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SumMyary. — This paper is concerned with the plane strain in a theory
for an arbitrary, uniformly rotating, self-gravitating, perfectly elastic Earth
model with a hydrostatic initial stress field. Using the associated matrices
method, a representation of Galerkin type is given. This representation
enables us to derive the solution of the vibration problem corresponding to
concentrated body forces.

Ri1assunTOo. — In questo lavoro si tratta il problema della deformazione
piana nell’ambito di un modello terrestre arbitrario, uniformemente ruo-
tante, autogravitante, perfettamente elastico e soggetto ad un ecampo idro-
statico di sforzo iniziale. Usando il metodo delle matrici associate, viene
data una rappresentazione di tipo Galerkin. Questa rappresentazione per-
mette la soluzione del problema delle vibrazioni corrispondenti a forze di
massa concentrate.

INTRODUCTION.

Dahlen (3) has developed the linearized equations and linearized
boundary and continuity conditions governing small elastic-gravita-
tional disturbances away from equilibrium of an arbitrary uniformly
rotating, self-gravitating, perfectly elastic Earth model with an ar-
bitrary initial static stress field [see, also, Boschi (})].

(*) This work has been made during a tenure of a C.N.R. fellowship.
Cavendish Laboratory, University of Cambridge.

(**) On leave from Istituto di Geofisica, Universita di Bologna, and
Istituto di Secienze della Terra, Universita di Ancona.
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In this paper we consider this theory in the case of a hydrostatic
initial stress field and derive the equations for the plane strain. The
medium is assumed homogeneous and isotropic. By making use of
the associated matrices method (3), we give a representation of Ga-
lerkin type. This representation enables us to obtain the solution
corresponding to concentrated loads in an infinite medium for the
case of stationary vibrations. Analogous problems have been studied
in other fields. (¢ 4. 2)

BASIC EQUATIONS.

In the following we employ a rectangular coordinate system Oy
and the usual indicial notations. The Greek indices are supposed to
take the values 1, 2 and the Latin indices the values 1, 2, 3.

Let 3 be a plane region occupied by the considered medium.

We denote by s, the components of the displacement vector and
by @ the perturbation in the gravitational potential.

In the case of plane strain, we have:

Saq = 8q (11, Myy 1), Dy = Dy (T, @y 1), 85 = 0. (1]

From the equations established by Dahlen (3), we can derive the
following basic equations for the plane strain problem in the case
of a hydrostatic initial stress tensor T°, = — po di; {(po = const.):

— the equations of motion:

ag = — 47006 g4 (2]
Q081 — 20088y = — 00 Zya -F Tﬂlvﬁ + & [3]
0oy —200 2w = — 0o+ Tp,p+

— the constitutive equations:

Tu=@A+2u—2ps)s11 + (A —po) s2,2
Ta2 = (A —po)s1a + (A 4+ 2u—20po)see [4]
The = p 82,1 + (4 — Po) 81,2
Tor = ps12 + (@ — Po) $21
In the above equations, we have used the following notations:
T .3 — the components of the ineremental pseudostress tensor; Fa —

the components of body forces; 2 — (0, 0, £25) — the steady angular
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velocity rotation; A, u — the appropriate constants of the material;
po — the mass density; G — the gravitational constant; a comma
denotes partial differentiation with respect to space variables and a
superposed dot denotes partial differentiation with respect to the
time ¢.

Using equations [4], the differential equations [2] and [3] may
be written as:

2 02

_2 0 - (4] 3 _2 o -

‘/M‘+(l+u Po) o 0 g s1+r(/1+# e
? .
2 o 5 22— 0o ~ 7~ -
202 ol 800 L Dy 7

‘(}.+‘LL—2P0) > s -2 00 023 Yk "uA—{—(l—{—‘u—2po)
2 2 _
D X2 Qo Y 82 — Qo Vs ¢, = —F, [5]

d
81+47thG3;:82+A(p1=0

0y

GALERKIN REPRESENTATION.

Using the associated matrices method (3), we obtain the following
representation of Galerkin type:

S1= .1_12 5

V22 e ’Uzg’ ) b$22
2 9 pe) o 42002 O A b dmor T
( +‘u—./po o, OTs & 0o 523 ) + T 0o rb.’[—?lbﬂ/‘gs 2
2 D 2 0O, 2
taeo |0 o o wmew | 1
’,1 2 ¥ QD’A+4 L
(A +u—2p) Yy 3| T 0o 1
T T T (6]
# V22 .2 a2 dn
20, » | ..
tre L, o v ot
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0 2 O, 02

(pl — —-1.7[90 (Iv ‘Ll, ’ Dz Dvl‘l e D(L‘Z ") ‘ ]—11
) 20, 2 ,
170, G A
moGr L, s am ot i :
4 02 2
: I
1 T2 12 122 o2
where
1 22
O v o 0 4= g
v = A+ 2pu—2po) /g [7]
v = [ 0o

The functions I'y = 'k (@1, X, t) satisfy to the following equations:

1
DI, — F,
¢ pd 42 —2po) (8]
DI3=0
where
(9]
where
1 9 Qz \ -1
1,2 — 2 R
o2 0.2 = 0.2 1 00 (¢
STATIONARY VIBRATIONS.
In what follows, we assume that:
Fy = R\ F* (0, 22) " [10]
In this case we seek the solution in the form:
o = Rels] (@, @) o™
(11]

iwt

D, = R D™ (m,, ;) ¢
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From the Galerkin representation [6], by putting
I'y =R Uy (21, a2) o't

we obtain

. e 17w G ,
STk l 22 de? V22 22 r
htd
- 24 2
.(1 +u Po) L 3% + 2iposssw|d + Lt G STs 3o I
21825 w0 D
e | RY o Va2 RY 2 I
§5 = — Capy) inp2 G\
s, ’(l + u Po) . i10ofsw|d + L7 oo s {
*2 M2 170G 1
S c
+ p t A+ e e (1 [12]
*®2 Q 2 d .
+M,Qo D-» /35}‘-7 + Va2 3;31 I:;
) #2 0 218250 D -
P* = —. o —
D bz e G#‘Dz A2 + P2 dx:
d 2180 d *
170G u|[] 20 2 n
V22
*2 __ %2 4 232 w2
pe) | LJ 1 2 12 V22
where
% y [13]
0, =4+ o

The functions %™ (x1, x2) satisfy the equations

1
_ ¥,
pA+2u—2po) [14]

D* I;* =o.

D*r,;* =
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where
*2 #2 4 7mw00 G
D’ O O S
1 2 Vo™ 3
with

(7" =4+ o] vs2

The operator D™ can be written in the form:
D* = A (A — k) (4 — k?),

where k2, k2% are the roots of the equation

ke 4 k2

o? w?+ 170, G w: [ W 17700 G m
_’— 9

P

(A V2" Vo U1~ T3

EFFECT OF CONCENTRATED FORCES.

[15]

[16]

0 [17]

Let us examine the effect of a body force acting along the axis

1. In this case, we have:

F, =0, [18]
and from equations [14], we can take:
' =rI"=0
The solution of the problem is given by:
iz 0o G 2 ) F *
BV 0 gz et dpg? Va2 w2 T
S = — A — 2 Do 9 ° _
g ( + /L p ) b(l)l 3$2 ve Qa @ AT b$2
[19]
a U 2 D 2 ) Q 4 D ' o
Boo=—tmpGpA L D 210 2

dry 22 0 722 0Lz |
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where /" is the solution of the equation:

AA —k2) (A — k2) [V = 20
(4 — ) ( ) I WO 22y [20]

We can write the solution of equation [20] in the form:

Nte=_— @ - G2+ ——— Gs. 21
! e (ke — ) T e i—ke) O ke O [21]
where the functions G; satisfy the equations:
1 x
(4 — kq?) Gy = F
A+2u—2p,
p(h+2pu—20po) 22
1
Gy = —~ I
A G pwh+2u—2p)
Let us consider the concentrated body force
F* =68 (1) 8 (x2). [23]
In this case the functions ¢; are given by:
G 1 Ko (kg 1)
T A u (2 —2p) e
I u 24]
1
(s = In»

Qapu(A+2u—2po)

where K, (2) is the modified Bessel function of third kind, and
12 = 11~ + 222, Using equations [21] and [24], the solution of equation
[20], for concentrated body force, is given by:

P % I(u (kl I') Ko (]x'z 7')
S 2u—2pe) |kt (b — k) ket (et — k)
e Ing 25
fatl [25]

Thus, the solution of the considered problem is given by [19],
where /1 has the expression [25]. In a similar way, we can obtain
the solution for a concentrated body force acting along the axis Ow..
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