
Some cOllsideratiollS OD the usual derivation 

or the Pockels (or Helmholtz) equation in steady 

two dimensionaI fluid dYllamics 

I~. lJRLI.'OS."lO (*) - E. SAJ:t:STI (**) - F. 7.IltILJ.I (***) 

:-\U'l\IARL 'l'hl' simplest non·!inear motion of <1 lIui,1 i~ stmlh'd; 
i.e. the ~tea,ly two dimension<11 motio!l of a pedect flni,\. 'l'hes!' equation8 
h<1YC il l"emarkahle pradiC'al importanc(' hecause they ,leSlTihe the air-
1l1Otion over Il1011ntains ami a wake on an oeeallic (lunen"" In partieular 
the numbel' of physieal ~olutions is discusse,l in r('!atio!l to the known bonnd­
i1l'y ('OIHlitions. 

RL\.~I'CYru. - :-:'i ~tlHlia il caHO più semplice di l1Ioto non lineare di 
nn fluido: t'ome, ad esempio, il moto non viscoso stazionario hidillwn~io­
n;J!e di un lluido omogenco. QUl'sj(' ('(Illazioni hanno applkazioni pratielw 
notevoli, come l1Ioto sopra lc montag!le o scia ,li isole in conenti sta· 
zionari!'. ~i esaminano l' discutono, in partif'olarc, il nlllll('TO Ili soluzioni 
fisielli' in rapporto alle conllizioni al ('ontol'!lO f'lIllOSI'.iuÌ\'. 

III t1w sl.m]y of tlte Vl'oblem or t.he 8teally two tlÌmlmsÌonal air­
Ho\\" over a mOlllltaÌll or of 1.JlC wake generatetl by an islantl OlT a 
sl.muly-stal.e no\\', many ]leOvle IIÌsellssel1 t.he Ilel'ivat,Ìon of all eqllatiol! 
fol' the stream fllllr,t,iol! a.m] st.lltlietl the conespontling solutions. 
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One of these equations has been known as the Pockels (or Helm-
holtz) equation, it is an elliptic linear partial differential equation 
for the stream function. 

In this paper, we derive this equation, as is usually done(3 '6-7,8-9 '10), 
and we point out some inaccuracies of the usual derivation. 

The steady motion of a non viscous two dimensional fluid in the 
plane x, z can be described by the following equations: 
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where , are partial derivatives respect to x and 2 respectively, 
DX <)Z 

m, w are the velocity components in the x and z directions respectively, 
/ - constant is the so called convection or buoyancy parameter, S(z) 
is a given function, a = constant (the term aw in the continuity equa-
tion [4] allows a reduction of the fluid density with the altitude 
if the z-axis is directed upward), n is a quanti ty connected with 
the pressure and 0 is the potential temperature. 

For a complete derivation of equations [1], [2], [3], [4] see the 
very interesting book of Gutman (6). 

Introducing the stream function y> by eq. [5] 

az 
~iz t>x 

[5] 

we derive from eqs. [1], [2], [3], [4] an equation for rp. 

First of all we notice tha t eq. [4] is always satisfied by the 
choice of eq. [5]. 

Multiplying eq. [3] by c~az we have 

-az -az W c u + e w 7>x î)z 
S(z) w 
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tha t means by eq. [5] 

i*. J® J® 8(z) ^ = o 

t ha t is 

5 
a <*, , ) ^ + I *<*> d S ' } = 0 

o 

the determinant of the Jacobian is zero. 

Then we have 

0 + J S(z') dz' = ft (y>) [6] 

where fi(y>) is an arbitrary function (some requirement of regularity 
of fi{y>) is needed). 

Eliminating n from equations [1], [2] and making use of eq. [5] 
we have 

where 

5 (ip, L y>) I ^ aO 
5 (x, z) ¡| 1 t>x 

2az ( a-w y-w 7>w L w = e - ——h —1 H 0 —— r \ a#2 az2 Dz 

[7] 

Using eq. [6] 

so tha t 

iO „ ~dw 
,r = ™ J |S| 

a (f> L yj) I1 cty; 
a (x, z) i dx 

tha t is in Jacobian form 

a 
a(x z) L f — z) I = o 
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Then we have 

hip = U(y) + /•/'i(V') « 

where /2 as /1 is an arbitrary function. 
Thus the system of eqs. [1], [2], [3], [4], has been reduced to eq. [9] 

for the stream function ip t ha t depends 011 the arbitrary functions /1, /2. 
In order to have a "well posed" problem the domain where the 

equation lias to be verified, the boundary conditions and the properties 
of the functions /1, /2 have to be specified. 

The Pockels (or Helmholtz) equation is a particular form of eq. [9]. 
In particular the Pockels equation is commonly derived in this 

way. 
The region where eq. [9] is studied is of the type z > 8 (x) where 

8(®) is a regular function of x (i.e. S(x) is the profile of a mountain) 
see Fig. 1. 

(in order to simplify the problem we assume now S(z) = S = const. 
a = 0) 

The boundary condition 011 the system of eqs. [1], [2], [3], [4] 
are the following [Gutman (")]: 

X 

x = — 00 z ^ 8 ( — 0 0 ) 

[10] 

[ 1 1 ] 
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Wo cam assume S (— oo) = 0. 

By eqs. [5] and [10] we have 

xp = y>x = Vz + c x = — oo, z > 0 [12] 

Assuming c = 0 by eqs. [5] [11] and [12] we have 

M F ) = - Y R - Y> X = — 0 0 , 2 > 0 [13] 

and finally from eqs. [9], [12] and [13] we obtain 

J2(YJ) = Y) X = O O , 2 ^ 0 . [ 1 4 ] 

Assuming tha t fi(y>), U(f) have everywhere the form given by 
eqs. [13] [14] we reach to the Pockels' equation: 

- r- + - + —- (w — V z) = 0 [15 
7>x2 ii/2 V2 r L J 

A rather similar discussion is usually done for the oceanographic 
case: the wake of an island on an oceanic stream. I t has to be remarked 
tha t in this problem the Coriolis force is taken into account, as in 
many other meteorological cases. 

From our point of view the derivation of eq. [15] is non satis-
factory for two different reason: 

1) The translation of the boundary conditions on u, 0 in terms 
of tp is not completely correct. 

In fact u = V where x = — oo 2 > 0 and u = —- does not 1>z 
imply y> = Vt in any finite region. The meaning of u = V when 
x = — oo, z ^ 0 is lim u (x, z) = V, z >-• 0. 

X —> - OO 

So tha t what we can expect is tha t lim ip (x, z) = = Vz if 
X -»- - oo 

2 ^ 0 tha t means y> = Vz, x = — oo, 2 ^ 0 . 
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Moreover the boundary condition on 0 and eq. [6] tell us that 

l im 0 (x, z) = lim (S z — ft(ip (x, z))), z > 0 
X—> — x — CO 

t ha t is 

0=£z — fi(Vz), 0. 

So we have tha t /i is fixed only for positive arguments (z ^ 0) and 
not everywhere as people seems to believe. 

Finally using eq. [9| in order to derive the form of /2 we use the 
following fact: 

lim A y> (x, z) = A lim ip (x, z) = A y>x = 0, (A = 5 + ) 
X - CO \ 0Ji 0Z 1 

this is also incorrect if no special assumptions are done on the previous 
limit. However if we study the problem in a compact domain, as 
it is the case of a numerical computation, the far upstream par t of 
the domain take the rule of In this case the situation is tha t 
people, hope to know from the conditions in par t of the boundary not 
only the solutions of one well determined elliptic non linear differential 
equation but also the explicit shape of the non linear part ji(y>) and 

Mr)-
This appears to us as an overstatement. 

2) The boundary condition eqs. [10], [11] are not enough to deter-
mine an unique solution of eqs. [1], [2], [3], [4] and so also the equation 
[15] has only the boundary condition given by eq. [12] which is not, 
enough to determine a unique solution. 

Concluding the idea tha t the boundary conditions can determine 
the form of /i, /2 in eq. [9] seems due to other non rigorous reasons, 
perhaps of historical origin. 

I t has to be remarked, however, tha t the above derivation of 
eq. [15] is now a classical method in geophysics and that an enormous 
amount of practical work is done on it. 

But it has to be said also t ha t an enormous mathematical litera-
ture exists on eq. [9] under various assumptions of ft, /2 [see for exam-
ple (7)]. The problem however of determining the physical form of 
/1, /•> and so the physical solutions of eq. [9] is in our opinion essentially 
open, so the use of the primitive equations [1], [2], [3], [4] seems to 
us the most reasonable way to handle these problems. 
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