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Abstract
In current applications of the Induced Polarization (IP) method, the Debye and Cole-Cole models are used to study 
relaxation and dispersion properties of rocks, though it is believed that this type of modelisation is confused and 
vague, because of the lack of a background physical description. In this paper, we show that the Debye model 
can physically be deduced as a consequence of the electrodynamic behaviour of a mixture of bound and unbound 
charged particles immersed in an external electric field. We also clarify that the Cole-Cole model is a synthetic 
model, which can physically be explained as a continuous distribution of Debye terms.
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1.  Introduction

Electrical relaxation and dispersion in rocks 
are observed in the Time-Domain (TD) and Fre-
quency-Domain (FD), respectively, using any 
standard Induced Polarization (IP) device. These 
effects are often investigated in mining and en-
vironmental exploration.

Figure 1a-c shows schematically the IP re-
sponse of a polarizable medium, prospected, e.g., 
by a quadrupolar electrode device (fig. 1a). In the 
TD, a voltage transient is detected across the two 
receiving electrodes, after both the onset and the 
shutdown of a current step excitation through 
the two emitting electrodes, as depicted in fig.
1b. A remarkable IP feature is that at the onset 

of the excitation current, the voltage response 
suddenly jumps up from zero to a finite value 
and then gradually rises towards a stable value. 
Accordingly, at the shutdown of the current, the 
voltage suddenly falls down to a finite non-null 
value and then gradually vanishes. In the FD, 
one observes a voltage-to-current ratio which 
is a complex function of frequency, showing 
amplitude and phase spectra as in fig. 1c. Worth 
noting is the high-frequency asymptote of the 
amplitude curve, which is a horizontal straight-
line generally placed at a finite non-vanishing 
level, lower than that corresponding to the low-
frequency asymptote.

Despite such different behaviour, relaxation 
in TD and dispersion in FD represent the same 
physical phenomenon and the relative responses 
are connected to each other via Fourier Transform 
(FT). Thus, IP observations are the evidence of 
a complex form of conduction of electricity in 
rocks, which cannot be synthesized by Ohm’s 
law. In fact, Ohm’s law states that the current 
density is linearly related to the electrical field
by a factor s, known as the conductivity, which 
is assumed independent of time t in the TD, or 
frequency w in the FD.
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Rigorously speaking, Ohm’s law can be 
assumed valid in rocks only when a Direct 
Current (DC) regime is utilized, as in the DC 
resistivity method. With variable currents, as 
in many natural or artificial source TD or FD 
electromagnetic (EM) methods, Ohm’s law can 
be adopted provided that relaxation and dis-
persion effects are negligible, but in general this
condition cannot be established beforehand. 
Therefore, in order to deal with the influence
of IP in all EM methods, a generalized current 
density-to-electrical field relationship, including 
Ohm’s law as particular case, is needed.

In earth materials, many mechanisms have 
been developed to explain IP effects (Marshall and 
Madden, 1959; Nilsson, 1971; Zonge and Wynn, 
1975; Wong, 1979; Klein et al., 1984; Olhoeft, 
1985; Wyller et al., 1992). Comprehensive 
treatments can be found in the review books by 
Wait (1959), Bertin and Loeb (1976), Sumner 
(1976) and Fink et al. (1990).

Of the many empirical laws proposed so far, 
the most utilised in geophysics are the Debye 
(1928) TD and FD pair (see also Wait, 1959; 
Patella and Di Maio, 1989)

      
        (1.1a)

               
      

      
        (1.1b)

where an³ 0, tn³ 0, bn³ 0, Sa n = m with 0 £ m £ 1,
bn =antn, and the Cole and Cole (1941) TD and 
FD pair (see also Pelton et al., 1978)

      
                       (1.2a)

    

        (1.2b)

with 0 £ c £1, t ³ 0.
In both pairs of formulas, t andw are the time 

and frequency, respectively, V(t) is the voltage 
during the TD relaxation phase, V0 is the steady 

Fig.  1a-c. The Induced Polarization phenomenology 
observed with a quadrupolar electrode array (a) in the 
time-domain (b) and in the frequency-domain (c).
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voltage at the end of the TD charging phase, 
m is the chargeability (Seigel, 1959), r(w) is 
the electric field-to-current density ratio in the 
FD, called impedivity (Patella, 1993), and r0

is the zero-frequency impedivity, i.e. the DC 
resistivity. Finally, G(.) is Euler’s function, i
is the imaginary unit, and an, tn, bn and c, t, m
are assumed as heuristic parameters required to 
adapt the formulas to experimental data. It must 
be mentioned that the Cole-Cole model includes, 
as particular cases, Warburg (1899) and Madden 
and Cantwell (1967) models, for c = 0.5 and 
c = 0.25, respectively.

Eqs. (1.1a) and (1.2a) can be derived from (1.1b) 
and (1.2b), respectively, using the relationship

                          
      (1.3)

For a background knowledge of the analytical 
properties of the Debye and Cole-Cole formulas, 
reference is made to Shuey and Johnson (1973), 
Patella and Ciminale (1979), Pelton et al. (1983,
1984) and Caputo (1993). However, Wait (1982) 
points out that this characterization of IP is rather 
confused and vague, because fundamentally non-
physical descriptions are employed. To try to 
overcome this conceptual drawback, in this paper 
a mechanical approach is suggested to derive a 
generalised current density-to-electrical field 
relationship, allowing the physical properties of 
Debye and Cole-Cole descriptions to be fully 
investigated.

2.  The J-E constitutive relationship 
     in presence of polarization

We consider Ampère-Maxwell equation in 
the TD written as (Stratton, 1941)

                        (2.1)

where h is the magnetic field, and d' and j' are
the bound charges displacement field and the 
unbound charges current density, respectively.

Postulating that j' and e, and d' and e are 
related to each other by a convolutional form 
typical of a linear, causal and time-invariant 
system, eq. (2.1) can be expanded as

      

      (2.2)

where the causal functions σ̃ ' 't( ) and ε̃ ' 't( )
represent the electrical conductivity and dielectric 
permeability impulse responses, respectively.

Applying the derivation rule of a convolution 
integral and putting

      (2.3)

Ampère-Maxwell equation takes the compact 
form

          (2.4)

The right-hand integral in eq. (2.4) defines the 
total current density vector j(t), say

      (2.5)

As a consequence of eq. (2.3), the causal function 
σ̃ t( ) , which is called the admittivity impulse 
response, includes the electrical conductivity  
σ̃ ' t( ) and dielectric permeability ε̃ ' t( ) impulse
responses.

In the FD, putting with J(w), E(w), s (w),
s'(w) and e'(w) the FT of j(t), e(t), σ̃ t( ) , σ̃ ' t( )
and ε̃ ' t( ), respectively, eq. (2.3) and eq. (2.5) are 
transformed, respectively, into

          (2.6)

and

          .           (2.7)

Equation (2.7) can equivalently be put in the 
form

          (2.8)
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where r(w) = 1/s(w). The frequency-dependent 
functions r(w) and s (w) are called here im-
pedivity and admittivity, respectively, and 
represent a useful extension of the classical 
parameters of the resistivity r and conductivity 
s, respectively.

Using now the identity

      
          (2.9)

equation (2.2) can also be written as

      (2.10)

Putting

      (2.11)

Ampère-Maxwell eq. (2.1) finally takes also the 
compact form

      (2.12)

whose right-hand integral defines now the total 
displacement field vector d(t), say

     
      (2.13)

According to eq. (2.11), the causal function ε̃ t( ) ,
which is called permittivity impulse response, also 
includes the electrical conductivity and dielectric 
permeability impulse responses σ̃ ' t( )  and ε̃ ' t( ).

In the FD, using the FT, eq. (2.11) and eq. 
(2.13) are transformed, respectively, into

     (2.14)

and

        (2.15)

where d (w) is the Dirac delta function and D(w)
is the FT of d(t).

Equation (2.15) can equivalently be put in 
the form

        (2.16)

where h(w) = 1/e(w). The frequency-dependent 
parameters h(w) and e (w) are here called pre-
ventivity and permittivity, respectively, and re-
present an extension of the classical concept of 
dielectric permeability e.

Equation (2.13) is fully equivalent to eq. 
(2.5): in fact, comparing eq. (2.3) with eq. (2.11), 
we readily derive the transformation formulas

        (2.17)

      
        (2.18)

and finally, comparing eq. (2.4) with eq. (2.12) 
and eq. (2.5) with eq. (2.13), we readily get

     
      (2.19)

Concluding, we can state that for linear, causal and 
time-invariant natural systems, electrical current 
density and displacement field are equivalent 
descriptive vectors of the electromagnetic prop-
erties of matter. The bulk response can indif-
ferently be synthesized either by the admittivity 
or the permittivity parameters, which are linked 
together with simple transformation formulas. By 
this formulation, a distinction between unbound 
and bound charge carriers, in relation to the long- 
or short-distance capacity of movement under 
the influence of an external force, becomes un-
essential.

In order to make Ampère-Maxwell equation 
applicable in practice we must define the 
physical model of the admittivity (permittivity) 
TD and FD functions, for which we need to 
study at first the electrodynamic behaviour 
of a charged particle. To this aim, it is worth 
explaining beforehand how we shall combine 
the bulk electrical properties of a geophysical 
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readily obtain the solution for R(w) as

      
          (3.3)

Supposing that the system has K > 0 equal charged 
particles per unit of volume, by definition it is 
(Stratton, 1941; Parkhomenko, 1967)

          (3.4)

which, using eq. (3.4), becomes

      
      (3.5)

Comparing eq. (2.7) with eq. (3.5), we get

      
      
      

(3.6)

Though limited to only one species of charge car-
rier, eq. (3.6) is a useful admittivity starting model. 
It describes a circuit-like cell with a resistance-
capacitance-inductance series combination. In 
fact, where it is wm2 << m1 and m0 << wm1, eq. 
(3.6) reduces to

      
       (3.7)

which describes a purely resistive cell, as as-
sumed in DC geoelectrical methods. Where, 
instead, it is wm1 << m0 and w2m2 << m0 eq. (3.6) 
reduces to

      (3.8)

describing a purely capacitive cell. Finally, if 

structure and the microscopic electrodynamic 
properties of a compound of charged particles. 
Indeed, in all equations so far developed, we 
have not indicated the spatial dependence of the 
constitutive parameters and field vectors, tac-
itly admitting that the medium is a continuum. 
This is a useful, practical assumption at the 
scale of the geophysical field and laboratory 
experiments. However, as will be discussed 
later, the physical derivation of the analytical 
expression of the constitutive parameters requires 
a zooming at the smallest scale of the charge 
carriers, for which discontinuous properties 
must be introduced. Thus, the medium will be 
considered as an aggregate of elementary cells 
with unitary volume, each cell being sufficiently
small to assimilate the medium to a continuum 
and sufficiently large to incorporate the full 
diversity of a charged mixture.

3.  The electrodynamic equation of a charged                
     particle

Let us consider a charged particle confined
in a medium immersed in an external electric 
field e(t). The trajectory r(t ) of the particle can 
be determined by solving the following general 
mechanical differential equation

     
      (3.1)
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m1 << wm2 and m0 << w 2m2 eq. (3.6) reduces to

      
      

(3.9)

which represents the admittivity of a purely 
inductive cell.

From eq. (3.6) more complex cases can also 
be discussed. If unbound charges (m0 = 0) are 
considered, the admittivity model results to be

     (3.10)

which fits the behaviour of a circuit-like cell 
consisting of a resistance and inductance in series. 
This model is assumed to explain dispersion 
effects in metals (Stratton, 1941).

For bound charges (m0 ¹ 0) with negligible 
inertia (m2ª 0) the admittivity reduces to

     (3.11)

which characterises a circuit-like cell made of a 
resistance and capacitance in series.

Finally, for bound charges (m0 0) with 
vanishing friction (m1ª 0) the admittivity is

     (3.12)

which characterises a circuit-like cell made of an 
inductance and capacitance in series.

4.  The Debye impedivity model

Let us consider now a system with two dif-
ferent species of charge carriers and put with Kj, qj

and ml j the number per unit of volume, the electrical 
charge and the passive coefficients, respectively, 
of the carriers of the j-th species ( j = 1,2). Such 
a pair of ionic species can, e.g., be the result of 
ionic dissociation of a salt dissolved in pore water.

Since the total current density in the FD is 
now defined as (Parkhomenko, 1967)

      (4.1)

we readily obtain the following analytical model 
of admittivity

      (4.2)
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at least qualitatively, non-resonant IP phenomena 
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Generalising, we can now consider within 
each elementary cell either a parallel or a series 
combination of N two-branch circuits, or a net-
work of both combinations. For a parallel com-
bination, the admittivity becomes

      
      (4.9)

whereas for a series combination, the impedivity 
becomes

      (4.10)

which takes the same form as in eq. (1.1b), putt-
ing

      
        (4.11)

      

      (4.12)

5.  The Cole-Cole impedivity model

Shuey and Johnson (1973) showed that the 
analysis of the decay spectrum allows the pro-
perties of an impedivity model to be more easily 
deduced and understood.

The decay spectrum A(k) is defined as

      
      (5.1)

where ρ γik m( ) is any given impedivity function, 
wherew is replaced by ik m γ with g an arbitrarily 
small positive number.

Using the Debye impedivity model given in 
eq. (1.1b), after some simple steps we get the 
Debye decay spectrum AD(k) as (Patella and Di 
Maio, 1989)

      
      

(5.2)

The limit in the right-hand side of eq. (5.2) 
defines the Dirac delta function d(k-1/tn). Hence, 
we obtain at last the very important result

      
          (5.3)

Now, considering the definition of the d-func-
tion (Papoulis, 1962) applied to a generic decay 
spectrum A(k)

      
(5.4)

it follows that A(k) can always be considered as a 
continuous distribution of impulses with varying 
time constants, and thereof approximable to a 
sum as in eq. (5.3) with any desired accuracy. In 
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putting j = 1/t, we obtain the approximation
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model, which can physically be explained as a 
continuous distribution of Debye terms.

Though being the Debye and derived Cole-
Cole impedivity models related to the physical 
parameters describing the motion of ionic spe-
cies in rock capillaries under the influence of 
an external electric field, no possibility exists 
to distinguish each ionic species in a compound 
by means of only IP meaurements. Indeed, ad-
mitting that one may be able to single out the 
N exponential decay terms in the TD voltage 
transient or the N complex fractions in the FD 
impedivity spectrum and obtain the set of an,tn

or bn,tn IP parameters, by no way the mechanical 
and electric parameters of bound and unbound 
charged particles can be determined singly.

This conclusion contrasts the current belief 
that using IP it should be possible to distinguish 
ionic particles and to estimate their abundances, 
as, e.g., in environmental applications for mon-
itoring contaminants in sediments. In this ap-
plication field, only vague information on the 
possible existence of contaminants seems to 
be deducible from IP experiments. Weller and 
Börner (1996), e.g., have shown a reliable cor-
relation between the imaginary part of ad- 
mittivity and porespace internal surface in sedi-
ments, and concluded that the observed high 
sensitivity of the imaginary component to changes 
at the internal surface may be used as an indi-
cator for contaminations.
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