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Abstract

The 1997 September-October Umbria-Marche sequence has been extensively studied in the past by analyzing
coseismic displacement data (GPS, leveling, SAR). Here we focus on synthetic data representative of the main
event of the 1997 Umbria-Marche sequence and investigate the effects of a crustal layering proper to the Colfior-
ito area on surface displacements and inferred source features when inverting coseismic geodetic data without
taking into account layering. We compare bootstrapping and NA-Bayes as tools for parameter uncertainty as-
sessment and show how the Akaike Information Criterion can be used to select the model which is most likely
to be correct. Since SAR images offer the most complete coverage of the study area, we use synthetic line-of-

sight displacement data.

Key words data inversion — geodesy — coseismic dis-
placement

1. Introduction

The 1997 Umbria-Marche sequence in-
cludes two moderate magnitude earthquakes
(September 26th, My, = 5.8 and M,, = 6.0) that
occurred near the village of Colfiorito followed
by a sequence of aftershocks lasted several
months. The aftershock activity included a My,
= 5.6 earthquake (that occurred near the village
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of Sellano on October 14th) and three events
with magnitude larger than 5.2. The Colfiorito
sequence has been extensively studied using ge-
ologic data, strong motion data, teleseismic and
regional waveforms, GPS, levelling and SAR
data (see e.g. Cinti et al., 1999; Capuano et al.,
2000; Pino et al., 1999; Hunstad et al., 1999;
Lundgren and Stramondo, 2002; De Martini et
al., 2003; Crippa et al., 2006). Larger shocks
share SW strikes and normal fault mechanisms.

After the September 26th event, 12 monu-
ments from the IGMI95 GPS network within 30
km off the epicentre were reoccupied, including
FOLI and COLF that were occupied continu-
ously during the survey. Coseismic diplace-
ments were obtained by comparing the 1997
survey coordinates with those collected in
1995. Two sites (CROC, -13.8 cm N and -1.9
cm E; PENN, 7.6 cm N and 8.0 cm E) showed
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significant horizontal displacements and one
(CROC, -24.7 cm) showed significant vertical
displacements (Hunstad et al., 1999).

The epicentral area is crossed by Line 21 of
the Italian first-order levelling network (operat-
ed by IGM), which runs from Foligno, central
Umbria, to Fiumesino, on the Marche coast; the
first (southernmost) section of Line 21 trends
almost N-S between Foligno and Fossato di Vi-
co and includes about 40 bench marks. The
route was measured in 1951, 1992 and was re-
surveyed in 1998. The data showed maximum
subsidence of 7.8 cm, and maximum uplift of
1.6 cm (De Martini et al., 2003).

Differential interferograms related to the
1997 Colfiorito events have been obtained from
ERS-1 and ERS-2. Because of the strong topo-
graphic relief of the Apennines and the signifi-
cant vegetation cover of the epicentral area,
even the best interferograms show large decor-
relation areas (Salvi et al., 2000). For this rea-
son, even though a large number of SAR data
are available from July 1993 to October 1997,
only few significant interferograms have been
obtained, covering different periods of the se-
quence. The most studied interferogram is the
35-day ERS-2 one (e.g. Stramondo et al., 1999;
Crippa et al., 2006) covering the period 7 Sep-
tember to 12 October 1997.

Geodetic data are usually affected by both
correlated and uncorrelated noise. For example,
levelling data are obtained by measuring the el-
evation difference between consecutive bench
marks (section height differences). Bench mark
elevations with respect to the reference bench
mark can then be computed, and are often used
instead of section height differences for model-
ing. This operation introduces nondiagonal
terms in the covariance matrix of bench mark
elevation differences, whose diagonal terms are
related to uncorrelated noise (e.g. Amoruso and
Crescentini, 2007).

As regards SAR data, the unwrapped differ-
ential phase is also affected by both uncorrelat-
ed and correlated noise. Correlated noise is
caused by atmospheric disturbances, and can be
expressed by an exponential autocorrelation
function. This noise can be handled following
two different schemes: using a non-diagonal
covariance matrix in the data inversion proce-
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dure (Fukushima et al., 2005) or removing from
the interferogram the influence of atmospheric
heterogeneities after considering stable areas
close to the epicentral area to analyse the spa-
tial autocorrelation (e.g. Crosetto et al., 2002).
We prefer the former scheme, since, as stressed
in Crosetto et al. (2002) the removal procedure
«suffers for its intrinsic limitation related to the
non-stationarity of the analysed signal, which
practically confines its use to the vicinity of the
stable areas». To give an idea of overall noise in
SAR data related to the Colfiorito events, Lund-
gren and Stramondo (2002) assigned a standard
deviation of 1 cm to each contoured data point
(i.e., points of line-of-sight, LOS, displacement
contours at 28 mm intervals).

If both correlated and uncorrelated noise is
present, measured data are not statistically in-
dependent. However, the data covariance ma-
trix is symmetric and can be reduced to diago-
nal form by means of a rotation matrix; the
same rotation transforms the data to independ-
ent form (i.e. a set of statistically independent
data, which are linear combinations of the
measured ones). The eigenvalues of the covari-
ance matrix give the uncertainties of the trans-
formed independent data. This procedure can
also be used in case of non-normal distribution
of errors and consequently for robust fitting
(Amoruso and Crescentini, 2007).

Model parameters are usually obtained from
experimental data through the appraisal of a
cost function which measures the disagreement
between data and model predictions.

Several different causes contribute to differ-
ences between predictions and observations
(the residuals of the retrieved model): measure-
ment errors, intrinsic misfits (e.g. misfits due to
heterogeneities in slip distribution, non-planar
faults, heterogeneities in the elastic properties
of the medium, when the adopted model is too
simple, like a planar uniform-slipping fault in a
homogeneous half-space), local response ef-
fects (e.g. soil compaction, landslides, topo-
graphic effects). For example, Amoruso et al.
(2004) generated synthetic geodetic coseismic
data (GPS, SAR, and levellings) in a layered
medium and performed inversions of the syn-
thetics, under the assumption of homogeneous
half-space. Horizontal displacements are more
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affected than vertical ones by the presence of a
superficial soft layer, but differences with syn-
thetics generated in a homogeneous half-space
did not show any simple regular behaviour,
even if a few features could be identified. Con-
sequently, also retrieved parameters of the ho-
mogeneous equivalent fault obtained by uncon-
strained inversion of surface displacements did
not show a simple regular behaviour. Amoruso
et al. (2004) pointed out that the presence of a
superficial layer may lead to misestimating sev-
eral fault parameters both using joint and sepa-
rate inversions of the three components of syn-
thetic displacement. The effects of the presence
of the superficial layer depend on whether all
fault parameters are left free in the inversions or
some of them are fixed a priori. In the inversion
of any kind of coseismic geodetic data, fault
size and slip could be largely misestimated, but
the seismic potency (product of ruptured area
and average slip) is well determined (within a
few per cent) in most cases even neglecting lay-
ering. Of course, the amount of the effect of the
superficial low-rigidity layer depend on the
contrast of the elastic parameters. For example,
Battaglia and Segall (2004) and Crescentini and
Amoruso (2007) have shown that layering ef-
fects are negligible and relevant respectively
when considering two different volcanic envi-
ronments and layering properties (Long Valley
and Campi Flegrei). Assessing the effects of
layering is a case-to-case problem.

Intrinsic misfits and local response effects,
as well as possible systematic errors, could be
spatially coherent over small or large areas, and
are not zero-mean random variables. Rigorous
handling of data should take into account, and
properly treat, all error sources (measurement
errors, systematic errors, intrinsic misfits and so
on), after a reliable a priori estimate of all the
errors, and the determination of how much dif-
ferent error sources effectively affect data. This
is quite a hard task, largely case-to-case de-
pendent. In case of levelling data, if measure-
ment errors can be reliably estimated, after in-
verting the transformed independent data, re-
duced chi-square of residuals can be computed
and used to refine uncorrelated error variance
when the number of degrees of freedom is eas-
ily computable, e.g. in case of one uniform-slip
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rectangular fault in a homogeneous half-space
(Amoruso and Crescentini, 2007).

The cost function is usually obtained from
maximum-likelihood arguments according to
the assumed statistical distribution of the resid-
uals. Misfit is written in terms of the trans-
formed independent data set, and, usually, ei-
ther the mean squared deviation of residuals
(chi-square fitting, M>, proper for normally dis-
tributed errors) or the mean absolute deviation
of residuals M, proper for two-sided-exponen-
tially distributed errors and robust fitting) are
used. If possible, it is preferable to compare re-
sults obtained using M; and M>.

Estimates of the model parameters can be ob-
tained by the best-fitting approach, i.e. the mini-
mization of the cost function. When inverting ge-
odetic data, the cost function depends nonlinear-
ly on parameters and is characterized by a rough
landscape and several local minima. Monte Car-
lo techniques are the only efficient tool to search
for the global minimum, but require computing a
large number of forward models (data prediction
given a set of model parameters).

Thus the use of fast codes for forward mod-
elling is preferable if not essential. Among the
Monte Carlo global optimization methods (e.g.
uniform sampling, genetic algorithms, simulat-
ed annealing) we prefer to use Adaptive Simu-
lating Annealing (ASA, Ingber 1993). General-
ly speaking, each step of any Simulated-An-
nealing algorithm replaces the current point in
the parameter space by a random «nearby»
point, chosen with a probability that depends on
the difference between the corresponding cost-
function values and on a global parameter (7)
that is gradually decreased during the process
according to some annealing schedule. ASA
considers that different parameters might re-
quire different annealing schedules. The expo-
nential annealing schedules used by ASA en-
sure ample global searching in the first phases
of search and ample quick convergence in the
final phases. Even if success in finding the
global minimum is never guaranteed and inver-
sions from different starting points and/or using
different program options can lead to different
endpoints, the ability of ASA to self optimize
its program options recursively makes it a very
powerful technique.
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The best-fitting approach does not give pa-
rameter uncertainties and consequently is of
limited significance. A commonly used tech-
nique (associated with global minimization) to
assess acceptable parameter ranges consists in
the use of the bootstrap percentile method. This
method applies the best-fit technique to a large
number of synthetic data sets, obtained by ran-
domly resampling from the actual data set with
replacement and is often used to estimate confi-
dence intervals without making assumptions
about the underlying statistics of errors.

Bootstrapping also estimates correlations
between different parameters, by forming a scat-
ter plot of all the estimates for each parameter
pair and visualizing the correlations between the
parameter pairs (e.g. Amoruso et al., 2005). The
computed values for the model parameters from
the synthetic data sets form an estimate of the
sampling distribution of the parameter values,
independently from the underlying statistics.
This method gives reliable results only if the hy-
pothesis of independent identically-distributed
data is verified. As a consequence, in the pres-
ence of a non-diagonal data covariance matrix,
bootstrapping can only be applied to the inde-
pendent rotated data, not the measured data.

A different approach is used in the Neigh-
bourhood Algorithm (NA-sampler, Sambridge,
1999a). NA generates ensembles of models
which preferentially sample the good data-fit-
ting regions of the parameter space, rather than
seeking a single optimal model. The algorithm
makes use of only the rank of a data fit criteri-
on rather than the numerical value; in other
words, points in the parameter space are listed
according to their capability to fit the data (an-
swering the question «does point A give a bet-
ter fit to the data than point B?») without quan-
tifying the difference in a precise way. With this
rank-based approach, the weight of each of the
previous sampled points in driving the search
depends only on their position in the rank list.
The companion code NA-Bayes (NAB, Sam-
bridge 1999b) consists of an algorithm for us-
ing the entire ensemble of models produced by
NA, and deriving information from them in the
form of Bayesian measures of resolution, co-
variance and marginal probability density func-
tions (PDF) etc. The input ensemble in princi-
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ple can follow any distribution and be generat-
ed by any search method (e.g. the NA-sampler
algorithm, a genetic algorithm or simulated an-
nealing algorithm).

In any case, we assume a priori a physical
model to explain the data. In principle, any set
of data can be almost perfectly fit by using a
sufficiently complicated model, but it could be
unrealistic and overmodelling (i.e., using more
parameters than necessary) has to be avoided.
Attempts to find the model that best explains
the data with a minimum number of parameters
accomplish the parsimony principle.

If nested models (the more complicated
model includes the simpler one as a particular
case) have to be compared, the F-test approach
could be used. The F-test is based on tradition-
al hypothesis testing. Under the normal distri-
bution hyphothesis, F-test compares the differ-
ences in * between nested models with the dif-
ference expected by chance, i.e. it quantifies the
relationship between the improvement in
and the relative increase in degrees of freedom
g. The null hypothesis is that the simpler mod-
el is correct, i.e. that none of the additional pa-
rameters is significantly correlated with the
model. Unfortunately, the test is unreliable if
residuals depart from the normal distribution
even slightly. Moreover, the F-test is not valid if
the models are not nested or it is difficult to es-
timate the actual number of g (as in the case of
distributed-slip faults, due to the presence of
constraints like smoothness or slip positivity).

The Akaike Information Criterion (AIC,
Akaike, 1974) is a measure of the goodness of
fit of an estimated statistical model. It is based
on information theory and does not use hypoth-
esis testing, so there is no conclusion about sta-
tistical significance and rejection of a model.
AIC attempts to find the model that best ex-
plains the data with a minimum number of pa-
rameters taking into account both the value of
the likelihood function and the number of pa-
rameters in the model, i.e. trading off the com-
plexity of an estimated model against how well
the model fits the data. AIC includes a penalty
that is an increasing function of the number of
estimated parameters. The model with the
smallest AIC is most likely to be correct. For a
small number of observations, a second order
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Fig. 1. Slip distribution on the source fault.

correction is added to the general AIC; correct-
ed AIC (AICc) converges to AIC as the number
of observations increases (e.g. Hurvich and
Tsai, 1989). In addition, the difficulty of esti-
mating the actual number of degrees of freedom
can be surmounted by using the Akaike Infor-
mation Criterion. Even if the results are not au-
tomatically generalizable, Amoruso and Cres-
centini (2007) have shown, in case of levelling
measurements and the one-fault model of the
1908 Messina earthquake, that the Akaike In-
formation Criterion is not only an effective tool
to discriminate if increasing the number of sub-
faults in a distributed-slip model really im-
proves the model or does not, but also to esti-
mate uncorrelated errors, which partially reflect
model inadequacy.

Here we investigate the effects of a crustal
layering proper to the Colfiorito area on surface
displacements and inferred source features
when inverting synthetic geodetic data repre-
sentative of the main event of the 1997 Umbria-
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Marche sequence. We compare different meth-
ods for parameter uncertainty assessment and
we show how the AICc can be used to select the
distributed-slip model which is the most likely
to be correct as a result of the inversion of avail-
able data. Since SAR images offer the most
complete coverage of the study area, we use
synthetic LOS displacement data.

2. Generation and inversion of synthetic co-
seismic displacement data

2.1. Generation

To generate synthetic displacements we use
the slip distribution in fig. 1, which resembles
the recently published distributed-slip model of
the main event in Crippa et al. (2006). The
source fault (divided into 100-along-strike and
80-along-dip subfaults) is embedded both in a
homogeneous half-space (HHS; Okada, 1985)
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Table I. Multilayered model used in this work (Megna, 2007).

Depth (km) Vp (m/s) Vs (m/s) Density (kg/m’)
0-1 2300 1200 2300
1-2 5400 2500 2600
2-8 6300 3400 2800
>8 5500 3000 2840

and the layered half-space (LHS; Wang er al.,
2006) detailed in table I (Megna, 2007). Strike,
dip and rake are 138°, 45°, and -75° respective-
ly. We then add uncorrelated random noise. As
previously mentioned (see Introduction) atmos-
pheric disturbances generate correlated random
noise that can be expressed as an exponential
covariance function and would require trans-
forming the data to independent form, but treat-
ment of the effects of atmospheric disturbances
is beyond the aims of this paper. Displacements
(northward, eastward, vertical) were computed
on a grid spanning 15000 m toward North, step
100 m, and 20000 m toward East, step 100 m.
We simulated SAR-like unwrapped data
through a proper combination of the displace-
ment components taking into account the ERS-
2 LOS. LOS displacement (positive toward the
satellite) maps for HHS and LHS are in fig. 2a
and fig. 2b respectively. Figure 2c¢ shows the
residuals of the linear least squares regression
between LHS and HHS displacements. As ex-
pected (e.g. Amoruso et al., 2004) residuals are
about 15% of the signal, and, being obtained
using a linear best fit, are not merely due to a
translation or a scale factor.

LHS LOS displacement after the addition of
noise (generated using random variates from a
normal distribution with zero-mean and 1-cm-
standard deviation) is shown in fig. 3. To reduce
the number of data in the inversions, the dis-
placement map was decimated (undersampling
interval = 3 bins).

Even if noise added to synthetics was ob-
tained from a normal distribution, model inade-
quacy is expected to enlarge tails of the residual
distribution with respect to the normal distribu-
tion and we minimize the mean absolute devia-
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tion of residuals M;, commonly used for robust
fitting:

Vi \7,'(0)
Wi

M, = 2.1)

where 7 is the number of data and v; is the co-
seismic change estimated for element i of the
data set. The data set must be composed of sta-
tistically independent data: if they are not (i.e.
the covariance matrix is not diagonal) then they
have to be transformed accordingly. Here ex-
perimental data are not rotated because of the
absence of correlated noise. Model predictions
vi (a) depend on model parameters a, and w; are
the uncertainties of the independent data.

2.2. Inversion, uniform-slip model

At first, we invert noisy LHS LOS displace-
ments for a uniform-slip rectangular fault em-
bedded both in HHS and in LHS using ASA.
This model involves a parameter set a which
consists of the strike and dip angles of the fault,
the rake angle of the slip vector, two geometri-
cal fault dimensions (along-strike length and
along-dip width), location of start point of the
fault upper side along the strike direction (x,
positive Northward; y, positive Eastward),
depth of the upper side of the fault (z, positive
downward), and magnitude of the slip.

Figure 4 shows the two best-fit uniform-slip
faults over the distributed-slip source fault. Po-
tency of the best-fit faults is the same inside 2%
(= 2.65 x 10" m?), about 9% lower than the po-
tency of the source fault (2.89 x 10’ m?®). The
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Fig. 2. Map of synthetic LOS displacements generated in the HHS (left) and LHS (middle). Right, map of the
residuals of the best-fit linear regression between LOS displacements in the HHS and LHS.
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Fig. 3. Map of noisy synthetic LOS displacements generated in the LHS. Horizontal projection of the source
fault in black.

only noticeable difference between the two be performed at each resample in the bootstrap
best-fit faults consists in the expected focusing procedure, but in our case computation time
effect in the HHS: while the LHS fault is cen- would be unacceptable. In this work we use a
tered on the slip patch of the source fault, the faster method (downhill simplex; Press et al.,
HHS fault is shifted by about 700 m upward 1992), starting from the ASA best-fit model to
along the dip direction, i.e. 500 m in depth. explore the parameter region surrounding it. As

PDFs of model parameters were estimated regards NAB, the input ensemble has been gen-
using both bootstrapping and NAB. Strictly erated by NA. Figure 5 shows estimated PDFs
speaking, a full optimization procedure should as well as best-fit parameter values. The true
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Fig. 4. Best fit uniform-slip fault in the HHS (thin-line rectangle) and LHS (tick-line rectangle) over the dis-

tributed-slip source fault. Numbers give slip.

source values are also shown when pertinent,
i.e. for strike, dip, and rake. The best-fit values
and PDFs are in agreement with the true values,
but strike is somewhat overestimated, owing to
the uniform-slip approximation, as it will be
clarified below. PDFs obtained using the two
techniques are generally in mutual agreement;
apparently larger differences relate to depth of
the fault upper side and along-dip width in the
LHS case. However, fig. 6 shows that there is a
trade-off between them and the trade-off pattern
is very consistent between bootstrapping and
NAB.

2.3. Inversion, distributed-slip models

As a second step, we consider a small num-
ber of coplanar subfaults (2 along strike and 2
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along dip, numbered along the strike direction,
starting from the shallower part of the fault),
which slip independently at the same rake an-
gle, thus adding three additional parameters to
the model. Figure 7 shows the two best-fit 2 x 2
faults over the distributed-slip source fault. Po-
tency of the best-fit faults is the same inside 4%
(= 2.6 x 10'm?), about 10% lower than the po-
tency of the source fault (2.89 x 10’ m?). As in
the case of the uniform-slip model, the only no-
ticeable difference between the two best-fit
faults consists in the focusing effect.

Once again, PDFs of model parameters
were estimated using both bootstrapping and
NAB, as detailed in the case of the uniform-slip
fault. Figure 8 shows estimated PDFs as well as
best-fit parameter values and suggests similar
comments with respect to the uniform-slip
model. PDFs from NAB are more scattered
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Fig. 5. PDFs of inferred fault parameters in the HHS (thin lines) and LHS (thick lines): dashed lines, bootstrap-
ping; solid lines, NAB. Vertical dotted lines show ASA best-fit values; vertical dash-dotted lines indicate true

parameter values. Uniform-slip model.

than from bootstrapping, especially for subfault
slips. This behaviour is probably related to the
cost function roughness: on the one side NA
could be in some trouble in sampling the pa-
rameter space efficiently, as suggested by its
best-fit misfit (larger than that obtained by
ASA, using the same number of forward mod-
els), on the other, bootstrapping uses simplex,
which could be unable to escape from local
minima. This problem deserves great attention
and deep investigation while inverting real data.

As a first simple application of model selec-
tion criteria (selecting the model that best ex-
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plain the data with a minimum number of pa-
rameters) we use AIC corrected for small sam-
ple sizes (Hurvich and Tsai, 1989)

M

2nk enlnM
nln=

AlCc = P

2.2)

to compare the uniform-slip fault model and the
2x2 one. Here n is the number of data, k is the
number of parameters, and M is the chosen dis-
crepancy (measure of lack of fit, e.g. Zucchini,
2000); in this case M = M. Difference in AICc
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Fig. 6. 2D PDF of fault upper-side depth and along-dip width as obtained using NAB (linear gray scale) and
scatter plot from bootstrapping (circles). LHS uniform-slip model.
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Fig. 7. Best fit 2 x 2 fault in the HHS (thin-line rectangles) and LHS (thick-line rectangles) over the distrib-
uted-slip source fault. Numbers give slip.
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is about -500 both for the HHS and the LHS, in-
dicating that the uniform-slip model is too sim-
ple and requires complex models to be tested.
Increasing the number of subfaults would
disclose the main features of the slip pattern
and possible changes in fault geometry while
relaxing the assumption of uniform slip (e.g.
Amoruso et al., 2002), but also increases the
difficulty of studying the cost function features.
In this work, fault plane geometry and rake an-
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gle show very small changes when turning from
the uniform-slip fault model to the 2 X 2 one,
thus we use both the geometry and mechanism
of the fault plane of the best fitting uniform-slip
model to estimate the slip distribution, but we
increase the along-strike length and the
downdip width of the fault. To enlighten the ef-
fects of neglecting layering when inverting ge-
odetic data, we consider the HHS case. The
fault is divided into an even grid of p-along-
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Fig. 9. Trade-off curves between the M, of LOS displacements and the roughness of the slip distribution, for
different p x g-subfault models. Labels give the weight f of roughness in the cost function.

strike x g-along-dip subfaults, with variable slip
magnitude and constant rake. We minimize the
cost function

1 PXq

X qZ(st)f

i=1

z":(v,--v%i(a)>z+fA

i=1

2.3)

using the algorithm for the least squares prob-
lem with linear inequality constraints of Law-
son and Hanson (1995). Here Vs is a finite dif-
ference approximation to the Laplacian of the
slip distribution and A is the area of each sub-
fault. It would also be interesting to use misfit
M, of LOS displacements, but it leads to the
prohibitive problem of nonlinear minimization
in a huge space.

Finding the optimal model parameters thus
requires the simultaneous optimization of two
objective functions, namely the fit to the data
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and the roughness, whose relative importance is
controlled by the adimensional smoothing pa-
rameter f. The choice of fis a basic problem in
inverse theory. Traditionally, it is selected from
a «trade-off» curve which plots the trade-off be-
tween the two objective functions when varying
the value of f. The trade-off curve is monotonic
and asymptotes to the minimum value of the
roughness (which is zero) at one end and the
minimum value of the fit to the data at the oth-
er. Choosing a suitable value of fis somewhat
arbitrary, but the knee of the trade-off curve is a
good compromise between the model complex-
ity and the data fit. Cross validation is a more
rigorous criterion (e.g., Matthews and Segall,
1993) but is computationally intensive. Tests
performed by Arnadottir and Segall (1994)
show that cross validation gives an optimal es-
timate of f, while the trade-off curve gives a
slightly smoother solution. We use the trade-off



Inversion of synthetic geodetic data for the 1997 Colfiorito events: clues on the effects of layering, assessment of model parameter PDFs, and model selection criteria

Best-fit slip distribution, HHS

=

Along-dip distance(km)
O © 0O N o o M W N = O

—

01 2 3 45 6 7 8 9101112 13
Along-strike distance (km)

Fig. 10. Best fit 40 x 32-subfault slip distribution (f= 3 X 10" gray contours) over the distributed-slip source fault.
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estimation since it is somewhat more conserva-
tive in smoothness and computationally less in-
tensive than the cross-validation technique. The
trade-off curve between the M, misfit of LOS
displacements and the roughness of the slip dis-
tribution is shown in fig. 9. It is noticeable that
f=3x10"is in the knee region of the trade-
off curve independently of the number of sub-
faults (as far as the number of subfaults is large
enough to introduce roughness) suggesting that
Jf can be chosen using a single trade-off curve
(i.e. a single p x g configuration) for each real
case. Figure 10 shows the retrieved 40 x 32 slip
distribution overlying the true one. Once again,
the most relevant feature consists in the expect-
ed focusing effect in the HHS, since the maxi-
mum slip patch is shifted by about 1400 m up-
ward along the dip direction, i.e. 1000 m in
depth.

It is important to realize if so many sub-
faults (40 x 32) are really necessary to represent
the slip distribution or, on the other end, if they
are enough. We computed AICc for 6 x 4, 8 x
6, 10 x 8, 12 x 10, 15 x 12, 20 x 16, 40 x 32
subfaults. Minimum AICc is obtained for 12 X
10 subfaults. Because AICc is on a relative
scale, here we give the AICc differences with
respect to the 12 X 10 case, i.e. 739 for 6 x 4, 84
for 8 x 6, 10 for 10 x 8, 93 for 15 x 12, 384 for
20 x 16, 3778 for 40 x 32. Figure 11, upper
plots, shows the capability of AICc to find the
model that best explains the data with a mini-
mum of parameters, by comparing contours of
the slip distribution for 6 X 4, 12 x 10, and 40 x
32, subfaults. Lower plots in fig. 11 show the
importance of using the correct weighting fac-
tor from trade-off curves when combining dif-
ferent terms in the cost function: if fis too small
(left plot) the retrieved slip distribution shows
unreal small-scale features, if f is too large
(right plot) the retrieved slip distribution is too
smooth. The same approach should be followed
in joint invertion of different kinds of data (see
e.g. Amoruso et al., 2008, for EDM and level-
ling data).

3. Conclusions

Inversion of synthetic coseismic displace-
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ment data representative of the main event of
the 1997 Umbria-Marche sequence has been
used to enlight the effects of a crustal layering
proper to the Colfiorito area on inferred source
features when layering is not taken into ac-
count. As a test case we use a recently pub-
lished distributed-slip model (Crippa et al.,
2006) and we show that the focusing effect of
the fault slip distribution can be as large as 1
km.

PDFs of model parameters obtained using
bootstrapping and NAB are generally in mutual
agreement; apparent larger differences relate to
the presence of trade-off between selected mod-
el parameters (e.g. depth of the fault upper side
and along-dip width). PDFs from NAB are usu-
ally more scattered than from bootstrapping,
especially for subfault slips. This behaviour is
probably related to the cost function roughness:
on one side NA could be in some trouble in
sampling the parameter space efficiently, on the
other we use simplex, which could be unable to
escape from local minima, for bootstrapping to
reduce computing time. This problem deserves
attention in the inversion of real data.

When inverting for the slip distribution, we
use a roughness weight that appears independ-
ent of the number of subfaults, thus suggesting
that its optimal value can be assessed by a sin-
gle trade-off curve (i.e. a single p x ¢ configu-
ration) for each real case. The number of sub-
faults, that are necessary and sufficient (from
the point of view of the information theory) to
account for measurements can be obtained from
AICc and in this work is as small as 12 x 10.
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