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Abstract

We investigate conceptually, analytically, and numerically the bi-

ases in the estimation of the b-value of the Gutenberg-Richter law

and of its uncertainty made through the least squares technique.

The biases are introduced by the cumulation operation for the cumu-

lative form of the Gutenberg-Richter law, by the logarithmic trans-

formation, and by the measurement errors on the magnitude. We

find that the least squares technique, applied to the cumulative and

binned form of the Gutenberg-Richter law, produces strong bias in

the b-value and its uncertainty, whose amplitudes depend on the size

of the sample. Furthermore, the logarithmic transformation pro-

duces two different endemic bends in the Log(N) versus M curve.

This means that this plot might produce fake significant departures

from the Gutenberg-Richter law. The effect of the measurement er-

rors is negligible compared to those of cumulation operation and log-

arithmic transformation. The results obtained show that the least

squares technique should never be used to determine the slope of

the Gutenberg-Richter law and its uncertainty.

Key Words: b-value, Seismology, Least Squares technique, Synthetic-

earthquake catalogs.

Short title for the page headings: Bias in the estimation of b-value

and its uncertainty through least squares.
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1 Introduction

The Gutenberg-Richter law (from now on GR law) (Gutenberg &

Richter, 1954) is certainly one of the most remarkable and ubiqui-

tous features of the worldwide seismicity. In the most common form

it reads

Log[N(M)] = a − bM (1)

In the so-called binned form of the GR law, N represents the number

of events with magnitude M , while in the cumulative form N is

the number of events with magnitude larger or equal to M . The

constants a and b are the coefficient of the linear relationship.

As discussed in a previous paper (Marzocchi and Sandri, 2003,

from now on MS03), the scientific relevance of the GR law is linked

to its apparent ubiquity, and to the theoretical implications and

meaning of its possible universality. In particular, the value of b,

representing the opposite of the slope of the linear relationship in

equation 1, is considered very important. In fact, in spite of a “first

order” validity of the GR law with a constant b-value ≈ 1 observed

in a variety of tectonic settings, significant spatial and temporal

variations in the b-value are found (e.g., Schorlemmer et al., 2005;

Murru et al., 2005; Ratchkovski et al., 2004; Wyss et al., 2004; Del

Pezzo et al., 2004; Mandal et al., 2004; Legrand et al., 2004; Riedel

et al., 2003). These possible variations are very important from a

theoretical point of view, and for seismic hazard studies. We refer

to our previous paper (MS03) for a deeper discussion about these

issues.

As a matter of fact, a crucial aspect in inferring variations or
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constancy of the b-value is represented by the method used to de-

termine the b-value and its uncertainty, given a seismic catalog, as

shown in MS03. In that paper, we discussed the maximum likeli-

hood method to estimate the b-value and its uncertainty, showing

that incorrect formulae based on this method produce a bias in the

b-value and an underestimation of its uncertainty. The latter implies

that we might observe a fake variation in the b-value only because

we have underestimated the uncertainty. Intentionally, in MS03 we

did not consider the least squares (from now on, LS) method, be-

cause it had already been recognized (Page, 1968; Bender, 1983)

that this technique applied to the problem of the estimation of the

b-value and of its uncertainty does not have any statistical founda-

tion. However, the LS technique is still widely employed to estimate

these two quantities, both in the binned and in the cumulative form,

also in recent literature (e.g. Working Group on California Earth-

quake Probabilities, 2003; Gruppo di lavoro, 2004; Lopez Pineda

and Rebollar, 2005).

The main purpose of this paper is to demonstrate, by means of

conceptual issues, analitical formulations and numerical simulations,

that the use of the LS technique in the estimation of the b-value and

of its uncertainty leads to strongly biased estimates of these two

quantities. For the correct estimation of these two quantities, we

refer to the appropriate formulae given in MS03 and in references

therein.
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2 Estimation of b and σb̂ through the LS Tech-

nique

The LS estimation consists of applying the linear regression analysis

to the GR law described by equation 1 in the binned or cumulative

form. The parameter b should be the same in the two formulations,

while the intercept a is different in the two cases.

2.1 Cumulative form of the GR law

Despite its large use in past and recent papers (Pacheco & Sykes,

1992; Pacheco et al., 1992; Karnik & Klima, 1993; Okal & Kirby,

1995; Scholz, 1997; Triep & Sykes, 1997; Main, 2000; Working

Group on California Earthquake Probabilities, 2003; Gruppo di la-

voro, 2004; Lopez Pineda and Rebollar, 2005), the use of LS tech-

nique to estimate the b-value on the cumulative form of the GR

law does not have any statistical motivation. In this case, indeed,

the strongest assumption of the regression analysis, i.e., the inde-

pendence of the observations, is clearly violated. In practice, the

cumulative form is an integration and, therefore, it represents a fil-

ter for the high frequency noise. As a result, the uncertainty of the

slope of the GR law is certainly strongly underestimated. In order

to evaluate numerically the bias in the regression analysis applied

to the cumulative form, as a function of the number of earthquakes

contained in the catalog, we simulate 1000 seismic catalogs, for dif-

ferent catalog sizes. The magnitudes Mi are obtained by binning,

with a fixed bin width of 0.1, a continuous random variable dis-
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tributed with a pdf given by equation

f(M) = b ln(10) 10−b(M−Mmin) (2)

which is valid if the catalog contains earthquakes with a complete-

ness magnitude equal to Mmin and with a magnitude range of at least

three units (see MS03). In this way, Mi is the magnitude attached

to all the synthetic seismic events with real continuous magnitude

in the range Mi − 0.05 ≤ M < Mi + 0.05.

Then, for each synthetic catalog, we estimate the b-value (from

now on, we use the notation b̂ for the estimated value, and b for

the theoretical value) by means of the LS technique applied to the

cumulative GR law described by equation 1, i.e., when N is the

number of events with magnitude larger or equal to Mi.

In Figure 1 we report the averages of b̂ calculated in 1000 syn-

thetic catalogs as a function of the number of data, for the cases

b = 1 and b = 2. At each average is attached the 95% confidence

interval. There is a clear negative bias, that decreases with the num-

ber of data and ranges from 5% to 2%. An explanation of this bias

will be given in the following when we describe the effects of the

logarithmic transformation in the regression analysis of the binned

magnitudes.

As mentioned above, another crucial aspect concerns the esti-

mation of the uncertainty attached to b̂, here indicated by σ̂b̂ and

estimated as the average error on b̂ provided by the 1000 linear

regressions. In particular, we are interested in evaluating if the es-

timation of σ̂2
b̂

is an unbiased estimator of the true variance of the

estimation of b̂ around its central value. This can be done by sim-
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ulating 1000 seismic catalogs as described before. For each catalog

we calculate b̂ and σ̂b̂. Then, we compare the dispersion of b̂ around

its average with the average of σ̂b̂, through the Fisher test (e.g.

Kalbfleisch, 1979)

F =
Variance of the estimation of the b−value

Average of the square of the uncertainty
(3)

The null hypothesis we test is that the average of σ̂2
b̂

is equal to the

variance of b̂.

The results, reported in Figure 2, are very interesting. In par-

ticular, the Fisher test shows that σ̂b̂ strongly underestimates the

dispersion of b̂, the former being at least one order of magnitude

smaller than the latter. This confirms that the uncertainty on the

b-value estimated through the cumulative LS method is strongly

underestimated.

In general, the potential factors which can bias the estimations

made through the LS technique (both in the cumulative and binned

form) are the logarithmic transformation of the number of events,

and the presence of the measurement errors on the magnitude. By

taking into account the criticism at the regression analysis applied

to the cumulative form just reported, in the following we study the

impact of these factors only on the estimation of the b-value made

by means of the regression analysis applied to the binned form.

2.2 Effects of the logarithmic transformation

The expected number of events for a magnitude M is

νi = npi = n

Mi+∆M/2∫

Mi−∆M/2

f(M)dM (4)
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where n is the total number of earthquakes in the catalog, ∆M is

the bin width used, and f(M) is given by equation 2. The expected

fluctuations around this value can be written as

∆Ni =
√

npi(1 − pi) (5)

In this frame, the observed number of events Ni for a binned

magnitude Mi can be written as Ni = νi(1 + ξi), where ξi is a

random variable with zero mean and standard deviation equal to

∆Ni/νi. By taking into account equations 4 and 5, we can write

∆Ni

νi
=

√
1 − pi

n pi
(6)

It is easy to demonstrate that ∆Ni/νi is a strictly monotonic de-

creasing function of pi. This means that the expected fluctuations

of the variable ξ are larger for lower pi, that is for large magnitudes.

The estimation of b in the classical linear regression analysis is

(see e.g. Draper & Smith, 1981)

b̂ = −
∑

Mi

∑
[Log(Ni)] − n

∑
Mi[Log(Ni)]

(
∑

Mi)2 − n
∑

M2
i

(7)

If we substitute Ni = νi(1 + ξi) we obtain

b̂ = −
∑

Mi

∑
[Log(νi)] − n

∑
Mi[Log(νi)]

(
∑

Mi)2 − n
∑

M2
i

−
∑

Mi

∑
[Log(1 + ξi)] − n

∑
Mi[Log(1 + ξi)]

(
∑

Mi)2 − n
∑

M2
i

(8)

If we apply the expectation operator at both sides of equation 8, it is

possible to verify that the bias is zero only if E[Log(1+ξi)] = 0. This

is certainly not true because E[Log(1 + ξi)] < Log{E[(1 + ξi)]} = 0.

To summarize, the application of the classical linear regression

analysis to the logarithm of real data (therefore affected by errors)
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produces a systematic bias on the estimated slope. This is not due

to the regression analysis (because the latter always provides an

unbiased estimate), but it is related to its application to this type

of data.

The logarithmic transformation has also another very important

effect due to the discreteness of the dependent variable N . We have

just shown that the dispersion of the data around the curve increases

with magnitude. Since we cannot compute Log(Ni) if Ni = 0, at

large magnitudes, where ν is low (for example ν ≤ 1), the LS tech-

nique can take into account only the “positive” fluctuations around

the mean value, i.e., the fluctuations that increase the expected num-

ber of events. This acts as a filter for the “negative” fluctuations,

that is at large magnitudes (where it can be computed) Log(Ni)

tends to be overestimated if compared to Log(νi). The global effect

consists in the introduction of a systematic negative bias in the es-

timation of b, that is b̂ is always lower than b. Recalling that the

amplitude of the dispersion around the curve is higher for small data

sets, in these cases the bias should be larger.

In Figure 3, we report Log(νi) (see equation 4) and the averages

of Log(Ni) obtained by 1000 synthetic catalogs as a function of the

magnitudes Mi. For each magnitude Mi, the average of Log(Ni)

is computed only on those catalogs for whom Ni ≥ 1. At lower

magnitudes, in the left part of the graph (to the left of the inter-

section point between the two lines in Figure 3), the Log(Ni) tends

to underestimate Log(νi). This bias, due to the second addendum

in the right side of equation 8, should lead to an overestimation of

the b-value. On the contrary, at large magnitudes (to the right of
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the intersection point between the two lines in Figure 3), there is

a turnover in the trend of Log(Ni) with respect to Log(νi). Here,

Log(Ni) tends to be larger than Log(νi). As mentioned before, this

effect is due to the filtering of the negative fluctuations of Ni at

large magnitudes performed by the logarithmic transformation of a

discrete variable. The consequence is an underestimation of the b-

value. The results reported in Figure 3 suggest that, when the larger

magnitudes are taken into account, this last bias is always predom-

inant. As argued before, this bias is reduced by increasing the size

of the data set. Instead, if the larger magnitudes are excluded (e.g.

Karnik & Klima, 1993), the plot Log(Ni) versus Mi shows only one

bend, and the b-value is overestimated independently on the size of

the catalog.

In other words, the global effect of the logarithmic transformation

of a discrete variable (the number of seismic events) introduces two

bends in the GR curve. It is worth to note that these discrepancies

from a straight line are not linked to any physical process, but only

to the mathematical transformation. Similar considerations can be

done by looking at Figure 4 that reports the estimations of the b-

value as a function of the size of the data set. The bias is very

strong for small data set and it decreases as the size of the data set

increases. The bias is higher in the binned case compared to the

cumulative one (compare Figures 4 and 1). This is due to the fact

that in the cumulative regression there are less zero values in the

dependent variable. As shown in Figure 2, the uncertainty of the

b-value made in the binned regression is still underestimated, even

though it is better than the strong underestimations obtained by
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the cumulative regression.

2.3 Effects of the measurement errors

If we add a measurement error at the theoretical magnitude (M),

we obtain the “real” magnitude (M̃) as a sum of two independent

random variables

M̃ = M + ε (9)

where M is the earthquake magnitude devoid of measurement errors

distributed with a pdf given by equation 2, and ε simulates the

measurement errors distributed as a Gaussian noise. Let us consider

the number of the earthquakes with a binned magnitude Mi, that

is N(Mi). By adding a Gaussian noise to each magnitude as in

equation 9, some events go out of and some come into the considered

bin, as shown in Figure 5. The final number is N(M̃i). The number

of data which go out of the bin is (see Figure 5)

mOL = mOR = PεN(Mi) (10)

where mOL is the number of data which go into the adjacent left bin,

mOR is the number of data that go into the adjacent right bin, and

Pε is the probability that a randomly chosen event inside the bin

goes out of the bin itself when a measurement error is added. Pε is

independent from Mi and it depends on σ2
ε (Pε → 0 when σ2

ε → 0).

The number of data which come in from the left bin is (see Figure

5)

mIL = PεN(Mi−1) = PεN(Mi −∆M) (11)

The number of data which come in from the right bin is (see Figure
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5)

mIR = PεN(Mi+1) = PεN(Mi +∆M) (12)

Then, we have

N(M̃ ) = N(M)+Pε

[
N(Mi+∆M)+N(Mi−∆M)−2N(M)

]
(13)

if equation 1 holds, equation 13 can be rewritten as

N(M̃)i = N(Mi) + Pε 10a−bMi(10−b ∆M + 10b ∆M − 2) (14)

For b ≈ 1 and ∆M = 0.1, as in most of the practical cases, the

term of equation 14 inside the round brackets is ≈ 0. In these

case N(Mi) ≈ N(M̃i), therefore the calculation of b is only slightly

affected by the measurement error. At the opposite, when ∆M is

large and/or b > 1, the term inside the round brackets cannot be

neglected and N(Mi) &= N(M̃i). This obviously introduces a further

bias in the b-value estimation.

Figure 6 reports the effect of the added measurement errors. As

argued before, the largest difference with the case without measure-

ment errors reported in Figure 4 is for b = 2, where the term of

equation 14 inside the round brackets is significantly different from

zero. Since Pε depends on the amplitude of the measurement error

(σε), equation 14 explains also the proportionality of the bias with

σε noted in Figure 6. As regards the estimation of the uncertainty of

the b-value, the results reported in Figure 7 show that the addition

of the measurement errors does not produce any further bias.

12



3 Final Remarks

We have studied conceptually, analytically, and numerically the

bias introduced by some factors such as the cumulation operation,

the logarithmic transformation, and the measurement errors on the

magnitudes, on the estimation of the b-value and of its uncertainty

by means of the least squares technique. We have found a great deal

of shortcomings.

First, besides violating a basic assumption of the regression anal-

ysis, the use of the cumulative form of the Gutenberg-Richter law

leads to a very strong underestimation of the uncertainty of the

b-value, due to the filtering effect of the cumulation operation.

Secondly, the logarithmic transformation of the discrete random

number of events produces a significant bias in the estimation of the

b-value both for the cumulative and binned form of the Gutenberg-

Richter law. Moreover, the bias strongly depends on the size of the

data set; this means that two sample of different sizes coming from

the same statistical distribution will have a significant difference in

the b-value estimated. The same logarithmic transformation pro-

duces two endemic bends of different signs in the Log(N) versus

M plot. These bends are not linked to the physical process. This

means that some departures from a straight line in the plot Log(N)

versus M do not invalidate the Gutenberg-Richter law.

Finally, the influence of the measurement errors appears to be

less important than the bias introduced by the logarithmic transfor-

mation.

The main purpose of this paper was to show that the estima-
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tion of the b-value by means of the least squares method is strongly

biased and its uncertainty results heavily underestimated. In this

view, this work intended to make clear why this method should not

be used to determine the slope of the Gutenberg-Richter law, and

to make inferences about its constancy or variations. In practice,

any spatial or temporal variation of the b-value obtained by this

method has to be regarded with a strong skepticism. On the other

hand, unbiased estimates of the b-value and of its uncertainty can be

obtained by using the correct formulae, based on the maximum like-

lihood method, that have been analitically and numerically tested

in Marzocchi and Sandri (2003) (see also references therein).
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Figure captions

Figure 1: Average of b̂ (dashed line) calculated through cumulative

LS technique in 1000 synthetic catalogs, as a function of the catalog

size, for the cases b=1 (left) and b=2 (right). At each average is

attached the 95 % confidence interval. The solid line represents the

true b-value.

Figure 2: F test values (see equation 3) for the case of figures 1

and 4 (see text). The plus signs represent the cumulative regression,

and the squares the binned regression. The dotted line represents

the critical value to reject the null hypothesis at a significance level

of 0.05. Note the logarithmic scale also on the vertical axis.

Figure 3: Logarithm of the expected number of earthquakes (Log(νi);

see text) according to the Gutenberg-Richter law (solid line) and av-

erage of the logarithm of the generated number of events in each of

1000 synthetic catalogs (dotted line), plotted as a function of the

magnitude, for different catalog sizes (from top to bottom: 100,

1000, 10000 events per catalog). The intersection between the solid

and dotted lines represents the point where the bending changes in

sign.

Figure 4: Average of b̂ (dashed line) calculated through binned LS

technique in 1000 synthetic catalogs, as a function of the catalog

size, for the cases b=1 (left) and b=2 (right). At each average is

attached the 95 % confidence interval. The solid line represents the

true b-value.
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Figure 5: Effect of the measurement errors on the number of earth-

quakes with binned magnitude Mi. Adding the measurement errors,

the number of events that come into the bin with central magnitude

Mi from the adjacent left bin is mIL, while those coming from the

adjacent right bin is mIR. The number of events that go out of the

bin with central magnitude Mi towards the adjacent left bin is mOL,

while those going out towards the adjacent right bin is mOR.

Figure 6: Averages of b̂ (dashed lines) calculated through binned

LS technique in 1000 synthetic catalogs as a function of the catalog

size, for the cases b=1 (top) and b=2 (bottom). The magnitudes

have measurement errors of standard deviation σε = 0.1, 0.3, 0.5

(from left to right). At each average is attached the 95 % confidence

interval. The solid line represents the true b-value.

Figure 7: F test values (see equation 3) for the case of figure 6 (see

text). The dotted line represents the critical value to reject the null

hypothesis at a significance level of 0.05.
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