145 Annales Universitatis Paedagogicae Cracoviensis Studia Naturae, 5: 145–156, 2020, ISSN 2543-8832 DOI: 10.24917/25438832.5.10 Iveta Marková*, Mikuláš Monoši Department of Fire Engineering, Faculty of Security Engineering, University of Žilina 8215/1, 010 26 Žilina, Slovakia; *iveta. markova@Çi.uniza Expressions of climatic change in Slovak Republic Introduction �e United Nations Framework Convention on Climate Change (Convention) (SAŽP, 1994, 2019a), Kyoto Protocol to the Convention (SAŽP, 1999; Adamišin et al., 2005; Bédi, 2007) and the Paris Agreement (Council EU, 2019) are the International Legal Instrument for the Search for Global Solutions to Climate Change. Slovakia is a party to the above conventions and is obliged to ful�l the resulting obligations. For example, Slovakia has successfully reduced greenhouse gas emissions by 8% compared to the base year 1990 (SAŽP, 2019a). Historically, the �rst universal agreement on climate change – the Paris Agree- ment, entered into force on 4 November 2016. �e aim of the agreement is to limit global temperature growth to a maximum 2°C by the end of the century and, if possi- ble, to signi�cantly below 1.5°C. �is document includes reduction commitments not only for developed countries but for all countries that are parties to it. Each country determines for itself how and in which sectors it will make an e�ort to reduce green- house gas emissions. �is agreement pays close attention to climate change and en- shrines the obligation to prepare for the consequences of these changes. Last but not least, this agreement introduced an obligation to monitor emissions and report on their quantities to all participating countries. Finally, the Paris Agreement was rati�ed by 181 countries out of a total of 197 parties to the Convention (in terms of devel- oped countries, Russia and Turkey did not ratify this agreement) on 26 October 2018 (SAŽP, 2019a). �e Climate-ADAPT project, led by the European Environment Agency with the support of the United Nations Framework Convention on Climate Change, evaluates the so-called “indicators” of climate change (EEA, 2019). �e group of climatic elements includes: greenhouse gas production as concentrations of pollutants, average annual air temperature, annual total atmospheric criteria, drought index and annual soil tem- Iv et a M ar ko vá , M ik ul áš M on oš i 146 perature (soil index). �e selected indicators meet the following criteria: direct or indi- rect link to the climate system; consistent, homogenised and uninterrupted data over a longer period of time (minimum 30–50 years); guarantee of measuring, monitoring or recording data towards the future and good explanatory value (Minďas et al., 2011). �e aim of this article is to describe the manifestations of climate change in Slo- vakia (since its inception) according to selected indicators: (1) average annual air temperature, (2) soil temperature, (3) total atmospheric precipitation and (4) drought index over the last decade. Material and Methods On the Slovakian territory, a selection of climate monitoring stations was chosen for the purposes of a representative evaluation of climatic indicators in relation to height above mean sea level (AMSL) (e.g. Bratislava-Airport 48 10ʹ12ʺN, 17 12ʹ46ʺE, AMSL 133 m; Hurbanovo 47°52ʹ32ʺ N, 18 11ʹ36ʺ E, AMSL 115 m; Oravská Lesná 49 22ʹ8ʺ N, 19°11ʹ1ʺ E, AMSL 934 m; Sliač 48°36ʹ43ʺ N, 19°8ʹ37ʺ E, AMSL 305 m; Lomnický štít 49 11ʹ45ʺ N, 20 12ʹ46ʺ E, AMSL 2634.4 m; Poprad 49°3ʹ34ʺ N, 20°17ʹ51ʺ E, AMSL 672 m; Košice Airport 48°39ʹ47ʺ N, 21°14ʹ28ʺ E, AMSL 230 m; Liptovský Hrádok 49 2ʹ15ʺN, 19 43ʹ33ʺ E AMSL 637 m and others) (SHMÚ, 2020a). Monitoring of climate elements (air temperature, soil temperature, precipitation, air pressure, sunshine duration, number of ice days – maximum temperature lower than 0°C, number of freezing days – minimum temperature lower than 0°C, number of summer days – temperature higher than 25°C, number of tropical days – tempera- ture higher than 30°C) allows for the quanti�cation of climate change. �e expression of climatic change is characterised by the chosen study parameters, of which only four were included in this paper (average annual air temperature, soil temperature as a soil dryness index (SDI), total atmospheric precipitation and drought index (DI)). �e soil dryness index (SDI) is determined by the ratio of daily rainfall and the maximum temperature from local meteorological stations for estimating soil dryness, within tens of kilometres. It estimates the millimetres of rain needed to �ll the soil with water (Mount, 1980; Jamroz et al., 2014; Hollá, 2016). �e current territorial av- erage for total precipitation in Slovakia is calculated in the Slovak Hydrometeorolog- ical Institute (SHMÚ) from the monthly totals of 203 stations. �is calculation was produced from the approximately 30–100 stations present before 1901 (Lapin, 2020). �e drought index (DI) is based on a comparison (ratio) of the annual potential evap- otranspiration and the annual total atmospheric precipitation. Alsumaiei (2020) and Paulo et al. (2012) explained identi�cation and testing of the drought index. �ese indicators began to be monitored gradually. �ey were �rst published in the 2010 State of the Environment Report. Expressions of clim atic change in S lovak R epublic 147 Current data on climatic elements are published annually on the website of the Slovak Environment Agency (SAŽP, 2019b); this data was used in these studies and discussed in terms of the �ndings and comments of Slovak experts and climatologists. Results and discussion Air temperature Climate change is most evident in air temperature, which is con�rmed by the readings of this parameter by many hydrometeorological stations. According to previous re- search, air temperature has been measured in Hurbanovo at a professional level since 1872, with four SHMÚ stations available since 1881, and one in Bratislava since 1851 (Lapin, 2020). �e average territorial deviation of temperature from normal, 1961–1990 ranges, in 2016 was incomparable with the year 2018. During the two years there was a 1.5°C di�erence in the deviation of the average annual air temperature from the normal 1961–1990 ranges. Concerning means, the average the deviation ranges from 1°C, 1.0–1.5°C and 1.5°C in 2016 and in 2018, and the di�erence in the deviation of the average annual air temperature from the normal 1961–1990 ranges were increased (Fig. 1). Matejovič and Libo (2020) reported record temperature values. �e absolute maximum reached (the highest measured air temperature) was 56.7°C, Death Valley July 10, 1913, California, USA and in Slovakia: 40.3°C, Hurbanovo, July 20, 2007. �ey reported the warmest summer (June–August) was in 2019, with an average air tem- perature of 23.2°C in Hurbanovo. �is fact was con�rmed by Bartošovičová (2019). During the period 1881–2016, an average annual air temperature increase of about 1.73°C (SAŽP, 2017a) was observed in Slovakia. �e Report on the State of the En- vironment for 2015 (SAŽP, 2016) states: “warming has been most pronounced in the last twenty years”. �e year 2016 ended as extremely warm, in comparison with the climatic norm of 1961–1990; 2016 also ended as extremely warm, in comparison with the climatic norm 1961–1990 (SAŽP, 2017a), in most of Slovakia. �is characteristic was maintained in the following years (SAŽP, 2018, 2019a) �e number of tropical days has been reported in the State of the Environment Report since 2012 (SAŽP, 2013). �e criterion for classifying days as tropical is higher than 30°C. �e normal summer day is day, when the maximum air temperature has increased to at least 25°C. Based on study data, a growing trend in the number of trop- ical days was observed in the lowland and uplands of Slovakia (Hurbanovo increased by 20, Liptovský Hrádok increased by 10), for the period 1951–2016 (SAŽP, 2017b). In 2016, 30 tropical days in Hurbanov and 5 days in Liptovský Hrádok were recorded. �is was also observed in 2018, where, in both places together, the number of tropical days increased by 16, compared to the period 1961–1990 (SAŽP, 2019a). An increase Iv et a M ar ko vá , M ik ul áš M on oš i 148 Fi g. 1 . D ev ia tio ns o f t he a ve ra ge a nn ua l a ir te m pe ra tu re (d t) fr om th e no rm al fr om 1 96 1– 19 90 in S lo va - ki a fo r t he y ea rs 2 01 2, 2 01 4, 2 01 6 an d 20 18 (S ou rc e: S H M Ú 2 02 0a , b ; S A ŽP 2 01 3– 20 19 a, b ) Expressions of clim atic change in S lovak R epublic 149 Fi g. 2 . A nn ua l o f c um ul at iv e pr ec ip ita tio n to ta ls in % fr om th e no rm al (R ) f ro m 1 96 1– 19 90 in S lo va ki a fo r t he y ea rs 2 01 3, 2 01 6, 2 01 7 an d 20 18 (S ou rc e: S H M Ú 2 02 0a , b ; S A ŽP 2 01 2– 20 17 a, b ) Iv et a M ar ko vá , M ik ul áš M on oš i 150 in warm days causes a decrease in the length of the heating season. For example, in Hurbanovo a decrease of 21 days and in Liptovský Hrádok a decrease of 22 days was found during the analysed period (SAŽP, 2017b). Based on the increase in the number of summer and tropical days, (45 more days compared to the period 1961–1990), the number of ice days, i.e. lower than 0°C, de- creased (a decrease of 12 days compared to the period 1961–1990) (SAŽP, 2019a). A detailed explanation of the development of these trends and a forecast of their num- ber through 2090 were reported by Damborská et al. (2006). In the lowlands throughout Central Europe, due to the frequent alternation of pe- riods with positive and negative average air temperature, snow cover occurrence is irregular (Siman, Slavková, 2019) in winter. �e report on the state of the environment for 2016 describes a decrease for all snow cover characteristics (mainly thickness) to a height of 1000 m in almost the entire territory of the Slovak Republic (an increase was recorded at higher altitudes). In the following years, reports on the state of the envi- ronment no longer specify the state of snow cover but only state its decrease. Soil temperature (soil dryness index) Based on this scienti�c analysis, the soil temperature at a depth of 10 cm in Hurbano- vo was 11.0°C and in Liptovský Hrádok was 9.2°C, in 2016. A trend of increasing average annual soil temperature at a depth of 10 cm was observed in lowlands and uplands of Slovakia; in the mountains (Hurbanovo 1.5°C, Liptovský Hrádok 2.1°C) for the period 1951–2016, the observed temperature increases were more signi�cant (SAŽP, 2018). A drought began to spread �rst in the northwest, later in the east, of Slovakia in the second half of April 2018. At the beginning of May 2018, there was an extreme drought in 16% of the territory. �e worst situations were in the Žilina, Prešov and Trenčín regions. Extreme drought a�ected 7.5% of the country territory in June 2018 (SAŽP, 2019a). �is situation caused a de�cit of soil moisture and a loss of yields in eastern Slovakia. Cumulative precipitation totals �e annual precipitation totals began to be presented in the Reports on the State of the Environment in 2010. �e �rst map presented from 2012 employs a three-colour range with deep blue colours. In 2013, the colour of the map di�ers signi�cantly and areas are indicated with a signi�cant reduction in percentage cumulative precipita- tion, less than 60% of normal. �e map from 2015 revealed a declining trend in the annual precipitation totals (Fig. 2) and a decrease in the relative humidity of the air (SAŽP, 2016). In 2016 (SAŽP, 2017a) there was a decrease in annual precipitation totals of 0.5%, on average, and 2018 precipitation was below normal �e upper limit of the percent- Expressions of clim atic change in S lovak R epublic 151 age range of annual total atmospheric precipitation decreased from 140% to 120%. At the same time, there were areas with a 60% deviation from normal in annual precipi- tation totals during that period (SAŽP, 2019a). �e calculation methods for precipita- tion totals over a selected time period and for scenarios of precipitation totals during extreme precipitation situations in Slovakia are explained by Lapin et al. (2004). Drought index �e drought index (Hurbanovo station – 0.22) in the lowland areas of Slovakia re- vealed an increasing trend for the period 1951–2016. For example, the drought in- dexes were 1.02 in Hurbanovo and 0.41 in Oravská Lesná in 2016. Detailed statistical highlights are found in the report on the state of the environment for 2016 (MŽP, 2019; SAŽP, 2017a, b). On the other hand, local or widespread drought was much more common than before. �is phenomenon was caused mainly by long periods of relatively warm weather with small totals of precipitation in some parts of the grow- ing season. In general, in this part of Europe, the drought phenomenon was associ- ated with relatively warmer winters (no snow cover) and warmer summers (greater evaporation). In some areas of Slovakia, precipitation totals did not deviate from the long-term norms; however, intense, heavy rainfall in summer prevails that results in fast out�ow and low water retention. �e phenomenon of drought has become part of our lives. In 2018, documents were prepared which took a position and proposed spe- ci�c measures to be taken to prevent water loss in our environment (Sólymos, 2018); therefore an Action Plan to address the consequences of drought and water scarcity was created (MŽP, 2018; SAŽP, 2018, 2019b). �ere is still debate in the scienti�c literature about which climatic parameters (e.g. precipitation, temperature, evapotranspiration, wind speed, relative humidity, solar radiation, etc.) are the most important in determining the severity of drought. �ere is general agreement on the importance of precipitation in explaining drought variability and the need to include this variable in the calculation of any drought index (Vicente-Serrano et al., 2009; Jamroz et al., 2014; Tigkas et al., 2014; Amani et al., 2016). Climate scenarios In the third National Report on Climate Change (MŽP, 2001) the climatic scenarios of temperature increase and decrease in annual total precipitation were presented. �e calculation was a regional modi�cation of the outputs from two related programs: GCMs (CCCM – the Canadian Centre for Climate Modelling) and GISS (Gaoldard’s Institute for Space Studies in the USA). �e synthetic data for this topic is presented in table 1. Iv et a M ar ko vá , M ik ul áš M on oš i 152 Tab. 1. Scenarios of changes in monthly averages of air temperature [°C] in 50–year horizons for the whole of Slovakia in comparison with the normal 1951–1980 (Lapin et al., 1996) Horizont I II III IV V VI VII VIII IX X XI XII CCCM 1995 (30 year horizons compared to 1995–1980) 2010 1.2 1.4 1.4 1.0 0.9 0.9 1.1 1.0 1.1 1.1 0.9 0.9 2030 2.0 2.4 2.6 1.7 1.5 1.6 1.8 1.7 1.9 1.8 1.4 1.5 2075 3.7 4.5 4.3 3.2 2.9 3.0 3.3 3.2 3.6 3.4 2.7 2.8 CCCM 1995 (50 year horizons compared to 1995–1980 from the modi�cation for 1901–1990) 2010 0.5 0.7 0.9 0.7 0.4 0.6 0.9 1.0 1.0 0.9 0.6 0.4 2030 0.9 1.2 1.4 1.1 0.8 1.1 1.4 1.5 1.6 1.2 0.7 0.7 2075 2.2 2.9 2.8 2.3 2.3 2.9 3.4 3.6 3.6 3.0 2.0 1.0 CCCM – Canadian Centre for Climate Modelling From 1993, the Report has developed and presented a series of di�erent climate scenarios for Slovakia through the year 2100. �ese scenarios are now being evaluated through comparison with the actually recorded weather measurements (Lapin et al., 1996, 2000). Tab. 2. Comparison of climatic elements as average deviations from the normal 1961–1990, based on the Reports on the state of the environment prepared by the Slovak Environment Agency in the years 2012 to 2018 (SAŽP, 2012–2019a, b) Climate element 2012 2013 2014 2015 2016 2017 2018 average air temperature deviation DT [°C] 1.3 1.3 2.4 2.1 1.5 1.3 2.4 of cumulative precitipation totals on Slovakia [%] 95.3 109.2 X 93.0 119.8 106.5 X X – not mentioned in the report By 2011 it was already clear that the forecasted goal of limiting the increase in global temperature to a maximum of 2°C by the end of the century was unrealistic (SHMÚ, 2020a,b). At present, the growth trend is on average 1°C in a 100-year av- erage. �e described 2011 analysis already forecasts the stated goal will be surpassed in 2075. �e real data from Slovakia from 2012, for comparison (Tab. 2), shows the di�erence as the average deviation of air temperature DT (increase) and total annual precipitation in Slovakia as the % of normal, from the years 1961–1990 (decrease) (SAŽP, 2012–2019a, b). �e consequences of developing climate system changes are visible in the reactions of �ora and fauna. Changing conditions, due to the e�ects of greenhouse gases, such as carbon dioxide concentration, increase the average air temperatures or reduce water availability thereby a�ecting the life cycle of plants and animals. In phenological phas- es, expressions of the life cycle of plants and animals, certain destabilising tendencies were registered, which may be related to the complex climatic-natural conditions in Slovakia. Changes in animal distribution areas as well as in changes in their behaviour Expressions of clim atic change in S lovak R epublic 153 were also signi�cant (SAŽP, 2016). Changes in the structure and composition of hab- itats and an exchange of species in the habitats have been observed. �ese factors will reduce the resilience of ecosystems, reduce their ability to provide ecosystem services or cause ecosystem disintegration (SAŽP, 2019a). Conclusion Slovakia, during the years 1881–2018, underwent signi�cant changes in all monitored climatic elements, e.g.: (1) an increase in the average cumulative air temperature by approximately 1.73°C, (2) a decrease in cumulative atmospheric precipitation totals by on average 0.5% (in the some parts of south Slovakia the decrease was even greater than 10%, in the north and northeast it rarely increased to 3%) and (3) a decrease in soil moisture and an increase in the drought index. If we accept these changes, we must also accept the emergence of new adverse events, such as droughts, forest �res, �oods and torrential rains, for which rescue equipment must be prepared. Acknowledgements �is work was supported by the Slovak Education Agency 014UKF-4/2020. Con�ict of interest �e authors declare no con�ict of interest related to this article. References Adamišin, P., Andrejovský, P., Huttmanová E. (2005). Kjótsky protokol ako možný zdroj regionálnych disparít. Acta regionalica et Environmentalistica (�e Kjótsky Protocol as a possible source of region- al disparities. Regional and Environmental Act). [In Slovak] Alsumaiei, A.A. (2020). Monitoring hydrometeorological droughts using a simpli�ed precipitation index. Climate, 8, 19. https://doi.org/10.3390/cli8020019 Amani, M., Salehi, B.,Mahdavi, S., Masjedi, A., Dehnavi, S. (2016). Temperature-vegetation-soil mois- ture dryness index (TVMDI). Remote Sensing of Environment, 197, 1–14. https://doi.org/10.1016/j. rse.2017.05.026 Bartošovičová, M. (2019). Mimoriadne až extrémne prejavy počasia na Slovensku a čo od neho ešte môžeme očakávať? Vedy o Zemi a environmentálne vedy (Extraordinary to extreme weather events in Slovakia and what else can we expect from it? Earth sciences and environmental sciences). https:// vedanadosah.cvtisr.sk/mimoriadne-az-extremne-prejavy-pocasia-na-slovensku-a-co-od-neho-este- mozeme-ocakavat [In Slovak] Bédi, E. (2007). Klimatické zmeny – vedecké a politické aspekty. Aktuálne témy v oblasti klimatických zmien a obnoviteľných zdrojov energie (prezentácia) 28.11.2007, Junior Hotel, Bratislava (Climate change - scienti�c and political aspects. Current topics in the �eld of climate change and renewable energy sources (presentation) 28.11.2007, Junior Hotel, Bratislava). http://www.inforse.org/europe/ fae/Inforse Seminar – klima 28.11.2007.ppt [In Slovak] Damborská, I., Lapin, M., Melo, M. (2006). Možné zmeny počtu dní s charakteristickými dennými prie- mermi teploty vzduchu a dennými úhrnmi zrážok na Slovensku do roku 2090 (Possible changes in the number of days with characteristic daily averages of air temperature and daily total precipitation in Slovakia until 2090). In: J. Rožnovský, T. Litschmann, I. Vyskot (eds.), Fenologická odezva proměn- Iv et a M ar ko vá , M ik ul áš M on oš i 154 livosti podnebí, Brno 22.3.2006. http://www.cbks.cz/sborník06/prispevky/DamborskaLapinMelo.pdf [In Slovak] EEA – European Environment Agency (2019). Indicators: Climate adapt. https://climate-adapt.eea.europa.eu/ Hollá, K. (2016). Results of survey among SEVESO establishments in the Slovak Republic. Journal of Chemical Health & Safety, 23(2), 9–17. Jamroz, E., Weber, J., Debicka, M. (2014). Trophic soil index of the rusty soils a�ected by clear-cutting in the Spala Forest District. Sylwan, 158(9), 669–674. Lapin, M. (2020). Aktuálne zmeny teploty na Slovensku (Current temperature changes in Slovakia). https://milanlapin.estranky.sk/clanky/aktualne-zmeny-teploty-na-slovensku/ [In Slovak] Lapin, M., Melo, M., Damborská, I., Gera, M. (2004). Scenáre úhrnov zrážok za vybrané časové obdobie a tvorbu scenárov úhrnov zrážok počas extrémnych zrážkových situácií na Slovensku (Scenarios of precipitation totals for a selected time period and creation of scenarios of precipitation totals during extreme precipitation situations in Slovakia). In: J. Rožnovský, T. Litschmann (eds.), Seminář „Ex- trémy počasí a podnebí, Brno, 11. března . http://www.cbks.cz/sbornik04/prispevky/LAPIN1.pdf [In Slovak] Lapin, M., Melo, M., Damborská, I., Gera, M., Faško, P. (2000). Nové scénare klimatickej zmeny pre Slov- ensko na báze výstupov prepojených modelov všeobecnej cirkulácie atmosféry (New climate change scenarios for Slovakia based on the outputs of interconnected models of general atmospheric circu- lation). In: Národný klimatický program SR, 5(8). Bratislava: MŽP SR, SHMÚ, p. 5–34. [In Slovak] Lapin, M., Závodský, D., Majerčáková, O., Mindáš, J., Špánik, F. (1996). Preliminary results of volunerabil- ity and adaptation assessment for Slovakia. In: Vulnerability and adaptabilition to climate change. U.S. Countries Studies Program. Dordrecht, Boston, London: Kluver Academic Publisher, p. 295–312. Matejovič, P., Libo, M. (2020). Rekordné hodnoty meteorologických prvkov vo svete a na Slovensku (Re- cord values of meteorological elements in the world and in Slovakia). http://nun.sk/rekordy.html [In Slovak] Minďaš, J., Páleník, V., Nejedlík, P. (2011). Dôsledky klimatickej zmeny a možné adaptačné opatrenia v jednotlivých sektoroch (Consequences of climate change and possible adaptation measures in indi- vidual sectors). Záverečná správa. EFRA – Vedecká agentúra pre ekológiu a lesníctvo, Zvolen, Brati- slava, November 2011, 252 s. [In Slovak] Mount, A.B. (1980). Estimation of evaporative losses from forests: A pro ven simple model with wide applications. Paper to Hydrology and Water Resources Symposium 1980, Adelaide, 4–6 Nov. 1980, Preprints of Papers, Inst. Eng. Aust., p. 101–105. MŽP – Ministerstvo životného prostredia SR (Ministry of the Environment of the Slovak Republic) (2001). Tretia Národná správa o zmene klímy. Ministerstvo životného prostredia SR, Bratislava,. p. 24. https://lnk.sk/axMQ [In Slovak] MŽP – Ministerstvo životného prostredia SR (Ministry of the Environment of the Slovak Republic) (2018). H2O dnota je voda – Akčný plán na riešenie dôsledkov sucha a nedostatku vody. https://www.minzp. sk/�les/sekcia-vod/hodnota-je-voda/h2odnota-je-voda-akcny-plan-riesenie-dosledkov-sucha-ne- dostatku-vody.pdf [In Slovak] MŽP – Ministerstvo životného prostredia SR (Ministry of the Environment of the Slovak Republic) (2019). Implementácia smernice Európskeho parlamentu a Rady 2007/60/ES z 23. októbra 2007 o hod- notení a manažmente povodňových rizík „ Predbežné hodnotenie povodňového rizika v Sloven- skej republike – aktualizácia 2018. https://www.minzp.sk/�les/sekcia-vod/hodnotenie-rizika-2018/ phpr_sr2018.pdf [In Slovak] Paulo, A.A., Rosa, R.D., Pereira, L.S. (2012). Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Natural Hazards and Earth System Sciences, 12, 1481–1491. https://doi.org/10.5194/nhess-12-1481-2012 Expressions of clim atic change in S lovak R epublic 155 Council EU – Rada Európskej únie (Council of the European Union) (2019). Parížska dohoda o zmene klímy (Paris Agreement on Climate Change). https://www.consilium.europa.eu/sk/policies/cli- mate-change/paris-agreement/ [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (1994). Rámcový do- hovor o zmene klímy (Framework Convention on Climate Change). https://www.enviroportal.sk/ dokumenty/medzinarodne-dohovory/dohovor/1? [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (1999). (Kyoto Protocol to the United Nations Framework Convention on Climate Change). https://www.enviroportal.sk/ dokumenty/medzinarodne-dohovory/dohovor/2 [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2012). Výročná správa stavu životného prostredia na Slovensku 2011. https://www.enviroportal.sk/uploads/report/2011-sp- rava.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2013). Výročná správa stavu životného prostredia na Slovensku 2012. Časť “Zmeny klímy”. https://www.enviroportal.sk/up- loads/report/2012-04-3-klimat.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2014). Výročná správa stavu životného prostredia na Slovensku 2013. Časť “Zmeny klímy”. https://www.enviroportal.sk/up- loads/report/2013-sprava-o-stave-zp.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2015). Výročná správa stavu životného prostredia na Slovensku 2014. Časť “Zmeny klímy”. https://www.enviroportal.sk/up- loads/report/2014-05-4-zmena-klimy.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2016). Výročná správa stavu životného prostredia na Slovensku 2015. Časť “Zmeny klímy”. https://www.enviroportal.sk/up- loads/report/zmena-klimy.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2017a). Výročná správa stavu životného prostredia na Slovensku 2016. Časť “Zmeny klímy”. http://enviroportal.sk/spravy/ detail/7043?p=6961 [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2017b). Výročná správa stavu životného prostredia na Slovensku 2016. https://www.enviroportal.sk/spravy/detail/8142 [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2018). Výročná sprá- va stavu životného prostredia na Slovensku 2017. Časť “Zmeny klímy”. https://www.enviroportal.sk/ spravy/detail/10282?p=9341 [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2019a). Výročná správa stavu životného prostredia na Slovensku 2018. Časť “Zmeny klímy” (Anual report about environ- ment, Part: Climatic Change). https://www.enviroportal.sk/uploads/report/10282.pdf [In Slovak] SAŽP – Slovenská Agentúra Životného Prostredia (Slovak Environment Agency) (2019b). Správy o stave životného prostredia. Retrieved Marec, 2018, from: https://www.enviroportal.sk/spravy/kat21? [In Slovak] SHMÚ – Slovenský hydrometeorologický ústav (Slovak Hydrometeorological Institute) (2020a). Scenare budúcej klímy. http://www.shmu.sk/sk/?page=1069#! [In Slovak] SHMÚ – Slovenský hydrometeorologický ústav (Slovak Hydrometeorological Institute) (2020b). Primerná mesačná teplota na Slovensku. http://www.shmu.sk/sk/?page=1610&id [In Slovak] Siman, C., Slavková, J. (2019). Vývoj snehovej pokrývky na Slovensku v období rokov 1981/1982 – 2017/2018 (Development of snow cover in Slovakia in the period 1981/1982 – 2017/ 2018). Bratisla- va: SHMÚ. http://www.shmu.sk/File/KMO/SimanC_SlavkovaJ_Vyvoj_snehovej_pokryvky_Sloven- sku_obdobie1981_82_2017_18.pdf [In Slovak] Iv et a M ar ko vá , M ik ul áš M on oš i 156 Sólymos, L. (2018). Investície do opatrení proti suchu a nedostatku vody pomôžu zlepšiť životné pros- tredie, ale aj kvalitu života ľudí (Investing in measures to combat drought and water scarcity will help to improve the environment, but also the quality of people’s lives). https://www.minzp.sk/tlacovy-ser- vis/tlacove-spravy/tlacove-spravy-2018/tlacove-spravy-marec-2018/solymos-investicie-do-opa- treni-proti-suchu-nedostatku-vody-pomozu-zlepsit-zivotne-prostredie-aj-kvalitu-zivota-ludi.html [In Slovak] Tigkas, D., Vangelis, H., Tsakiris, G. (2014). �e drought indices calculator (DrinC). Proceedings of 8th International Conference of EWRA, 26th–29th June 2013, Porto, Portugal. Vicente-Serrano, S.M., Begueri, S., Lopéz-Moreno, J.I. (2009). A multiscalar drought index sensitive to global warming: �e standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696–1718. https://doi.org/10.1175/2009JCLI2909.1 Abstract �e development of climate change is evaluated on the basis of trends in a long-term time series (1951– 2018) of individual climatic elements by comparing values from individual years with the normal period in climatology of 1961–1990. �e aim of the article is to present the manifestations of climate change in Slo- vakia (since its inception) according to selected indicators: (1) average annual air temperature, (2) soil tem- perature, (3) total atmospheric precipitation and (4) drought index over the last decade. �e data presented in the article were obtained from public reports on the state of the environment in the Slovakia and other related documents. Slovakia, during the years 1881–2018, underwent signi�cant changes in all monitored climatic elements. �e most signi�cant changes were in 2017 and 2018. Key words: annual air temperature, annual total precipitation, climate change, dryness index Received: [2020.06.08] Accepted: [2020.09.13] Ekspresja zmian klimatu w Republice Słowackiej Streszczenie Postęp zmian klimatu ocenia się na podstawie trendów w długoterminowych szeregach czasowych (1951– 2018) poszczególnych elementów klimatu, na podstawie porównania wartości z wielu lat, z normalnym okresem w klimatologii 1961–1990. Celem artykułu jest przedstawienie przejawów zmian klimatycznych na Słowacji (od ich powstania) według wybranych wskaźników: (1) średnia roczna temperatura powietrza, (2) temperatura gleby, (3) suma opadów atmosferycznych, (4) susza indeks w ciągu ostatniej dekady. Dane przedstawione w artykule pochodzą z publicznych raportów na temat stanu środowiska w Republice Sło- wackiej i innych powiązanych dokumentów. W Słowacji w latach 1881–2018 znaczącym zmianom uległy wszystkie monitorowane elementy klimatyczne. Największe zmiany zaobserwowano w latach 2017 i 2018. Słowa kluczowe: roczna temperatura powietrza, roczne sumy opadów, zmiany klimatu, wskaźnik suszy Information on the authors Iveta Marková https://orcid.org/0000-0001-9424-2024 She deals with simulate accidents (mainly �res) with the purpose of creation of experimental research database, creation of simulations and animations of chosen crises models for all �rst respondents (�re scenarios, evacuation models), on-site experimental monitoring activities (temperature, microclimatic conditions, �ames) and �re experiments. Mikuláš Monoši He deals with �re�ghting technics using by the Fire and Rescue Corps in the Slovak Republic. �e im- portance of a criterion assessment of �re�ghting technics, climate changes and forest �res in the Slovak Republic.