). Jak utrzymać krokusy na polanach tatrzańskich? Chrońmy Przyrodę Ojczystą, 48(2), 59–69. [In Polish] Klapp, E. (1965). Grünlandvegetation und Standort. Berlin-Hamburg: P. Parey. [In German] Kondracki, J. (2011). Geogra�a regionalna Polski. Warszawa: Wydawnictwo Naukowe PWN. [In Polish] Kotońska, B. (1991). Rośliny naczyniowe Beskidu Małego (polskie Karpaty Zachodnie). Zeszyty Naukowe UJ, Prace Botaniczne, 120(23), 1–199. [In Polish] Kornaś, J. (1967). Montane hay-meadow Gladiolo-Agrostietum in the Polish Carpathians. Contribuţii Bo- tanice Cluj-Napoca, 167–176. Kornaś, J. (1990). Jak i  dlaczego giną nasze zespoły roślinne. Wiadomości Botaniczne, 34(2), 7–16. [In Polish] Kornaś, J., Medwecka-Kornaś, A. (1967). Zespoły roślinne Gorców. I. Naturalne i  na wpół naturalne zespoły nieleśne. Fragmenta Floristica et Geobotanica, 13, 167–316. [In Polish] Kufa, J. (2005). Sałasznictwo w Beskidach (łod miyszanio po rozsad). Czeski Cieszyn: Sekcja Ludoznawcza Zarządu Głównego Polskiego Związku Kulturalno-Oświatowego, 7–14. [In Polish] Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 18 Leszczycki, S. (1932). Szałasy kamienne w Beskidzie Małym. Polskie Towarzystwo Tatrzańskie w Krakow- ie. Wierchy, 10, 120–123. [In Polish] Matuszczyk, A. (1981). Beskid Mały. Przewodnik. Warszawa-Kraków: Zakład Wydawniczo-Propa- gandowy PTTK. [In Polish] Matuszkiewicz, W. (2007). Przewodnik do oznaczania zbiorowisk roślinnych Polski. Vademecum Geobo- tanicum. Warszawa: Wydawnictwo Naukowe PWN. [In Polish] Michalik, S. (1990). Sukcesja roślinności na polanie reglowej w  Gorczańskim Parku Narodowym w okresie 20 lat w wyniku zaprzestania wypasu. Prądnik. Prace i Materiały Muzeum prof. Wadysława Szafera, 2, 127–136. [In Polish] Mirek, Z., Piękoś-Mirkowa, H., Zając, A., Zając, M. (2002). Flowering plants and Pteridophytes of Poland – a checklist. Biodiversity of Poland. Kraków: W. Szafer Institute of Botany, Polish Academy of Science 1: 1–442. Ostromęcki, A., Piechota, J. (1996). Możliwości i  bariery dostosowawcze indywidualnych gospodarstw rolnych ziem górskich. Rocznik Przemyski, Nauki Rolnicze, 32(4), 3–8. [In Polish] Pacyna, A. (2004). Rośliny naczyniowe wschodniej części Pogórza Wielickiego i  przylegającej części Beskidów (Karpaty Zachodnie). Prace Botaniczne, 38, 1–367. [In Polish] Pawłowska, S. (1965). Pochodzenie �ory kośnych łąk północnej części Tatr i Podtatrza. Fragmenta Floris- tica et Geobotanica, 11(1), 33–52. [In Polish] Pelc, S. (1958). Przyczynek do znajomości �ory wschodniej części Beskidu Małego. Fragmenta Floristica et Geobotanica, 4(1–2), 173–197. [In Polish] Pielou, E.C. (1975). Ecological diversity. New York: Wiley-Interscience. Radkowski, A., Barabasz-Krasny, B. (2007). Botanical analysis of fallow grasslands existing in mountain conditions. Acta Agrobotanica, 60(1), 165–173. Rozbrojová, Z., Hájek, M., Hájek, O. (2010). Vegetation diversity of mesic meadows and pastures in the West Carpathians. Preslia, 82, 307–332. Shannon, C.E., Weaver, W. (1963). �e mathematical theory of communication. Urbana: University of Illinois Press. Simpson, E.H. (1949). Measurement of diversity. Nature, 163, 688. Szafer, W., Zarzycki, K. (1977). Szata roślinna Polski. II. Warszawa: Państwowe Wydawnictwo Naukowe, 189–229. [In Polish] Truś, R. (2008). Beskid Mały. Przewodnik. Pruszków: O�cyna Wydawnicza Rewasz. [In Polish] Wildi, O., Orlóci, L. (1996). Numerical exploration of community patterns. A guide to the use of MULVA-5. Amsterdam: SPB Academic Publishing. Ziemońska, Z. (1973). Stosunki wodne w Polskich Karpatach Zachodnich. Warszawa: Wydawnictwo Pol- skiej Akademii Nauk, Zakład Narodowy im. Ossolińskich. [In Polish] Zwolińska, Z. (1960). Historia pierwszych prób podniesienia wartości pastewnej łąk i  hal tatrzańskich oraz ich wpływ na �orę Tatr. In: W. Antoniewicz (ed.), Pasterstwo Tatr Polskich i Podhala 2. Wrocław- Warszawa-Kraków: Wydawnictwo Polskiej Akademii Nauk, Zakład Narodowy im. Ossolińskich, 121–135. [In Polish] Zarzycki, J., Kaźmierczakowa, R. (2007). Przemiany łąk świeżych i pastwisk w Pienińskim Parku Naro- dowym w ciągu ostatnich 35 lat XX w. Studia Naturae, 54(1), 275–304. [In Polish] Zarzycki, J. (2008). Roślinność łąkowa pasma Radziejowej (Beskid Sądecki) i czynniki wpływające na jej zróżnicowanie. Zeszyty Naukowe Uniwersytetu Rolniczego im. H Kołłątaja w  Krakowie, Rozprawy, 352, 1–113. [In Polish] The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 19 Appendix 1 Tab. 1. Location of the studied areas Number of plot in area Name of glade Geographical coordinates Altitude (m.a.s.l.) used glades 1. Kocoń 49°44ʹ01ʹʹN 19°24ʹ04ʹʹE 560 2. Polana Gałasie 49°44ʹ43ʹʹN 19°24ʹ00ʹʹE 670 3. Gibasów Groń 49°45ʹ11ʹʹN 19°22ʹ26ʹʹE 820 4. Skolarówka 49°44ʹ31ʹʹN 19°20ʹ50ʹʹE 680 5. Przełęcz Płonna 49°44ʹ45ʹʹN 19°18ʹ43ʹʹE 700 6. Zamczysko Jaskinia Lodowa 49°44ʹ56ʹʹN 19°18ʹ15ʹʹE 740 7. Kocierz Basie 49°45ʹ54ʹʹN 19°20ʹ56ʹʹE 640 8. Kocierz Kiczora 49°46ʹ03ʹʹN 19°19ʹ49ʹʹE 630 9. Kocierz Sołdrówka 49°45ʹ45ʹʹN 19°19ʹ29ʹʹE 530 10. Kocierz Mieszczaki 49°45ʹ44ʹʹN 19°18ʹ34ʹʹE 560 11. Wysokie 49°45ʹ40ʹʹN 19°16ʹ45ʹʹE 540 12. Groń Jana Pawła II 49°47ʹ40ʹʹN 19°26ʹ48ʹʹE 850 13. Podbucznik 49°46ʹ21ʹʹN 19°27ʹ06ʹʹE 670 14. Targoszów Pagórek 49°46ʹ09ʹʹN 19°27ʹ08ʹʹE 620 15. Targoszów Wieczorki 49°45ʹ54ʹʹN 19°27ʹ24ʹʹE 540 16. Gronik 49°45ʹ31ʹʹN 19°27ʹ46ʹʹE 520 17. Krzeszów Harańczykówka 49°45ʹ50ʹʹN 19°28ʹ32ʹʹE 500 18. Jaworzyna III 49°46ʹ40ʹʹN 19°28ʹ00ʹʹE 650 19. Jaworzyna II 49°46ʹ42ʹʹN 19°27ʹ50ʹʹE 670 20. Jaworzyna I 49°46ʹ45ʹʹN 19°27ʹ40ʹʹE 680 21. Warmuzówka 49°48ʹ54ʹʹN 19°30ʹ43ʹʹE 420 22. Jaszczurowa Gancarzówka 49°47ʹ56ʹʹN 19°30ʹ20ʹʹE 420 23. Tarnawa 49°46ʹ56ʹʹN 19°29ʹ10ʹʹE 490 24. Pod Makowską Górą 49°47ʹ08ʹʹN 19°29ʹ03ʹʹE 560 25. Polana 49°47ʹ54ʹʹN 19°28ʹ30ʹʹE 640 26. Targoszów Gajka 49°45ʹ33ʹʹN 19°26ʹ49ʹʹE 550 27. Hala na Potrójnej 49°46ʹ34ʹʹN 19°22ʹ07ʹʹE 840 unused glades 28. Warmuzówka 49°48ʹ54ʹʹN 19°30ʹ43ʹʹE 420 29. Jaszczurowa Suszyce 49°48ʹ23ʹʹN 19°30ʹ39ʹʹE 400 30. Jaśkowa Arka 49°48ʹ07ʹʹN 19°28ʹ17ʹʹE 730 31. Polana Semikowa 49°47ʹ12ʹʹN 19°27ʹ04ʹʹE 800 32. Pod Jaworzyną 49°46ʹ42ʹʹN 19°27ʹ41ʹʹE 640 33. Polana Łazy 49°46ʹ17ʹʹN 19°28ʹ17ʹʹE 600 34. Pod Palusową Górą 49°45ʹ58ʹʹN 19°28ʹ06ʹʹE 580 35. Gronik 49°45ʹ31ʹʹN 19°27ʹ46ʹʹE 520 36. Targoszów Jurczakówka 49°45ʹ33ʹʹN 19°26ʹ49ʹʹE 550 Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 20 37. Przełęcz Midowicza 49°47ʹ35ʹʹN 19°26ʹ46ʹʹE 850 38. Polana – Leskowiec 49°47ʹ17ʹʹN 19°26ʹ43ʹʹE 890 39. Gancarz 49°46ʹ37ʹʹN 19°26ʹ58ʹʹE 800 40. Pagórek 49°46ʹ08ʹʹN 19°27ʹ06ʹʹE 610 41. Targoszów Wieczorki 49°45ʹ47ʹʹN 19°27ʹ26ʹʹE 520 42. Targoszów Ćwiękałówka 49°45ʹ35ʹʹN 19°26ʹ09ʹʹE 660 43. Polana Zaprzelina 49°46ʹ20ʹʹN 19°21ʹ14ʹʹE 760 44. Kocoń 49°44ʹ04ʹʹN 19°24ʹ06ʹʹE 560 45. Gałasie I 49°44ʹ37ʹʹN 19°24ʹ13ʹʹE 650 46. Gałasie II 49°44ʹ50ʹʹN 19°23ʹ46ʹʹE 720 47. Polana – Pietrasowa 49°44ʹ51ʹʹN 19°23ʹ19ʹʹE 800 48. Gibasów Groń 49°45ʹ08ʹʹN 19°22ʹ24ʹʹE 800 49. Czarne Działy 49°44ʹ58ʹʹN 19°21ʹ25ʹʹE 780 50. Zamczysko Jaskinia Lodowa 49°44ʹ53ʹʹN 19°18ʹ23ʹʹE 740 51. Ścieszków Groń 49°44ʹ52ʹʹN 19°18ʹ04ʹʹE 760 52. Kocierz Walaszki 49°45ʹ56ʹʹN 19°20ʹ18ʹʹE 570 53. Kocierz Basie 49°45ʹ54ʹʹN 19°21ʹ10ʹʹE 620 54. Słonków 49°45ʹ58ʹʹN 19°22ʹ04ʹʹE 760 Tab. 2. Floristic composition and species coverage [%] in plots of pasture with Nardus stricta; + – species occurring in less than 1% Successive number of plot 1 2 3 4 5 6 7 8 9 10 Number of occurrence Number of plot in area 7 5 27 4 3 12 18 2 26 20 Group in dendrogram A Number of species in plot 28 24 29 16 12 19 20 18 24 18 Grass and sedges Festuca rubra 15 40 15 15 40 15 15 15 15 40 10 Poa trivialis 15 15 15 15 3 15 15 15 65 15 10 Nardus stricta 15 3 15 15 15 3 3 15 3 . 9 Phleum pratense + . 3 3 . 3 . . + 3 6 Anthoxanthum odoratum 3 15 3 . . . 3 40 . . 5 Dactylis glomerata . 3 3 . . . 3 . + 3 5 Carex rostrata . . + 3 . . . . + . 3 Legumes Trifolium repens 3 3 3 3 3 3 3 3 3 3 10 Vicia cracca + + + . . . . . . . 3 Other herbaceous species Hypericum perforatum 3 3 3 3 3 3 3 3 + 3 10 Achillea millefolium 3 + + 3 3 3 + 3 + + 10 Veronica chamaedrys 3 + + + 3 3 3 3 + + 10 Rumex acetosa + 3 + 3 15 3 3 3 3 3 10 Potentilla anserina + + + + 3 + + + 3 + 10 Juncus articulatus 3 3 + + + . + 3 + + 9 Ranunculus acris + . + + 3 3 + 3 + + 9 The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 21 Leontodon hispidus 3 15 + + . . 3 . + + 7 Plantago lanceolata + + + . . . 3 3 + + 7 Stellaria graminea 3 + 3 + . 3 . . . + 6 Lychnis �os-cuculi + . + . . . + 3 + + 6 Campanula patula + + + . . + . . + . 5 Leucanthemum vulgare + + + . . . + . + . 5 Ajuga reptans . + + + . . . . . + 5 Cruciata glabra . . . . . + 3 . + 3 4 Alchemilla monticola . . . . . + + + + . 4 Aegopodium podagraria + . . . . + . . + . 3 Pteridium aquilinum . . . . + . + 3 . . 3 Trees and shrubs Rubus sp. (c) . 3 + . . + . . . . 3 Species occurring sporadically Grass and sedges: Arrhenatherum elatius 27:+. Legumes: Vicia grandi�ora 7:3, 5:+; Trifolium pratense 7:+, 27:3. Other herbaceous species: Carlina acaulis 7:+, 5:+; Viola arvensis 7:+, 5:+; Urtica dioica 7:+, 2:+; Scabiosa sp. 5:+, 12:+; Veronica o cinalis 27:+, 26:+; Cirsium rivulare 2:+, 26:+; Fragaria vesca 7:+; Galium verum 7:+; Rhinanthus minor 27:+, Senecio integrifolius 27:+; Dianthus deltoides 12:+. Tab. 3. Floristic composition and species coverage [%] in plots of hay-meadow; + – species occurring in less than 1% Successive number of plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Number of occurrence Number of plot in area 11 6 19 10 9 25 8 15 13 17 16 23 1 22 21 24 14 Group in dendrogram B Number of species in plot 22 18 22 22 28 22 23 23 22 22 21 22 23 22 27 20 22 Grass and sedges Festuca rubra 15 15 15 15 40 15 . 40 40 40 40 15 40 40 15 15 40 16 Poa trivialis 15 15 15 15 15 15 15 . 3 15 15 15 15 15 15 15 15 16 Dactylis glomerata 40 15 3 15 3 3 15 3 + . . 3 3 3 15 3 + 15 Phleum pratense 15 3 . 15 3 65 + + . + 3 . 3 3 3 3 . 13 Anthoxanthum odoratum . 3 3 3 + 3 15 3 3 15 3 3 15 . . + . 13 Arrhenatherum elatius 15 15 3 . . . . 3 3 . 3 15 15 15 15 . . 10 Holcus lanatus . . . + . . 40 15 . 15 15 15 . 3 3 3 + 10 Nardus stricta . . 3 . . . . . . + . . . 3 3 3 3 6 Lolium perenne . . . 3 . . . + . . . 3 . . . . . 3 Legumes Trifolium repens 15 . 3 3 15 15 15 15 3 + 15 3 3 3 3 3 + 16 T. pratense + . . + 3 + 3 15 3 3 . . 3 + 3 . . 11 Vicia grandi�ora + 3 + + 3 . + . + + . . + . . . . 9 Vicia cracca + . . . . . . + . + . . . . + . . 4 Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 22 Other herbaceous species Rumex acetosa + 3 3 3 + + + . 3 . + + 3 + + + + 15 Achillea millefolium 3 3 + + + + . + + + + + . 3 + + + 15 Hypericum perforatum + + + + + + + + + + + . . . + + + 14 Ranunculus acris + + + + + . 3 + + 3 + + 3 . . . + 13 Leontodon hispidus + + + . + + + 3 + . . + . 3 + + + 13 Taraxacum o cinale . 3 . . + + + + + . . + + + 3 3 + 12 Leucanthemum vulgare . . . + + + + + + + + + + + + . . 12 Plantago lanceolata . 3 . . + . + 3 3 + + + 3 . 3 . 3 11 Stellaria graminea . . + + + + + + . + + + + . . + . 11 Veronica chamaedrys + 3 + + 3 + 3 + . . . . . . + . + 10 Potentilla anserina + . + . + . + . . + . + + . + + + 10 Campanula patula + . . . . + . + + . 3 . . + + + + 9 Juncus articulatus . . . . + + . . + + + . 3 + + . + 9 Alchemilla monticola + + . + + . + . . . + + 3 . . . . 8 Aegopodium podagraria 3 + + + + . 3 . . . . . . . + . . 7 Lychnis �os-cuculi . . . + . + . + . + + . . . . + + 7 Senecio integrifolius . . . . . . . + + . . . . + + + + 6 Euphorbia cyparissias + + 3 . . . . . . . . . . + . . . 4 Fragaria vesca + . + . . . . . . . . . . . + . + 4 Viola arvensis . . + . + + . . + . . . . . . . . 4 Rhinanthus minor . . . . + . . + + + . . . . . . . 4 Galium verum . . . . . . + . . . . + . + + . . 4 Cruciata glabra . . 3 . . . . . . . + + . . + . . 4 Urtica dioica 3 . . + + . . . . . . . . . . . . 3 Pteridium aquilinum . . + . . . . . . . . . . . . + + 3 Plantago major . . . + + . . . . . . + . . . . . 3 Ajuga reptans . . . . . . + . + . . . . . . . + 3 Cirsium rivulare . . . . . . . . . + + . + . . . . 3 Trees and shrubs Rubus sp. (c) . . . . . + + . . . . . . . . + . 3 Species occurring sporadically Grass and sedges: Carex rostrata 9:+. Legumes: Trifolium dubium 16:+, 1:+. Other herbaceous species: Dactylorhiza majalis 17:+, 23:+; Lamium maculatum 9:+; Dianthus deltoides 25:+; Digitalis purpurea 25:+; Humulus lupulus (c) 1:3; Bellis perennis 1:+; Juncus conglomeratus 22:+; Convolvulus arvensis 22:+. Trees and shrubs: Rosa canina (c) 22:+. The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 23 Tab. 4. Floristic composition and species coverage [%] in unused plots with Pteridium aquilinum; + – species occurring in less than 1% Successive number of plot 1 2 3 4 5 Number of occurrence Number of plot in area 52 45 50 43 41 Group in dendrogram C Number of species in plot 15 15 23 18 18 Grass and sedges Festuca rubra 15 + 3 3 3 5 Poa trivialis + + + 3 3 5 Agrostis capillaris 15 + + . . 3 Phleum pratense + + 3 . . 3 Nardus stricta 15 . . . 3 2 Legumes Vicia grandi�ora + + + . . 3 Other herbaceous species Pteridium aquilinum 15 90 90 90 90 5 Hypericum perforatum + + 3 + + 5 Stellaria graminea + + + + 3 5 Potentilla anserina + . + + . 3 Juncus articulatus + . + + . 3 Rumex acetosa . . + + + 3 Veronica chamaedrys . . + + + 3 Trees and shrubs Acer pseudoplatanus (a) . . + + + 3 Rubus sp. (b) 15 3 + 15 15 5 Species occurring sporadically Grass and sedges: Holcus lanatus 52:3, 45:3; Anthoxanthum odoratum 52:+, 43:+; Carex rostrata 45:+; Lolium perenne 41:3; Arrhenatherum elatius 41:+. Legumes: Vicia cracca 45:+, 50:+; Trifolium pratense 50:+; T. repens 50:+. Other herbaceous species: Juncus conglomeratus 52:3, 43:3; Senecio integrifo- lius 45:+, 43:+; Galeopsis sp. 45:+, 41:+; Leontodon hispidus 45:+, 41:+; Achillea millefolium 50:+, 41:+; Aegopodium podagraria 50:+, 41:+; Ranunculus acris 50:+; Scabiosa sp. 50:+; Vaccinium myrtillus 43:15; Veronica o cinalis 43:+; Campanula patula 41:+; Leucanthemum vulgare 41:+. Trees and shrubs: Betula pendula (a) 50:+, 43:15; Picea abies (a) 50:+, 43:15. Tab. 5. Floristic composition and species coverage [%] in unused plots with shrubs; + – species occurring in less than 1% Successive number of plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Number of occurrence Number of plot in area 40 34 36 35 37 33 31 30 38 42 32 28 29 51 48 47 44 54 39 49 53 46 Group in dendrogram D Number of species in plot 21 28 23 18 10 17 17 15 15 22 22 17 14 15 17 17 22 21 18 18 14 21 Grass and sedges Festuca rubra 3 15 15 15 3 3 15 15 3 15 15 . 15 3 15 15 15 15 3 15 15 3 21 Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 24 Poa trivialis 3 . 15 15 + 15 15 15 15 3 15 3 . + 15 15 3 . 3 40 . + 18 Nardus stricta . . 3 3 3 3 15 15 15 15 15 3 . . + 3 3 15 3 3 3 15 18 Holcus lanatus . + + 3 . . . . . . . 3 15 + 3 . + 3 . . 3 15 11 Dactylis glomerata 3 . + + . . . . . . + 3 . . + 3 + . + . . . 9 Phleum pratense 3 15 . 15 . . . . . . 3 . . . . + 3 + + . . . 8 Agrostis capillaris . . . . . . . . . . . . . 3 15 3 15 15 . 15 15 + 8 Arrhenatherum elatius + + + . . . . . . . 3 15 . + . . + . . . . . 7 Anthoxanthum odoratum . . . . . + + . . . + . . . + . . . . . . + 5 Carex rostrata . + . . . . . . . . + . . . . . . + . . . . 3 Legumes Vicia cracca . . . . . . . . . + . + . + . + 3 . . . . . 5 Vicia grandi�ora . + . + . . . . . . . . . . . + + . . . . . 4 Other herbaceous species Hypericum perfo- ratum + + + . + + . + . + 3 + . + + 3 3 3 + + + + 18 Potentilla anserina + + + + + + + + + + + . + . . + + 3 + + . . 17 Stellaria graminea 3 + 40 + . . + + . + . . . + + + . + . + 3 . 13 Rumex alpinus + + + + + + + + + . . . . + 3 . . . . + . + 13 Senecio integrifolius + + + . . . . . . . + . 3 . . . + + + . + + 10 Juncus articulatus . + . . + . + . . + + . + . . . . + . + . + 9 Achillea millefolium 3 + . . . . . . . + + + 3 . + . . . . + . . 8 Veronica cha- maedrys + + 3 . . . . . . + + . . . + . . + + . . . 8 Leontodon hispidus + + . . . . . . . . + . 3 . . . + . + + . + 8 Juncus conglom- eratus . . 3 40 . 15 . + . + . . . . . . . . + + 3 . 8 Vaccinium myrtillus . . . . . 3 90 65 90 . . . . . . 40 . 3 3 . . 40 8 Ranunculus acris + + + + . . . . . + . . . . . + . . . . . . 6 Veronica o cinalis . . . . + . + . . . + . . . . . . + + . . + 6 Cirsium rivulare . + 3 + . + . . . . . + . . . . . . . . . . 5 Aegopodium po- dagraria . + + . . . . . . . . + . + . . + . . . . . 5 Galeopsis sp. . . . + . . + + . + . . . . + . . . . . . . 5 Campanula patula + + . . . . . . . . . . . . . . . . . . + + 4 Leucanthemum vulgare . + . . . . . . . + + + . . . . . . . . . . 4 Urtica dioica . . + + . . . . . . . 3 . + . . . . . . . . 4 Pteridium aquili- num . . . . . . . + + . . . . . . . + . . . + . 4 Plantago lanceolata . + . . . . . . . + + . . . . . . . . . . . 3 Equisetum sylvat- icum . . + + . 15 . . . . . . . . . . . . . . . . 3 The succession of abandoned glades and its im pact on the diversity of flora in B eskid M ały M ountains (S outhern P oland) 25 Trees and shrubs Betula pendula (a) . . . . . 3 + 3 + 15 + + 15 40 . . 3 3 65 15 65 15 15 Picea abies (a) . . . . . . . . 15 . . . . . . . . 15 40 15 . . 4 Acer pseudoplat- anus (a) . . . . . . . . + . . . . 90 3 . . . . + . . 4 Rubus sp. (b) 65 40 + 3 90 15 3 15 3 15 40 15 + 3 + 3 15 15 15 65 3 15 22 Frangula alnus (b) 3 40 + 40 65 3 . . 3 . . . + . . + + + + . + + 14 Sorbus aucuparia (b) 3 . . . . + + . 3 . . . . . + + 3 + + + + + 12 Crataegus sp. (b) 15 . 3 . . . . . . 3 . . . . 3 . . + . . . + 6 Rosa canina (b) . . . . . . . . . 15 . 65 + . . . 3 . . . . . 4 Species occurring sporadically Grass and sedges: Lolium perenne 51:+, 44:+; Cynosurus cristatus 34:+. Legumes: Trifolium repens 42:+, 32:3; T. pratense 42:+. Other herbaceous species: Lychnis �os-cuculi 34:+, 42:+; Dactylorhiza majalis 34:+, 47:+; Alchemilla monticola 34:+, 46:+; Galium verum 36:+, 28:3; Polytrichum commune (d) 33:3, 38:+; Scabiosa sp. 40:+; Plantago major 34:+; Briza media 36:+; Veratrum lobelianum 31:3; Ajuga reptans 31:+; Digitalis purpurea 30:+; Juncus e�usus 38:+; Taraxacum o cinale 32:+; Fragaria vesca 29:15; Cru- ciata glabra 29:+; Euphorbia cyparissias 29:+; Gladiolus imbricatus 54:+; Carlina acaulis 49:+. Trees and shrubs: Pinus sylvestris (a) 33:3, 28:+; Quercus robur (a) 40:+; Fagus sylvatica (a) 31:+; Abies alba (a) 30:+; Larix decidua (a) 46:+. Ja n P rz em ys ła w K ub ik , B ea ta B ar ab as z- K ra sn y 26 Abstract �e in�uence of grazing, mowing, and other usable treatments on the �ora diversity of glades in the Beskid Mały in southern Poland was investigated. �e �eld research was carried out between 2015 and 2016. Flora analysis consisted mainly of comparing the botanical composition of glades abandoned for several decades with the botanical composition of glades currently used as pastures. On selected plots, botanical composi- tion was determined using the Klapp (1965) estimation method. All �oristic lists from the study plots were analysed by using hierarchical numerical classi�cation. Based on the numerical classi�cation of plots on analysed glades in the Beskid Mały, four utility-�oristic groups were distinguished: pasture with Nardus stricta A, hay-meadow B, unused plots with Pteridium aquilinum C, and unused plots with shrubs D. �e results of studies con�rm the thesis that species composition is a  re�ection of management practices or lack thereof. It was demonstrated that the cessation of the grazing and mowing on the mountain glades of Beskidy caused adverse changes in the structure of species composition and a reduction in �oristic diversity. Initially, it causes an increase in the number of species in the sward, followed by elimination of the pho- tophilous species, which lowers general species richness. Key words: Klapp estimation method, meadows and pastures, mountain pasturage, succession Received: [2017.05.15] Accepted: [2017.09.19] Sukcesja nieużytkowanych polan i jej wpływ na zróżnicowanie flory w Beskidzie Małym (Południowa Polska) Streszczenie Zbadano wpływ zaprzestania działalności pasterskiej i  łąkarskiej oraz innych zabiegów użytkowych na zróżnicowanie �ory hal oraz polan w Beskidzie Małym w Południowej Polsce. Badania w terenie wykona- no w latach 2015–2016. Analiza �orystyczna polegała głównie na porównaniu składu botanicznego polan od kilkudziesięciu lat odłogowanych, ze składem botanicznym polan aktualnie użytkowanych gospodarką pasterską. Skład botaniczny określono na wybranych poletkach, przy pomocy metody szacunkowej Klap- pa (1965). Wszystkie spisy z analizowanych poletek poddano hierarchicznej klasy�kacji numerycznej. Na podstawie klasy�kacji numerycznej poletek wyróżniono na badanych polanach Beskidu Małego cztery gru- py �orystyczno-użytkowe: pastwisko z  Nardus stricta A, łąka kośna użytkowana B, płaty nieużytkowane z  Pteridium aquilinum C oraz płaty nieużytkowane zakrzaczone D. Badania potwierdzają tezę, że skład gatunkowy jest odzwierciedleniem prowadzonych zabiegów gospodarczych lub ich braku. Wykazano, że za- przestanie gospodarki pasterskiej i kośnej polan górskich w Beskidach skutkuje niekorzystnymi zmianami w strukturze gatunkowej runi oraz obniżeniem różnorodności �orystycznej. Początkowo powoduje wzrost liczby gatunków w murawie, a następnie eliminację gatunków światłolubnych, co obniża ogólne bogactwo gatunkowe. Słowa kluczowe: metoda szacowania Klappa, łąki i pastwiska, pasterstwo górskie, sukcesja Information on the authors Jan Przemysław Kubik His scienti�c interests include secondary succession of mountain glades a�er cessation of agricultural activities. Beata Barabasz-Krasny Her main scienti�c interests include �oristics and phytosociology of non-forest plant communities with particular emphasis on the course of succession processes in the areas where agricultural activities were discontinued, the transformation of plant cover of thermophilic swards, and active protection of non- forest plant communities.