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Abstract
Electromagnetic induction measurements, which are generally used to determine lateral variations of apparent 
electrical conductivity, can provide quantitative estimates of the subsurface conductivity at different depths. 
Quantitative inference about the Earth’s interior from experimental data is, however, an ill-posed problem. Using 
the generalised McNeill’s theory for the EM38 ground conductivity meter, we generated synthetic apparent 
conductivity curves (input data vector) simulating measurements at different heights above the soil surface. The 
electrical conductivity profile (the Earth model) was then estimated solving a least squares problem with Tikhonov 
regularization optimised with a projected conjugate gradient algorithm. Although the Tikhonov approach improves 
the conditioning of the resulting linear system, profile reconstruction can be surprisingly far from the desired true 
one. On the contrary, the projected conjugate gradient provided the best solution without any explicit regularization 
(a = 0) of the objective function of the least squares problem. Also, if the initial guess belongs to the image of the 
system matrix, Im(A), we found that it provides a unique solution in the same subspace Im(A).

Mailing address: Dr. Gian Piero Deidda, Dipartimento 
di Ingegneria del Territorio, Sezione di Geologia Applicata e 
Geofisica Applicata, Università di Cagliari, P.zza d’Armi 16, 
09123 Cagliari, Italy; e-mail: gpdeidda@unica.it

Key  words inverse problems – Tikhonov regulariza-
tion –  projected conjugate gradient – high-frequency 
electromagnetics

1.  Introduction

The goal of collecting geophysical data is 
to gain meaningful information about a given 
Earth property (for example, density, seismic 
velocity or conductivity of a geologic body). How- 
ever, in many situations the quantities we wish 
to determine are different from the ones we 
are able to measure. If the measured data de-
pends, in some way, on the quantities we want, 
then the data contains at least some informa-

tion about those quantities. Thus, measured 
data can be used to predict the quantities we 
really want. Unfortunately, the prediction is not 
straightforward because an inverse problem must 
be solved. A typical feature of inverse problems 
is that they are ill-posed. A unique solution may 
not exist and small errors in the data may cause 
prohibitively large variations in the estimates 
of the quantity sought. To overcome these 
difficulties one has to regularize the original 
problem, that is the original problem has to be 
replaced by a nearby well-posed problem in 
order to obtain a stable solution. One of the best-
known and most used regularization methods is 
Tikhonov regularization.

The aim of this work is to illustrate how 
Tikhonov regularization may sometimes be 
the cause of misleading results, far from the 
expected solutions. For such a purpose we con-
sidered a simple least squares problem for the 
estimation of the electrical conductivity profile
from high-frequency electromagnetic induction 
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measurements. High-frequency electromagnetics 
have enjoyed increased popularity in near surface 
geophysics and nowadays are routinely used in 
environmental and hydrogeological studies. 
Shallow applications of electromagnetic methods 
have been carried out for salinity monitoring in 
agricultural land (Cameron et al., 1981; Rhoades 
et al., 1990; Hendrickx et al., 1992), detection 
of contaminants in soils and shallow aquifers 
(Valentine and Kwader, 1985; Saunders and 
Cox, 1987; Barker, 1990), soil water content 
measurements (Kachanoski et al., 1988, 1990; 
Sheets and Hendrickx, 1995), and vadose zone 
characterisation (Cook et al., 1989; Scanlon 
et al., 1999). A popular method employed in 
these applications is the frequency-domain 
electromagnetic (FEM) induction technique 
(McNeill, 1980) which uses a ground conduct-
ivity meter to measure the apparent electrical 
conductivity of the subsurface. Although this 
technique is generally used for detection of lateral 
changes in the apparent electrical conductivity, it 
can also provide quantitative vertical variations: 
FEM measurements acquired at different heights 
above the soil surface can be used to predict the 
electrical conductivity at different depths. 

Adopting the same approach as Borchers 
et al. (1997), we estimated the electrical con-
ductivity profile from synthetic apparent con-
ductivity curves solving a least squares prob-
lem with Tikhonov regularization optimised 
with a projected conjugate gradient algorithm. 
Although the Tikhonov approach improved 
the conditioning of the problem, the calculated 
solution was surprisingly far from the desired 
true one. In particular, we found that the choice 
of the point on the L-curve corresponding to 
a = 0 provided the best solution, that is no 
smoothing penalty term has to be added to 
the objective function. The conjugate gradient 
provided itself sufficient regularization to assure 
stable solution. 

2.  EM38 electrical conductivity data

2.1. EM38 instrument

Various non-invasive devices can be used to 
acquire information from the subsurface through 

electromagnetic induction measurements. The 
instrument used in this study was the EM38, an 
electromagnetic induction sensor manufactured 
be Geonics Limited, Ontario, Canada. It consists 
of two coils on a lightweight bar 1 m long, which 
includes calibration controls and a digital readout 
of apparent electrical conductivity in mS/m. The
EM38 instrument operates at a frequency of f =
14.6 kHz which corresponds to w = 91.7 ¥ 103

rad/s. The coil spacing s is equal to 1 m. The
instrument can be held so that the two coils are 
either oriented horizontally or vertically with 
respect to the soil surface, as illustrated in fig. 1. 
Alternate current is sent through the transmitter 
coil; this generates a magnetic field Hp that 
induces current to flow on the second (receiver) 
coil, which in turn generates a secondary mag-
netic field Hs.

Defining the skin depth d as the depth at 
which the primary magnetic field has been 
attenuated to 1/e of its original strength, we can 
introduce the induction number NB, which is the 
ratio of the intercoil spacing s to the skin depth 
d. For a soil with uniform conductivity s, it can 
be shown that

      (2.1)

where µ π0
74 10= ⋅ − henry/m is the magnetic 

permeability of free space.
The EM38 measures the quadrature com-

ponent of the ratio of the two magnetic fields.
In general, the secondary magnetic field is a 
complicated function of the intercoil spacing 
s, the operating frequency f and the ground 
conductivity s. It can be shown that, under 

N
s

sB = =
δ

µ ωσ0

2

Fig.  1. Instrument configurations: horizontal (left) and 
vertical dipoles (right).

s s
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the assumption of a homogeneous medium and 
NB <<1, the secondary magnetic field is a simple 
function of w, s and s

          (2.2)

where w = 2p f (McNeill, 1980). It is worth-
while mentioning that the field ratio, in the ap-
proximation provided by eq. (2.2), is inde-
pendent of the dipole orientation.

Since the ratio between the two magnetic 
fields is linearly proportional to the electrical 
conductivity of the soil, the conductivity is thus 
evaluated by measuring this ratio. Whatever 
the structure and composition of the medium 
under investigation, eq. (2.2) is used to define
the apparent conductivity sa, the experimental 
information required when solving the inverse 
problem of electromagnetic sounding

          .              (2.3)

Under the assumption of homogeneity, and 
normalizing all spatial dimensions with respect 
to s, McNeill (1980) described the sensitivity f
of the instrument to conductivity at depth z, for 

both vertical and horizontal modes

      (2.4)

      
.         (2.5)

Figure 2 displays the sensitivity of the EM38 for 
both vertical and horizontal dipole configurations, 
versus the depth z measured in units of distance 
between the two coils. 

2.2. The forward propagation model

Borchers et al. (1997) describe and discuss 
a more general linear model for the instrument 
response, which can be extrapolated from the 
model of McNeill (1980) under the following 
assumption:

1)  The subsurface model represents a 
horizontally stratified medium in which the 
current flow is entirely horizontal. 

2)  The current flow at any point of the 
subsurface is independent of the current flow 
at any other point, since the magnetic coupling 
between all current loops is negligible.

With the two coils in vertical mode, assuming 
the instrument at a given height h above the soil,  
σ a

V takes the form

      
      

(2.6)

where s (z) is the conductivity at depth z. The 
sensitivity function fV(z) is described by eq. 
(2.4). Similarly, for the horizontal orientation, the 
apparent conductivity σ a

H  is written as follows:

      
(2.7)

with fH(z) given by eq. (2.5). Collecting meas-
urements of σ a

V and σ a
H recorded at different ele-

vation, h1, h2, …, hN, above the soil surface, the 
two integral eqs. (2.6) and (2.7) provide the linear 
forward model to invert, from which the electrical 
conductivity profile s (z) can be estimated.
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Fig.  2. Instrument sensitivity curves for the two dipole 
configurations. Horizontal mode configuration is more 
sensitive to contributions from materials at the very 
near subsurface while the vertical mode configuration
better discriminates contributions at lower depth, with 
a maximum value at about 0.4 times the distance 
between the coils.
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Assuming a stratified medium model (fig. 3) 
the subsurface is divided into M layers with 
specified thickness dzj, electrical conductivity 

sj and magnetic permeability mj equal, in this 
context, to that of the free space: mj = m0 for j = 1,
2, …, M. Let d T(s) = [sV

a(h1), sV

a(h2), ..., sV

a(hN),
s H

a(h1), s H
a(h2), ..., s H

a(hN)]T denote the vector 
gathering data relative to apparent conductivity 
measurements

       . (2.8)

Using the instrument response model described 
by (2.6) and (2.7), the following system of 
linear equations establishes a correspondence 
between the subsurface conductivity profile and 
the apparent conductivity measurements:

          (2.9)

The system matrix K is constructed as follows:

      (2.10)

where the elements of V and H are, respectively

        (2.11)

and

        (2.12)

for i = 1, 2, …, N and j = 1, 2, …, M.
Figure 4b shows an example of input data 

vector d(s) obtained from the model of the 
electrical conductivity profile s displayed in 
fig. 4a, for N =11 and M = 30. Each value of 
the apparent conductivity was simulated for 
different elevations of the instrument above 
the soil, implementing the forward propagation 
model (2.9).

3.  Data inversion

3.1. The least squares problem

From the (2N ¥ M)-linear system (2.9) the 
electrical conductivity profile can now be esti-

Fig.  3.  Stratified subsurface model

Fig.  4a,b. a) Synthetic ground conductivity profile;
b) apparent conductivity data computed from the 
ground conductivity profile in (a).
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3.2. Regularization in the sense of Tikhonov

A way to enhance the stability of the inverse 
problem is Tikhonov regularization, a method 
which allows a form of optimal tuning on the 
sensitivity of the solution to input data errors. 
This is obtained by the trade-off between the 
residual norm K dσ − and some desirable 
property resulting from the action of a discrete 
differential operator Ln on the profile of s. Here 
n denotes the order of the differentiation.

A perturbed solution of the inverse problem 
is computed by solving the least squares problem 
associated to the new functional

          (3.5)

The norm L sn quantifies the regularity of s = sa,
the electrical conductivity profile that minimises
(3.5). Clearly, for a = 0, ε 0 corresponds to the 
function ε , eq. (3.1), and thus the optimal con-
ductivity is the solution of the system of eq. 
(3.2). In the general case of a > 0, the minimum 
of ε a is reached for the conductivity profile 
s = sa, solution of the linear system

      (3.6)

where Â, a symmetric, positive definite matrix, 
has the form

          (3.7)

and A is defined, as before, by eq. (3.3).
Since Ln is always a diagonally dominant 

matrix, the perturbing term in (3.7) becomes 
absolutely crucial to improve the conditioning 
of Â with respect to that of A (Bertsekas and 
Tsitsiklis, 1989). Hence, for a > 0, we necessarily 
have 1≤ <κ κ( ˆ )A A( ). This behaviour is illustrated 
by the curves displayed in fig. 5.

The simplest regularizing operator is L0 = I,
where I denotes the identity matrix. Another 
form of control may be obtained through the 
implementation of L2, the second derivative 
operator. L2 enforces the smoothness of the 
conductivity profile while L0 controls its fluc-
tuations. As illustrated in fig. 5, L0 provides a 
better conditioning to matrix Â.

mated from the available experimental infor-
mation d by solving the least squares prob-
lem associated with the functional

          (3.1)

at the moment without any requirement, physical 
or mathematical, on the solution profile. The 
minimum of the function ε (s) is reached for an 
electrical conductivity profile s = s, solution of 
the following system:

          (3.2)

where A = KTK and b = KTd. From eq. (2.10) it 
follows that:

          (3.3)

where A, an (M ¥ M )-matrix, is symmetric and 
positive definite. The right-hand side of (3.2), 
see eq. (2.8), takes the form

          (3.4)

Since the instrument response sa depends on the 
cumulative effect of all sudden changes of the 
subsurface conductivity profile s, the measured 
data field is weakly sensitive to the perturbations 
of the medium conductivity. Conversely, this 
physical property is mathematically translated 
into a strong sensitivity of the inverse problem 
solution s with respect to the perturbation of the 
apparent conductivity sa.

The condition number, defined as κ A( ) =
λ λ= M 1 where lM and l1 are, respectively the largest 

and smallest eigenvalues of A, plays the promi-
nent role as a measure of the difficulty of computing 
s = A-1b in face of data uncertainty and roundoff 
errors. A classical result for non-singular operators 
(Voievodine, 1976) states that, for large values of 
κ A( ), the system solution s might be highly 
perturbed even in the case of weak perturbations 
of both A and b, or one of them. In such a situation, 
the problem is said to be ill-conditioned. 

Matrix A, defined in (3.3), may be extremely 
ill-conditioned with the condition number κ A( )
of the order of hundred of thousands. Obviously, 
from the point of view of stability, the condition 
number should be as close as possible to one.

Â = A + L Lα n
T

n

εε ΚΚs s d( ) = − 2

A bσ =

A V V H H= +T T

b V d H d H= +T V T .

εα α αs Ks d L s( ) = − + ≥2 2
0n , .

Â bσα =
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As already mentioned, the larger the a the
more important the diagonal dominance of Â
is; but increasing a causes the perturbed solution 
sa to deviate further from the exact solution s.
It is then important to achieve an acceptable 
balance between stability and accuracy of the 
solution by tuning carefully the regularization 
parameter a.

There are several heuristic ways to proceed 
in order to select a (Wabha, 1990; Hansen, 1992; 
Hilgendorf, 1997), but the criterion described 
below, based on the L-curve construction, is cer-
tainly the most used. Since the minimum of ε a    is
a linear combination of two terms, K dσα − and
Lnσα , the idea behind this criterion is to display 

one term as a function of the other for different 
values of the parameter a. The resulting plot is 
called the L-curve.

According to the Tikhonov theory, for a
going to zero, sa tends to the solution s of the ori-
ginal least squares problem. This implies the se-
quence of points K d Lσ σα α−( ), n moves along 
a trajectory, denoted as L-curve, presenting a limit 
point. This point is indicated with a cross in both 
examples of fig. 6a,b, where the regularization 
is imposed by L0 (fig. 6a) and L2 (fig. 6b). Note 
that, as expected for large values of a , the norm  
Lnσα decreases while the residual K dσα −

increases.
In the spirit of the L-curve criterion, the most 

suitable value of the regularizing parameter a is
determined by selecting one intermediate point 
on the corner of the L-curve (Hansen, 1992). 
Such a point, indicated with a circle in fig. 6a,b, 

is supposed to provide, in terms of accuracy 
and regularity, the value of the parameter corre-
sponding to the most balanced perturbed solution 
of the inverse problem.

Fig.  5. Effect of matrix regularization on the condition 
number: high values of a lower the condition number.

Fig.  6a,b. L-curve obtained from data d in fig. 4b with 
regularization imposed by: a) L0, and b) L2 (16-byte
arithmetic).

b

a

Fig.  7. Inverse problem solutions for the input data in 
fig. 4b. Inversions with no regularization and with L0

regularization give the best solutions while inversion 
with L2 regularization gives a meaningful solution.
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Figure 7 shows three solutions of the system 
(3.6). Two of them, marked with circles in 
fig. 6a,b, correspond to a = 10- 4 for L0, and 
a = 4.10-2 for L2. The solution profile obtained 
with no regularization (fig. 7) gives rise to the 
limit point framed by a square symbol on the 
L-curves. Note that on the K d Lσ σα α−( ), n -
plane the point corresponding to the true 
conductivity profile may be far away above the 
point selected by the L-curve criterion. Although 
this last point represents a compromise between 
accuracy and regularity of the perturbed solution, 
the resulting a may lead to a conductivity profile
sa which is physically meaningless (fig. 7).

3.3. The projected conjugate gradient algorithm

When solving the least square problem (3.5), 
the solution representing the conductivity profile
must satisfy the physical requirement sa³0. Under 
this condition, the conjugate gradient algorithm 
is no longer applicable because, even if we start 
inside the feasible set S = Œ ³{ }s R sM 0 , an update 
may take solutions outside that set (non-physical 
solutions). The projected conjugate gradient 
generalized the conjugate gradient algorithm to 
the case where there are constraints (Bertsekas 
and Tsitsiklis, 1989; Birgin et al., 1999) assuring 
the attainment of the physical requirement of the 
non-negativity of the solution.

All the computations run for the analysis 
illustrated in figs. 6a,b and 7 are performed in 16-
byte arithmetic. With this level of accuracy, the 

choice of the point on the L-curve corresponding
to a = 0 provides the best solution, in the sense 
of proximity to the point representing the desired 
true solution. As a consequence, in this framework 
the regularization of system (3.2) is simply not 
necessary.

As illustrated in fig. 5, the problem (3.2) is 
ill-conditioned. However, the computation of 
the eigenvalues of Â, all strictly positive, shows 
an intriguing result concerning their aggregation 
close to zero as displayed in fig. 8a. While the 
eigenvalues relative to the L2 regularization are 
spread over a large range, in the L0 case and in 
the case with no regularization, namely Â = A,
there are only three distinct eigenvalues and the 
remaining group is practically coincident near 
the smallest one. This property is of fundamental 
importance to obtain a fast convergence of the 
conjugate gradient algorithm. In particular, 
it can be shown that the method converges 
faster if most of the eigenvalues of the system 
matrix Â are clustered in a small interval and 
the remaining eigenvalues lie to the right of 
the interval (Bertsekas and Tsitsiklis, 1989). 
This result is eloquently illustrated by the three 
convergence curves presented in fig. 8b. It also 
shows the excellent performance of the case 
a = 0, in spite of the ill-conditioning of ma-
trix A. It is worthwhile mentioning that a care-
ful construction of the L-curve may present 
values of a > 0 providing a better solution 
of the least squares problem, in the sense 
of proximity to the desired true solution, as 
shown in the example of fig. 6a where a = 10-12.

Fig.  8a,b. a) Eigenvalues of Â. The largest eigenvalue of each matrix, placed around 50, is not displayed. b) Con-
vergence history of the conjugate gradient algorithm with different regularizations.
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Although these values are the most suitable, the 
discrepancy between the resulting solutions, with 
respect to that corresponding to a = 0, is practi-
cally unnoticeable.

4.  Discussion

We have seen that clustered eigenvalues allow 
faster convergence of the conjugate gradient. 
In fact, the conjugate gradient converges after 
a number of iterations equal to the number of 
distinct eigenvalues whose eigenvector is non-
orthogonal to the error (Hansen, 1998). This 
signifies that conjugate gradient yields results 
close to the truncated singular value decom-
position solution in which the truncation para-
meter (an integer at which the singular values 
are deemed to be negligible) equals the num-
ber of iterations for the convergence of the con-
jugate gradient itself. Therefore, the conjugate 
gradient can also be seen as a regularization tool 
operating on the original least-squares problem. 
It is important to note, however, that this is not 
actually the case of Tikhonov regularization 
since it is only used as a trick to improve the 
conditioning of the original problem, providing 
a solution sa, approximating s.

Another aspect that needs discussion refers 
to the uniqueness of the solution. The synthetic 
example here presented belongs to the class 
of the underdetermined system, the number of 
unknowns, M, being larger than the number 
of equations, N. This kind of problem does 
not admit a unique solution (Noble, 1969). 
However, the strategy implemented with the 
conjugate gradient algorithm is able to select, 
in the set of all possible solutions of the least-
squares problem, S N= = ∈ℜ{ }x Ax b b, with , a 
unique solution which is in a suitable subspace 
of unknowns of dimension N, where N is the 
rank of the system matrix A. More precisely 
this subspace is the image of the matrix A,
Im A A = for all ( ) = ∈ℜ{ }y v y v M, orthogonal (see 
Appendix) to the kernel of A defined as 
Ker A A( ) = ={ }z z 0 . Note that each solution 
can be decomposed as follows: x = x0+ l z with
x0 ŒS a particular solution, z ∈ ( )Ker A and l a
real number. Hence S represents a translation of 
the kernel of the system.

The conjugate gradient algorithm, starting 
from an initial guess in the subspace Im(A), 
will necessarily converge to the unique solution 
x A0 ∈ ( )SI Im . As a matter of fact, the iterative 
procedure of the conjugate gradient performs 
only transformations by multiplying matrix A
to a residual vector. As the gradient, defined by
g = Ax - b , is necessarily in Im(A), each iteration 
of the conjugate gradient will keep the search 
for the solution within the subspace Im(A). 
Obviously,  b = Ax is in Im(A).

As schematically depicted in fig. 9, the so-
lution x of the system is reached at the inter-
section between the Im(A) and the set of all 
solutions S, x = ASI Im( ). It is the orthogonal 
projection of all solutions on the image of the 
matrix of the system Ax = b. This solution is 
unique and it is the best possible within the sub-
space Im(A) being at the intersection with the subset 
S of all possible solutions of the least-squares 
problem. This analysis does not contemplate 
constraints on the solution. The introduction of 
projections in the conjugate gradient confines the 
search within a convex set of Im(A) and results in 
highly non-linear iterates converging to the best 
possible profile x in the sense of proximity to that 
of the unconstrained problem x.

5.  Conclusions

In this article the simple inversion problem 
based on McNeill’s linear response model of 

Fig.  9.  A schematic view of the evolution of the so-
lution in the admissible subspace Im(A).
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the EM38 ground conductivity meter has been 
formulated and developed. Computer experiments 
on synthetic data provide credibility to results and 
conclusions presented in this work. Computations 
have shown how Tikhonov regularization and in 
particular the L-curve criterion can be the cause 
of misleading conductivity profiles far from the 
desired true ones. The analysis of the system 
matrices to invert their structure and eigenvalues 
shows that, although the original system problem 
is ill-conditioned, the conjugate gradient algo-
rithm is a robust method for the solution of the 
electrical conductivity data inversion without 
any additional regularization of the least squares 
problem. The projection strategy, implemented 

together with the conjugate gradient, enforces the 
positivity of the solution and provides the best 
possible profile in the sense of proximity to that 
of the unconstrained problem. 

In spite of the good performance of the pres-
ent methodology on synthetic examples here 
presented, its development certainly needs 
additional computational experiments adopt-
ing more adequate models of two loops EM 
soundings over a stratified half-space. For a 
more complete validation, it will be necessary 
to undertake a more detailed analysis on real 
data acquired in sites where the stratification 
of the near subsurface and the relative electric 
properties are well known. 

Appendix.

To observe the orthogonality of the subspaces Im(A) and ker (A), let us consider the scalar product  
v .w with νν∈ ( )Ker A and w A∈ ( )Im . Being Im(A) spanned by eigenvectors associated to non-zero 
eigenvalues, we can write the vector w as a linear combination of eigenvectors: w wi=∑α i ; if li are
the eigenvalues respectively associated to the eigenvectors wi (that is Awi= liwi), and in the hypothesis 
of symmetric matrix A, for each v and for each w we have

This means that Im(A) is orthogonal to Ker(A).
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