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Abstract

From 08/01/1983 to 28/03/1990, at the Bishkek ElectroMagnetic (EM) test site (Northern Tien Shan and Chu Val-
ley area, Central Asia), strong currents, up to 2.5 kA, were released at a 4.5 km long electrical (grounded) dipole.
This area is seismically active and a catalogue with about 14100 events from 1975 to 1996 has been analyzed. The
seismic catalogue was divided into three parts: 1975-1983 first part with no EM experiments, 1983-1990 second
part during EM experiments and 1988-1996 after experiments part. Qualitative and quantitative time series non- lin-
ear analysis was applied to waiting times of earthquakes to the above three sub catalogue periods. The qualitative
approach includes visual inspection of reconstructed phase space, Iterated Function Systems (IFS) and Recurrence
Quantification Analysis (RQA). The quantitative approach followed correlation integral calculation of reconstruct-
ed phase space of waiting time distribution, with noise reduction and surrogate testing methods. Moreover the Lem-
pel-Ziv algorithmic complexity measure (LZC) was calculated. General dynamics of earthquakes’ temporal distri-
bution around the test area, reveals properties of low dimensional non linearity. Strong EM discharges lead to the
increase in extent of regularity in earthquakes temporal distribution. After cessation of EM experiments the earth-
quakes’ temporal distribution becomes much more random than before experiments. To avoid non valid conclusions
several tests were applied to our data set: differentiation of the time series was applied to check results not affected
by non stationarity; the surrogate data approach was followed to reject the hypothesis that dynamics belongs to the
colored noise type. Small earthquakes, below completeness threshold, were added to the analysis to check results
robustness.

Key words seismic regime — strong electrical dis- ity is certainly not a pure random process under
charges — non-linear dynamics a multidisciplinary approach. Magnitude, time
and spatial distribution of earthquakes present
aspects of self similarity or fractal character evi-

1. Introduction denced by several authors (De Rubeis et al.,
1993; Turcotte, 1997). On the other hand seis-

The dynamics of seismic process is far from micity cannot be deterministically explained al-
being clearly understood and modeled. It pres- though efforts have been made to show its quasi
ents recent several aspects showing that seismic- periodic character. A direct consequence of this

situation is the almost complete impossibility
to precisely predict earthquakes (Geller et al.,

1997; Main, 1999).
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struction and fractal dimension of the attractor
help to distinguish between a purely random
process and a complicated process driven by a
finite, limited set of rules. This was allowed by
the recognition that non linearity can produce
complex dynamic behavior in systems driven
by a finite number of factors.

The enormous gap between «simple» lin-
ear deterministic models and random, compli-
cated and strongly unpredictable processes
seems to be filled with these new analytical
tools. The aim is to render tractable, in a cer-
tain way, phenomena and data otherwise not
clearly depicted.

The present work investigated the influence
of strong EM discharges on earthquakes tempo-
ral distribution.

Experiments on the triggering effect of
MHD (magneto-hydro-dynamic) soundings on
the microseismic activity of the region were
performed in 1975-1996 by IVTAN (Institute
of High Temperatures of Russian Academy of
Sciences) in the Central Asia test area (Tarasov,
1997; Tarasov et al., 1999; Jones, 2001). Dur-
ing these experiments deep electrical sounding
of the crust was carried out at the Bishkek test
site in 1983 to 1989. The source of electrical
energy was the MHD generator, and a load was
an electrical dipole of 0.4 € resistance with
electrodes located at a distance of 4.5 km from
each other. When the generator was fired, the
load current was 0.28-2.8 kA, the sounding
pulses had durations of 1.7 to 12.1 s, and the en-
ergy generated was mostly in the range of 1.2-
23.1 MJ (Volykhin, 1993).

Evidence of some relationships between
EM discharges and seismic activity have been
pointed out under a statistical aspect and in a
time range of days after EM experiments
(Tarasov, 1997). Here the general dynamical as-
pect is considered. A good seismic catalogue of
the area is available well before, during and
well after this period. A simple causal relation-
ship between the two processes is not strongly
evident. Relations appear to be present but data
noise is also relevant. It is useful to investigate
if the seismic dynamics, in periods before, dur-
ing and after EM experiments, is influenced by
the introduction of strong electric current into
the ground.
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2. Methods

The investigation was performed according to
the general scheme of time series non-linear
analysis (Abarbanel et al., 1993; Sprott and Row-
lands, 1995; Kantz and Schreiber, 1997; Goltz,
1998; Hegger and Kantz, 1999). In general data
analysis can be performed firstly under a more
qualitative and visual approach and subsequently
a more quantitative methodology can be applied.

The qualitative approach includes visual in-
spection of reconstructed phase space. Namely,
p-dimensional phase space from the scalar time
sequences was reconstructed by the method of
time delay (Packard et al., 1980; Takens, 1981).
According to Takens’ theorem it is possible to
catch the essential dynamic properties of a sys-
tem by a reconstruction of its phase space by
only one variable. Two- and three-dimensional
phase space portraits encapsulating essential
dynamic properties of the analyzed complex
process were used as qualitative tests. Also oth-
er qualitative tools have been used such as Iter-
ated Function Systems (IFS) (Jeffrey, 1992) and
Recurrence Plots (RP) (Eckman er al., 1987).
Generally recurrence analysis is a graphical
method designed to locate hidden recurring pat-
terns and structure in time series. The RP is de-
fined as

Ry=0(e-|%-% ) @1
here ¢; is a cut-off distance (often £ =0.10, o-
standard deviation), ©(x) is the Heaviside func-
tion, O(x)=0 if x<0 and O(x)=1 if x=0. Ac-
cording to Eckman the values one and zero in
this matrix commonly are visualized as black
and white (Eckman er al., 1987). The black
points indicate the recurrences of the investigat-
ed dynamic system revealing their hidden regu-
lar and clustering properties. By the definition,
RP has a black main diagonal (line of identity)
formed by distances in the matrix compared
with themselves. In order to understand RP it
should be stressed that it visualizes the distance
matrix which represents autocorrelation in the
series at all possible time (distance) scales. As
far as distances are computed for all possible
pairs, on the RP plots elements near the diagonal
correspond to short range correlation, whereas
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the long range correlations are revealed by the
points distant from the diagonal. Hence if the an-
alyzed dynamics (time series) is deterministic
(ordered, regular), then the recurrence plot
shows short line segments parallel to the main
diagonal.

Qualitative patterns of unknown dynamics
presented as fine structure of RP are often are too
difficult to be considered in detail. Therefore one
uses a modern quantitative method of analysis of
complex dynamics for RP approach (Recurrence
Quantitative Analysis or RQA) (Webber and
Zbilut, 1992). RQA is especially useful to over-
come the difficulties often encountered dealing
with non-stationary and rather short real data
sets. As a quantitative tool of complex dynamics
analysis RQA defines several measures mostly
based on diagonally oriented lines in the recur-
rence plots: recurrence rate, determinism, maxi-
mal length of diagonal structures, entropy, trend,
etc. In the present work recurrence rate — RR(?)
and determinism —DET(f) measures based on
analysis of diagonal oriented lines in the recur-
rence plot have been calculated (Weber and Zbi-
lut, 1994; Marwan et al., 2002).

Generally the Recurrence Rate RR(?) is the
ratio of all recurrent states (recurrence points)
to all possible states and is therefore the proba-
bility of the recurrence of a certain state. Sto-
chastic behavior causes very short diagonals,
whereas deterministic behavior causes longer
diagonals.

The ratio of recurrence points forming diag-
onal structures to all recurrence points is called
the determinism DET(f). DET(¢) is the propor-
tion of recurrence points forming long diagonal
structures of all recurrence points. Again, sto-
chastic and heavily fluctuating data cause none
or only short diagonals, whereas deterministic
systems cause longer diagonals.

An TIterated Function System (IFS) is a
Hutchinson operator on K (finite set of functions
moving points around in some space), which
maps a set of points to another set of points. If a
Hutchinson operator is repeatedly applied to a
compact set, in the limit it will render the unique
attractor of the IFS (Peitgen ef al., 1992). For
time series analysis purpose IFS attractors can be
used as qualitative measures of self similarity of
analyzed dynamics (more order is in time series
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more regular are structures in IFS attractor). We
use IFS as an additional qualitative tool for de-
tection of hidden structure in analyzed time se-
ries (Sprott and Rowlands, 1995).

These tests enables a first qualitative visual
inspection of unknown dynamics and help to un-
cover general properties of analyzed process.
Qualitative analysis reveals the possible existence
of specific attractors, e.g., strange ones which
point to the deterministic chaotic behavior.

As the main tool for quantitative analysis of
earthquakes dynamics, correlation integral cal-
culation of reconstructed phase space of tempo-
ral distribution has been performed (Abarbanel
et al., 1993; Kantz and Schreiber, 1997; Hegger
and Kantz, 1999). This approach is based on idea
of correlation sum. Correlation sum C(r) of a set
of points in the vector space is defined as the
fraction of all possible pairs of points which are
closer to each other than a given distance r. The
basic formula useful for practical application is

C=y=pe LOr-[x-x) @2

i=1 =i+l

where again ©(x) is the Heaviside step func-
tion, | x;—x;| is the Euclidian norm, i=j are ex-
cluded. For fractal systems for enough long
time series and for a small », C(r)xr” relation-
ship is correct. Commonly such dependence is
correct only for the restricted range of r values,
so called scaling region. Correlation dimension
v or d> is defined as

log C(r)
log(r) -

In practice d value is found from the slopes of
logC(r)/log(r) curves for different phase space
dimensions. The correlation dimension of an
unknown process is the saturation value of d,
which does not change by increasing of phase
space dimension.

In order to reduce possible spurious conclu-
sions on considered dynamics, noise reduction
and surrogate testing methodologies were used
(Kantz and Schreiber, 1997; Hegger and Kantz,
1999).

Besides, as additional quantitative test for rel-
atively short time series, the Lempel-Ziv algorith-
mic complexity measure (LZC) was calculated

v=d,=lim
r—0

2.3)
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(Lempel and Ziv, 1976). It is based on the trans-
formation of the original one dimensional time
series into a finite symbol sequence and is de-
fined as

Cy, = lim sup L](\}l) 24
N—oo

where N is the length of the original time series,

L(N)~N,,(N)(logsNw(N)+1) is the total length

of the encoded sequence, where N,,(N)=<N is

the total number of code words. Being one of the

tools for time series non-linear analysis, LZC is

especially suitable for relatively short real data
sets because it is not so demanding to the time se-
ries length as other methods (Zhang and Thakor,
1999; Matcharashvili and Janiashvili 2001).

3. Data and analysis

In the present study non-linear analysis was
performed on about 14100 time intervals (in
seconds) between earthquakes from 1975 to
1996. In the original catalogue, the energy of

Magnitude class 0-0.5

Magnitude class .5-1.0]

I Magnitude class 1.0»1,5]

1975 1980 1985 1990 1995 2000

25 500 3000
20 400
15 300 2000
10 200 1000
5 100
0 0 0

1975 1980 1985 1990 1995 2000 1975 1980 1985 1990 1995 2000

Magnitude class 1.5-2.0

| Magnitude class 2.0-2.5 |

| Magnitude class 2.5-3.0 |

6000 — 4000 1600
3000 1200

4000
2000 800

2000
1000 400
0 0 0

1975 1980 1985 1990 1995 2000 1975 1980 1985 1990 1995 2000

1975 1980 1985 1990 1995 2000

B \ 1
\ |
|

A

log (cumulative number of events)

|LL11[1[[1|IIIIIIIIIIIIIIIIIH||IIIIIIII|IIILLLLLLJ

o

2

N\

™

.o
\
o

4 5 6 7

Events magnitude

Fig. 1a,b. Results of the completeness analysis of the Ivtan Site seismic catalogue. a) Cumulative number of
events versus time for magnitude class step =0.5 for 0.<m>3.0. Note that cumulative number of events is
rescaled among magnitude classes. b) Log cumulative number of earthquake versus magnitude (Gutenberg-
Richter relation) for the whole catalogue; values of regression fit equation: Y=-0.83%X+5.40. Coefficient of de-

termination, R-squared =0.995.
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the events was expressed as energy class, which
we converted to magnitude using the following
relation (Riznichenko, 1985)

Lo E=4
T 18

3.1
where m is magnitude and E is the energy class.

The completeness of the catalogue was in-
vestigated first by considering the realization of
the Gutenberg-Richter relationship at low mag-
nitudes: departure from a straight line was in-
terpreted as a lack of completeness at low mag-
nitudes. As a result the catalogue was consid-
ered complete, under the sole magnitude aspect,
for m=1.7. The Gutenberg-Richter b-value was
found to be equal to 0.83 with a reasonably good
fit. Earthquakes with magnitude higher than 6
seem to show behavior typical of characteristic
events.

A second test was oriented to check the time
completeness. As is well known, a catalogue’s
completeness changes with time, usually as a re-
sult of improving seismic-network performance
(e.g., increasing number of stations), leading to
greater magnitude sensitivity. The completeness
analysis was performed by employing the
method of Mulargia et al. (1987). The method
consists in separating all events into magnitude
classes and plotting separately the cumulative
number of events versus time. Assuming that
during the considered time interval seismicity
had a constant rate, the flat behavior at the begin-
ning of the time period may be due to a lack of
data; this is normal for low-magnitude ranges.

Only for magnitudes higher than 2.0 is our
catalogue complete over the entire time period
(number of earthquakes n=5297). If a lower
magnitude limit is desired, the time period from
year 1980 is more appropriate (fig. 1a,b). As a
result of the analysis performed, a relatively
complete catalogue was obtained with a lower
magnitude threshold of 1.7 from the year 1980.

For the present study the catalogue was an-
alyzed under the time aspect, specifically on in-
ter-event (waiting) times. A catalogue subset of
waiting times was used according to complete-
ness analysis, i.e. all time spans and m>2.0.
Then all data used were selected by the same
procedure for confirmation of results and to test
their robustness.
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4. Results and discussion

Figures 2a-f presents the results of qualitative
analysis of waiting times sequences above the
mentioned threshold. Namely in fig. 2a,c.e, IFS
clumpiness test (Jeffrey, 1992; Sprott and Row-
lands 1995) and in fig. 2b,d,f, recurrence plot
analysis (Zbilut and Webber, 1992) results reveal
that after the beginning of the experiments some
structure in plots is visible, pointing to the in-
creased amount of functional interdependence in
earthquake temporal distribution.

As to the quantitative approach, the variation
of correlation dimension versus dimension of
phase space where reconstructed dynamics is
embedded (embedding dimension) is presented
in fig. 3. The integral time series (5297 time in-
tervals) for the whole period of observation
(1975-1996) containing time intervals sequences
between all events above the threshold reveals
clear low correlation dimension (d,=1.22+0.43,
asterisks). Shorter time series also were consid-
ered. Namely 1760 waiting times data before
(1975-1983), 1953 waiting times during MHD
experiments (1983-1988) and 1584 waiting times
of the period after experiments (1988-1992).
Time series before and especially during MHD
experiments also have low correlation dimension
(d2<5). Namely d»=3.83+0.80 before and d>=
=1.04+0.35 during experiments. On the other
hand, opposite to what was mentioned above, af-
ter cessation of experiments (fig. 3, triangles) cor-
relation dimension of waiting times sequences
noticeable increases (d>>5.0), exceeding low di-
mensional threshold (d>=5.0). That means that af-
ter termination of experiments the extent of regu-
larity or extent of determinism in process of earth-
quake temporal distribution decreases. The con-
sidered process becomes much more random both
qualitatively (fig. 2e,f) and quantitatively (fig. 3.
triangles). For clarity in fig. 3, results for random
number sequence are shown too (diamonds).

The found low correlation dimension of
waiting interval time series is in good accor-
dance with earlier published results for Cauca-
sus (Matcharashvili er al., 2000) as well as with
Goltz’s results (Goltz, 1998) for other seismic
active regions.

This result together with qualitative analysis
results shown in fig. 2a-f provide evidence that
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Fig. 2a-f. Qualitative analysis of temporal distribution of earthquakes (complete catalogue, M =1.7) before the be-
ginning of EM experiments (1975-1983), during experiments (1983-1988) and after accomplishing of experiments
(1988-1992). IFS-clumpiness test for inter-event time interval sequences: a) before experiments; c) during experi-
ments; e) after experiments. Recurrence plots analysis of waiting times sequences: b) before experiments; d) during
experiments; f) after experiments. Note diagonal lines in IFS plot and compact structure in RP during experiments.

after the beginning of EM discharges the tempo-
ral distribution of earthquakes around IVTAN
test area becomes more regular, or events of cor-
responding time series become functionally
much more interdependent.
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At the same time the absence of typical
phase space structure (not shown here), IFS and
recurrence plot attractors (fig. 2a-f) do not al-
low us to consider the process deterministical-
ly chaotic.
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Correlation dimension

Embedding dimension

Fig. 3. Correlation dimension versus embedding di-
mension of waiting times sequences (complete cata-
logue): asterisks — integral time series (1975-1996);
circles — before beginning of experiment (1975-1983);
squares — during experiments (1983-1988); triangles —
after experiments (1988-1992); diamonds correspond
to random number sequence.

Correlation dimension

Embedding dimension

Fig. 4. Correlation dimension versus embedding
dimension of waiting times sequences (complete cat-
alogue) after noise reduction: diamonds — before ex-
periments; squares — during experiments; triangles —
after experiments.

In order to the reduce effects of possible
noise we analyzed waiting time series after a
noise reduction procedure (Shreiber, 1993; Kantz
and Schreiber, 1997). Namely, we used the meth-
odology of non-linear noise reduction (which in
fact is phase space non-linear filtering) instead of
common linear filtering procedures. The latter, as
is well known, may lead to destroying the origi-
nal non-linear structure of analyzed complex

processes (Hegger and Kantz 1999; Schreiber
and Schmitz, 2000). Non-linear noise reduction
relies on the exploration of a reconstructed phase
space of considered dynamic process instead of
frequency information of linear filters (Schreiber,
1993; Kantz and Schreiber, 1997; Hegger and
Kantz, 1999).

Correlation dimension versus embedding
space dimension of noise-reduced time series is
presented in fig. 4. As follows from the obtained
results, correlation dimensions are not essential-
ly affected by unavoidable noises. Therefore ob-
tained results assure that the differences found
in d»>-phase space dimension (P) dependence be-
fore, during and after experiments (fig. 3) are in-
deed related to dynamic changes in temporal
distribution of earthquakes after beginning of
MHD discharges experiments.

When describing unknown dynamics of wait-
ing times fluctuation, the differentiation of origi-
nal time series can be useful to avoid improper
conclusions related to the effects of trends or non-
stationarity in data sets, even when those are not
clearly visible (as in the case of considered time
series) (Goltz, 1998). As shown in fig. 5, differen-
tiation of our time series according to Goltz
(1998) does not lead to significant changes in ob-
tained results (see fig. 3). So our results could not
be affected by trends or non-stationarity in used
data sets.

Correlation dimension

Embedding dimension

Fig. 5. Correlation dimension versus embedding
dimension of differenced waiting times sequences
(complete catalogue): diamonds — before experi-
ments; squares — during experiments (1983-1988);
triangles — after experiments.
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Analysis of different time series may be im-
portant also in the sense of inherent dynamic
structure testing (Prichard et al., 1994). Name-
ly, the test is based on finding that estimated
non-linear measure (correlation dimension in
our case) for the differentiated series is larger
than that estimated for original data, if the
structure of their dynamics is caused by the lin-
ear stochasticity. At the same time for chaotic
(low dimensional) processes these measures are
the same. From this point of view analysis of
differentiated time series before detailed surro-
gate testing provides the first additional evi-
dence that variation of waiting times indeed has
inherent non-linear structure and that their dy-
namic properties are not caused by linear rela-
tionships between data. Indeed, the curves of
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Fig. 6a,b. Correlation dimension versus embedding
dimension of original (diamonds) and surrogate
(squares — GSRP, triangles — RP) waiting time se-
quences: a) before beginning of experiments, b) dur-
ing experiments.
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figs. 3 and 5 are characterized by comparable
values of correlation dimension.

Moreover, in order to have a basis for more
reasonable rejection of spurious conclusions
caused by possible linear correlations in consid-
ered data sets, we have used the surrogate data
approach to test the null hypothesis that our
time series are generated by a linear stochastic
process (Theiler et al., 1992; Rapp et al., 1993,
1994; Kantz and Schreiber, 1997). In other
words we would like to reject correctly the pos-
sibility that revealed dynamics belongs to the
colored noise type. Namely, Random Phase
(RP) and Gaussian Scaled Random Phase
(GSRP) surrogates sets for waiting times series
were used (Matcharashvili et al., 2000). RP-
surrogate sets are obtained by destroying the
non-linear structure through randomization of
phases of Fourier transform of original time se-
ries and then performing a backward transfor-
mation. GSRP surrogate sets were generated in
a three-step procedure. At first a Gaussian set of
random numbers was generated, which has the
same rank structure as the original time series.
After this phase randomised surrogates of these
Gaussian sets were constructed. Finally the
rank structure of the original time series was re-
ordered according to the rank structure of the
phase randomized Gaussian set (Theiler, 1992).

Figure 6a,b shows the results of surrogate
testing of waiting time sequences before and dur-
ing experiments using > as a discriminating met-
ric. For each of our data sequences, we generated
75 of RP and GSRP surrogates. There are sever-
al ways to measure the difference between the
discriminating metric measure of original (given
by Mouig) and surrogate (given by M), time se-
ries (Rapp, 1994). Investigators often use the
significance criterion S=|{Msurr)—M orig | /Tsurrs
where Oy is standard deviation of My (Theil-
er et al., 1992).

The significance criterion S, according to
Theiler et al. (1992) for analyzed time series
before experiments is significant: 22.4+0.2 for
RP and 5.1+0.7 for GSRP surrogates. Conse-
quently after the beginning of experiments the
null hypothesis that original time series is the
linearly correlated noise was rejected with sig-
nificant value of S criterion: 39.7+0.8 for RP
and 6.0+0.5 for GSRP surrogates.
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These results can be considered strong
enough evidence that analyzed time series are
not linear stochastic noise and that correspon-
ding processes of earthquakes temporal distri-
bution before and especially during experi-
ments are characterized by inherent low dimen-
sional non-linear structure.

According to the IVTAN catalogue, each
considered time period contains one large
(M=6.1-6.3) earthquake. Therefore in order to
refine whether the above results are caused by
special properties of a separate large earthquake
or reflect total changes in dynamics caused by
EM discharges, we analyzed waiting time se-
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Fig. 7a-f. Qualitative analysis of 1000 data waiting times sequences (complete catalogue), after largest events
before beginning of EM experiments (1975-1983), during experiments (1983-1988) and after accomplishing of
experiments (1988-1992). IFS-clumpiness test for inter-event time interval sequences: a) before experiments; c)
during experiments; e) after experiments. Recurrence plots analysis of waiting times sequences: b) before exper-

iments; d) during experiments; f) after experiments.
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quences (above appropriate threshold) after
each largest event. Namely, 1000 consecutive
waiting time intervals after 24/03/1978 M=6.1
(K=15.0), 24/01/1987 M=6.3 (K=15.3) and
798 time intervals after 30/12/1993 M=6.1
(K=15.0) events were analyzed. It is important
to say, that each of these relatively short time
series are localized in corresponding time peri-
ods named above as «before», «during» and
«after» experiments.

It becomes clear from IFS-clumpiness and
RQA analysis results (fig. 7a-f) that qualitative-
ly this situation is like that shown in fig. 2a-f,
i.e. after the beginning of experiments, consid-
ered dynamics become more regular and, after
accomplishing experiments, dynamics is most
random-like.

Quantitatively, it is shown in fig. 8 that these
short time series generally reveal that after ex-
periments analyzed dynamics also become
more random than before. Some differences are
noticeable in saturation values of correlation di-
mension (in fig. 8) before (circles, d>»=3.1+0.4)
and during (squares, d>=2.1+0.7) experiments.
The latter may be caused by too limited data
length for proper non-linear analysis of these
time series (untypical shape of curve at high

Correlation dimension

Embedding dimension

Fig. 8. Correlation dimension versus embedding
dimension of 1000 data waiting times sequences
(complete catalogue) after largest events: circles —
time period before beginning of experiments (1975-
1983); squares — time period during experiments
(1983-1988); triangles — time period after accom-
plishing of experiments (1988-1992).
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embedding dimensions) as well as by artificial-
ly increased fraction of aftershocks in short
time series which contains events only after the
largest earthquakes.

In any case, our main conclusion about low
dimensional dynamical structure of earthquake
temporal distribution during experiments and
increasing randomness after termination re-
mains valid even for periods of separate large
earthquakes.

The above conclusion on the increase in reg-
ularity in earthquakes’ temporal distribution after
the beginning of experiments in some degree is
confirmed also by the results of Lempel-Ziv algo-
rithmic complexity (Crz) measure calculation
(Lempel and Ziv, 1976). Indeed Ciz is larger
when necessary code words are longer i.e. when
regular patterns of analyzed time series are minor.

Indeed, measured values of Lempel-Ziv
complexity before, during and after experi-
ments for original time series above threshold
consequently are C;z=0.99+0.07; C;z=0.87+
+0.05; Crz=1.00=0.08.

Quantitative RQA results also lead to the
same conclusion: namely RR(f)=9.6, DET(t)=
=3.9 before experiments, RR(1)=25, DET(f)=
=18 during and RR(f)=3, DET(t)=1.5 after ex-
periments.

The increase in order in earthquake temporal
distribution under EM influence is confirmed for
short time interval sequences above threshold af-
ter the largest earthquakes. Indeed Lempel-Ziv
complexity measure values were: Crz=0.98+
x0.08; Crz=0.74=0.05; Crz=1.00=0.09 be-
fore, during and after MHD runs consequently
(note that C;z=0.04 for periodic and Crz=1 for
random processes). Also, the increase in order
in temporal distribution is documented by RQA
results for mentioned short time series; namely
RR()=9.8, DET(t)=6.5 before experiments,
RR()=19.5, DET(t)=49.3 during and RR(f)=
=7.1, DET(t)=1.6 after experiments.

In other words for situations where the
shape of d> (fig. 8), is not informative for find-
ing changes in dynamics possibly due to too
short time series, Lempel-Ziv and RQA analy-
sis reveals the increase in regularity.

On the basis of results of previous research
it is known that, small earthquakes play a very
important role in the general dynamics of earth-
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IFS Clumpiness Test

TKB.DAT

TKB.DAT

IFS Clumpiness Test TKA.DAT

IFS Clumpiness Test TKLA.DAT

&

@

Fig. 9a-f. Qualitative analysis of temporal distribution of earthquakes including small events (whole catalogue,
all events) before beginning of EM experiments (1975-1983), during experiments (1983-1988) and after accom-
plishing of experiments (1988-1992). IFS-clumpiness test for waiting times sequences: a) before experiments;
¢) during experiments; e) after experiments. Recurrence plots analysis of inter-event time interval sequences: b)
before experiments; d) during experiments; f) after experiments.

quake temporal distribution (Matcharashvili
et al., 2000). Therefore, additionally we carried
out an analysis of time series containing all
available from the whole catalogue waiting
time sequences, including those between small
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earthquakes below magnitude threshold. This
test is also valid to check results robustness in
case of adding a new not necessarily complete
set of data to our original set. The total number
of events in the whole catalogue increased up to
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14100, while in the complete catalogue for the
three above-mentioned periods (before, during
and after MHD experiments) there were about
4000 data in each one.

Results of IFS and recurrence plots tests
analysis of these time series are shown in fig.
9a-f. Noticeable qualitative differences in wait-
ing time intervals distribution dynamics during
as well as after accomplishment of experiments
is obvious.

Figure 10 presents the results of correlation
dimension calculation for these time series. Prac-
tically there are no differences from results ob-
tained for the case with m>2.0 (fig. 3). Namely,
according to fig. 10, the integral time series
(14100 time intervals) for whole period of ob-
servation (1975-1996) reveals clear low corre-
lation dimension (d>=2.40+0.71) (diamonds).
The time series before beginning of experiment
(squares) is characterized by correlation dimen-
sion (d»=3.50%0.63) which is still below ac-
cepted low dimensional threshold (d»>=5.0).
During experiments (fig. 10, triangles) correla-
tion dimension of time interval sequence, in
comparison with the situation before, notice-
ably decreases (d>=1.71=0.09). After termina-
tion of experiments the correlation dimension
of waiting time interval sequences noticeably

Correlation dimension

Embedding dimension

Fig. 10. Correlation dimension versus embedding
dimension of waiting times sequences of the whole
catalogue: diamonds — integral time series (1975-
1996); squares — before beginning of experiment
(1975-1983); triangles — during experiments (1983-
1988); circles — after experiments (1988-1992).
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Fig. 11a,b. Correlation dimension versus embed-
ding dimension of original waiting time sequences of
whole catalogue (triangles) and their surrogate (cir-
cles-GSRP, squares-RP): a) before beginning of ex-
periments; b) during experiments.

increases (d>>5.0), exceeding low dimensional
threshold (d>=5.0). As in the case of the com-
plete catalogue, it means that after termination
of experiments the extent of determinism in the
process of earthquake temporal distribution de-
creases. The considered process becomes much
more random both qualitatively (fig. 9¢,f) and
quantitatively (fig. 10 circles).

Both the complete and whole catalogues of
waiting time sequences reveal low dimensional
non-linear structure in temporal distribution of
earthquakes before and especially during exper-
iments, which was confirmed by 70 surrogate
testing analyses (fig. 11a,b). The significance
criterion S for analyzed time series before ex-
periments gives: 32.3+0.2 for RP and 5.3+0.6
for GSRP surrogates; consequently after the be-
ginning of experiments the null hypothesis that
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the original time series is the linearly correlated
noise was rejected with significant value of S
criterion: 46.2+0.5 for RP and 6.5+0.7 for
GSRP surrogates.

The correlation dimension versus embed-
ding space dimension of noise-reduced time se-
ries of the whole catalogue is presented in fig.

Correlation dimension

2 3 4 5 6 7 8 9
Embedding dimension

10

Fig. 12. Correlation dimension versus embedding
dimension of inter-event time interval sequences of
whole catalogue after noise reduction: diamonds —
before experiments; squares — during experiments;
triangles — after experiments.

Correlation dimension

Embedding dimension

Fig. 13. Correlation dimension versus embedding
dimension of 1000 data waiting times sequences of
the whole catalogue after largest events: circles —
time period before beginning of experiments (1975-
1983); squares — time period during experiments
(1983-1988); triangles — time period after accom-
plishing of experiments (1988-1992).
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12. It is clear from this picture that calculated
values of correlation dimension are not affected
by noises as for the complete catalogue. Ob-
tained results show that differences found in the
d>-phase space dimension (P) relationship be-
fore and during experiments in both catalogues
are indeed caused by dynamic changes in tem-
poral distribution of earthquakes during EM ex-
periments.

We also analyzed waiting time sequences
after each of the largest (M=6.1-6.3) events for
the whole catalogue, namely, 1000 consecutive
waiting time sequences after 24/03/1978 M=
=6.1 (K=15.0), 24/01/1987 M=6.3 (K=15.3)
and 30/12/1993 M=6.1 (K=15.0) event. As is
shown in fig. 13, these short time series gener-
ally reveal dynamic characteristics similar to
those of the time series obtained from the com-
plete catalogue. Found differences which are
noticeable in saturation values of correlation di-
mension before (circles, d>=2.0=1.1 in fig. 13)
and during (squares, d>=3.2+0.8, fig. 13) ex-
periments may be caused both by shortness of
these time series or by influence of increased
fraction of aftershocks.

Thus, conclusions concerning the influence
of hot and cold EM runs on the general charac-
teristics of earthquakes temporal distribution dy-
namics remain valid for small earthquakes too.

It is interesting to note that on the laborato-
ry scale the effect of triggering and synchro-
nization of acoustic emission during slip im-
posed by strong EM field is well documented in
numerous experiments (Chelidze et al., 2002,
2005; Chelidze and Lursmanashvili, 2003).

5. Conclusions

The question whether electromagnetic ex-
periments on a specific site can influence the dy-
namics of a seismic region is a complex argu-
ment. A complete answer to it, if any could be
given, would involve a repeated set of analyses
for different seismic regions over large periods
of time with and without EM experiments. A
theoretical explanation showing the cause and
effect relationships between the two phenomena
is also fundamental. This paper addressed the
question under statistical aspect involving non-
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linear dynamics methods. These methods were
chosen because there are not trivial, simple and
direct relations between the two phenomena:
this means that relations are of a complicated or-
der. Moreover seismicity is very probably a crit-
ical process with a per se complicated evolution:
under given conditions possible relations must
not be direct and simple. With non-linear meth-
ods the time evolution of seismicity was investi-
gated looking at relations with EM experiments.
Waiting times constitute the aspect analyzed.
The whole time period was divided into three
parts, the middle being the one when EM exper-
iments took place.

Phase space attractor, reconstructed with de-
lay time technique, for the whole time period
shows low correlation dimension values; this in-
dicates, at least, the presence of a few processes
driving seismicity. The same analysis on the
three sub catalogues confirms the result, with the
exception for the period after the EM experi-
ments: strong EM discharges lead to the increase
in the extent of regularity in earthquakes’ tempo-
ral distribution while, after cessation of EM in-
fluence, earthquakes’ temporal distribution be-
comes much more random than before experi-
ments. This is the main result of the analysis and
it was confirmed changing the conditions of the
analysis itself. Non-linear noise reduced time se-
ries confirmed such results as did surrogate test-
ing. The middle period contains a large seismic
event (January 24, 1987 m=6.3 derived from
energy class K=15.3) this event has certainly a
well identified aftershocks activity and this can
be a strong factor influencing time dynamics.
The root question is: is this event with its related
sequence responsible for the change in the dy-
namics of analyzed data? If the answer is yes we
are forced to answer immediately the new ques-
tion if this earthquake is related to EM experi-
ments? But it must be noted that inside the other
two periods there are also important events of
comparable magnitudes and the analysis was
conducted on the three sequences of catalogue
after each strong event separately. General re-
sults confirmation was shown. The same results
were revealed with the use of the whole cata-
logue regardless of the completeness criteria.

This analysis is not certainly exhaustive: the
seismic catalogue covers a broad area and all
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complete data were used, no distinction was
made for space location of seismic events. The
energy aspect was not fully considered: all
events were considered equal regardless of their
magnitude. These are strong simplifications and
results must be considered under these con-
straints. However results appear to be consistent:
EM experiments influence seismic time dynam-
ics to some extent, increasing the regularity of
waiting times. After EM experiments seismic
waiting times increase their random character to
a level higher than before experiments.
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