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Susmsmary. - The simplest non-linear wotion of a fluid is stilicd;
i.¢. the steady two dimensional motion of a perfeel fluild. These equations
have a remarkable practical importance hecanse they desceribe the air-
motion over mountains aml a wake on an oceanie cuwrrent. [n particunlar
the number of physical solutlions is diseussed in velation to the known hounsd-
ary conditions,

Rissscxrto. — 8 studia il caso pitt semplice di mote non lincare di
un fluido: come, ad esempio, il moto non viscoso stazionario bidimensio-
nale di un finido omogeneo, Queste cquazioni hanno applicazioni pratiche
notevoli, come molo sopra le nmwntagne o seia i isole in correnti sta-
zionarie. R esaminano ¢ disenione, in particolare, il numero i soluzioni
fisiche in rapporto alle comlizioni al eontorno conosciute.

In the study of the problem of the steady two dimensional air-
flow over a mountuin or of the wake generated by an island on a
sleady-staie flow, many people discussed the derivation of an equation
for the stream tunction aml studied the corresponding solutions.
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One of these equations has been known as the Pockels (or Helm-
holtz) equation, it is an elliptic linear partial differential equation
for the stream function.

In this paper, we derive this equation, as is usually done (3.6.7.8.9.10),
and we point out some inaccuracies of the usual derivation.

The steady motion of a non viscous two dimensional fluid in the
plane x, z can be described by the following equations:
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where o !y T partial derivatives respect to x and z respectively,
r’ dz

u, w0 are the velocity components in the x and z directions respectively,
/. = constant is the so called convection or buoyancy parameter, S(z)
is a given function, ¢ = constant (the term ow in the continuity equa-
tion {4] allows a reduction of the fluid density with the altitude
if the z-axis is directed upward), = is a quantity connected with
the pressure and f) is the potential temperature.

For a complete derivation of equations [1], [2], [3], [4] see the
very interesting book of Gutman (5).

Introducing the stream function p by eq. [5]

oz or
we derive from eqs. [1], [2], [3], [4] an equation for .

First of all we notice that eq. [4] is always satisfied by the
choice of eq. [5].
Multiplying eq. [3] by ¢ % we have
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that means by eq. [5]

oW 0w
that is
? 0 S(z") dz’ =0
b(w,z)(w’ e =
0

the determinant of the Jacobian is zero.

Then we have
0+ J Sz Az’ = fi (y) (6]

where fi(p) is an arbitrary function (some requirement of regularity
of fi(y) is needed).

Eliminating & from equations [1], [2] and making use of eq. [5]
we have
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Using eq. [6]
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that is in Jacobian form
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'l‘

hen we have
Ly =fly) + 21y 2

where f2 as fi is an arbitrary function.

Thus the system of eqs. [1], [2], [3], [4], has been reduced to eq. [9]
for the stream function y that depends on the arbitrary functions fi, fa.

In order to have a ‘“well posed” problem the domain where the
equation has to be veritied, the boundary conditions and the properties
of the functions fi, f= have to be specified.

The Pockels (or Helmholtz) equation is a particular form of eq. [9].

In particular the Pockels equation is commonly derived in this
way.

The region where eq. [9] is studied is of the type z > 3 (x) where
3(x) is a regular function of & (i.e. 3(x) is the profile of a mountain)
see Fig. 1.

(in order to simplify the problem we assume now N(z) = S = const.
a = 0)

The boundary condition on the system of eqs. [1], [2], [3], [4]
are the following [Gutman (%)]:

(10]
(11]
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We can assume § (— oo) = 0.

By eqs. [5] and [10] we have

py=yp, =Vz+e¢ r=—o0, 220 [12]
Assuming ¢ = 0 by eqs. [5] [11] and [12] we have
hily) = Y *=—o00, =2>=0 [13]
and finally from eqs. [9], [12] and [13] we obtain
foly) = — Y r=—o0, 2z2=0. [14]

Assuming that fi(p), fo(w) have everywhere the form given by
eqs. [13] [14] we reach to the Pockels’ equation:

- Vo llj,, -
dr? +

e T WA =0 [15,
A rather similar discussion is usually done for the oceanographic
case: the wake of an island on an oceanie stream. It has to be remarked
that in this problem the Coriolis foree is taken into aceount, as in
many other meteorological cases.
From our point of view the derivation of eq. [15] is non satis-

factory for two different reason:

1) The translation of the boundary conditions on %, in terms
of p is not completely correct.

In fact 4 =V where 1 = —o00 2 =20 and u = . does not,
z
imply » = Vt in any finite region. The meaning of « = I” when
r=—o0, 2z>=01is lim u(x,2)=1, z>0.
T —>—-®
So that what we can expect is that lim p(z,2) =w» = Vzif
x—»—-®

z >0 that means p = 'z, & =-—o00, 2 >=0.
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Moreover the boundary condition on ) and eq. [6] tell us that

lim §(r,2) = lim (Sz—fiyz2), =z2=0

£ > - r—>-—"
that is

0=8z—fi(Vz), =z=0

So we have that fi is fixed only for positive arguments (z = 0) and
not everywhere as people seems to believe.

Finally using eq. [9] in order to derive the form of f: we use the
following fact:

2 2
lim Ap(r,z) =A lim y(r2) =Ayp, =0, (A =+ D_—)

P ] T > - %

this is also incorrect if no special assumptions are done on the previous
limit. However if we study the problem in a compact domain, as
it is the case of a numerical computation, the far upstream part of
the domain take the rule of w.. In this case the situation is that
people hope to know from the conditions in part of the boundary not
only the solutions of one well determined elliptic non linear differential
equation but also the explicit shape of the non linear part fi(p) and
fa(w).

This appears to us as an overstatement.

2) The boundary condition eqs. [10], [11] are not enough to deter-
mine an unique solution of eqs. [1], [2], [3], [4] and so also the equation
{15] has only the boundary condition given by eq. [12] which is not
enough to determine a unique solution.

Conecluding the idea that the boundary conditions can determine
the form of fi, fo in eq. {9] seems due to other non rigorous reasons,
perhaps of historical origin.

It has to be remarked, however, that the above derivation of
eq. [15] is now a classical method in geophysies and that an enormous
amount of practical work is done on it.

But it has to be said also that an enormous mathematical litera-
ture exists on eq. [9] under various assumptions of fi, f» [see for exam-
ple (?)]. The problem however of determining the physical form of
f1, f» and so the physical solutions of eq. [9] is in our opinion essentially
open, so the use of the primitive equations [1], [2], [3], [4] seems to
us the most reasonable way to handle these problems.
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