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SUMMARY. — Laboratory experiments and field observations indicate 
that tlie Q of many non ferromagnetic inorganic solids is almost frequency 
independent in the range 10' to 10~2 cps; although no single substance has 
been investigated over the entire frequency spectrum. One of the purposes 
of this investigation is to find the analytic expression of a linear dissipative 
mechanism whose Q is almost frequency independent over large frequency 
ranges. This will be obtained by introducing fractional derivatives in the 
stress strain relation. 

Since the aim of this research is to also contribute to elucidating the 
dissipating mechanism in the earth free modes, we shall treat the cases of 
dissipation in the free purely torsional modes of a shell and the purely 
radial vibration of a solid sphere. 

The theory is checked with the new values determined for the Q of 
the spheroidal free modes of the earth in the range between 10 and 5 minutes 
integrated with the Q of the Railegh waves in the range between 5 and 0.6 
minutes. 

Another check of the theory is made with the experimental values 
of the Q of the longitudinal waves in an alluminimi rod, in the range bet-
ween 10~5 and 10~3 seconds. 

In both clicks the theory represents the observed phenomena very 
sat is factory. 

RIASSUNTO. • — 1 risultati delle, ricerche ili laboratorio e delle osserva-
zioni in fenomeni naturali indicano che il Q di parecchi solidi inorganici 
non ferromagnetici è indipendente dalle frequenze nell ' intervallo IO -2, IO7 

cicli al secondo; per quanto nessuna sostanza sia stata studiata in tutto 

( * ) This paper was presented at the 1966 annual meeting of A G U in 
Washington DC. 

( * * ) Department of Geophysics, University of British Columbia, Canada. 
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questo intervallo di frequenze. Tino degli seopi della presente ricerca è 
quello di trovare l'espressione analitica di un modello di dissipazione li-
neare in cui Q sia indipendente dalla frequenza in un vasto intervallo di 
frequenze. Questo sarà ottenuto introducendo derivate di ordine frazionario 
nelle relazioni fra sforzo e deformazione. 

Poiché uno degli scopi di questa ricerca è anche di contribuire ad una 
miglior comprensione dei meccanismi di dissipazione dell'energia nelle oscil-
lazioni libere delia Terra, in questa nota si applicherà la legge di dissipazione 
citata al caso delle oscillazioni torsionali libere di uno strato sferico. 

La teoria esposta viene poi applicata allo studio dei valori di Q osservati 
nelle onde di Rayleigh e nelle oscillazioni sferoidali della Terra. 

Un'altra applicazione della teoria è fatta allo studio dei valori di Q 
osservati nelle onde longitudinali di una sbarra di alluminio. 

In entrambe le applicazioni la teoria rappresenta in maniera soddi-
sfacente i fenomeni osservati. 

INTRODUCTION 

In a homogeneous isotropic elastic field, the elastic properties of 

the substance are specified by a description of the strain and stre 

sses iu a l imited portion of the field since the strains and stresses are 

linearly related by two parameters which describe the elastic properties 

of the field. I f the elastic held is not homogeneous nor isotropic the 

properties of the field are specified in a similar manner by a larger 

number of parameters which also depend on the position. 

These perfectly elastic fields are insufficient models for the descript-

ion of many physical phenomena because they do not allow to explain 

the dissipation of energy. A more complete description of the actual 

elastic fields is obtained by introducing stress-strain relations which 

include also linear combinations of time derivatives of the strain 

and the stress. The numerical coefficients appearing in the general 

linear combinations of higher order derivatives are called visco-

elastic constants of higher order. 

Elastic fields described by elastic constants of higher order have 

been discussed by many authors, [e.g. see Knopof f , 1954; Capnto, 1966]. 

Knopoff studied the case in which the stress strain relations are of 

the type 

(l"L 

Tr„ = I ghi grs e„i+ '¿¡x ers + — [),m ghi g„ ehi + 2/um ers) [1] 

where Xm (Hid. flm are constant, he obtained a condition for these visco-

elastic constants of higher order analogous to those existing for the 
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perfectly elastic fields and also proved that in order to have a dissi-
pative elastic field the stress-strain relations should contain time deriv-
atives of odd order. 

A generalization of the relation [1] is 

P dm 

Trs = ¿jm -J— 0 ' « g'" Ors Chi + 2flm CrS] [2] 

W e can generalize [2] to the case when the operation - j -^ is perfor-

where one can also consider /,„ and ¡xm functions of position. 

dm 

It™ 

rncd with TO as a real number 2 (see appendix) and also further by 
substituting the summation with an integral as follows 

bi b2 
f dz f dz 

Tr. = I /i (r, z) --- g»t (jrB ehi dz + 2 / /2 (r, z) — e„ dz. [3] 

«1 a2 

¡j, is the radial coordinate in a spherical coordinate system. 

Relations [1] and [2] are a special case of [3] — they are obtained 

by setting 

p 
f 1 (»', «0 = <5 (« W) lm 

? 

P 

/2 (r, z) = 2 " ! <5 (z — m) ¡xm 
i 

[4] 

where d(z—-in) are unitary delta functions. 
If at = q = p = 0, then we have the case of a perfectly elastic 

field: if q = p = 1 then we have a perfectly viscous field; if q = at — 0 
and p = 1 then we have a viscoclastic field. 

Dissipation in a plane wave 

In the simple case of a plane wave, assuming / = rjd{z — z0), the 

stress-strain relation [3] gives the following equation of motion . 

a2w S 2 « az° a 2 « 
p + a b V = 0 • [5] 

B y taking the Laplace transform of [5] we have 

32 U a 2 U 
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and the nature of the motion depends on the roots of the following 
equation 

rj a2 p'o + q p* -f fj, a
2 = 0 . [6] 

The approximate solution of [6], neglecting the term in rj, which 
we assume to be small with respect to /u, is 

p2 = _ 

e 

the solution which takes into account the dissipation is 

\P°\Zo a2 / 7t . . n \) 

p = X | p. I 1 + j - ^ l ^ - (cos - s„ + » Sin - * . ) j [7] 

and the specific dissipation is 
s i n ^ , 0 . [8] 

Solution of the equations of motion in spherical coordinates 

W e shall follow the method described in Caputo [1966]; the operator 
Oi introduced in that paper is 

ii 
Oi = Vil (r) — ¡9] 

here, according to the definition [3] of the stress-strain relation, these 
operators will be 

h il 

0 1 = L F L { R ' Z ) Y P D Z + 2 

h 
r 

02 = ft(r,g) — dz. [10] 

One can see that the method of solving the equations of equilibrium 
resulting from the definition [1] of the stress-strain relation (see Caputo 
1966) can be applied also to the case when the estress-strain rela-
tion is [3]. 
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The Laplace transform 8 (<SV, S^) of the displacement vector 

s(sr, Sy) — where r, q> are spherical coordinates, d colatitude, <p 

longitude —• is: 

Sr Sa -^i 1 »I 

à T 
S » S * + [11] 

s œ = S » Sfc i ï 
s r « 

sin & ~ò <p 
- R, 

where Y„ are spherical harmonics 

n + 

4 71 / 

J>>=< 
2w + l (n—K)\ \^ 

2 jt ( « + -E) 

2w + l ( 2 n — K ) ^ 1 ' 2 

if 7c = 0 

if7c = 1,2, . . .,n [12] P W (COS )? )COS/FY 

p(*-»)(cOSI?) cos ( 7 c — 9 ? , if7c = n + 1 , . . . , 2w 
27T 

and jRj.n, B2,n, R3,n are solutions of the system 

A. 
dr 

0,V 
+ 2 0 . 4 Y . ' ^ i . i i r M , 

a r j r r2 d r 

n - d R , dPo = , d(P—Po) , d ( dP„\ 

i - 1 o x v — 0 
dR1 d2 {rRs) 

dr dr1 
+ 02r 

R, d£2/r 

/• dr 

[13] 

dr 

o d ( P — P „ ) 

0 2 

dr 

1 d2 r R2 n(n +1) 

ÌTIQG V + 7,— — i j r t f g - ^ - = 0 

r dr2 

V = 

r2 

n(n-\-1) 
R 

r r 

dRJr 
+ 02r 

dr 
+ 03R3 = 0 

with 

-
r2 dr v ' 

2tt TC 00 

-P0=J I j"(r—Vo)e-ptsmêd(pâêdt. 

o o 0 
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V — Vu is the perturbation of the gravitational potential arising from 
the perturbation of the density field and from the attraction of the 
density perturbation at the deformed interfaces. 

W e assume also that the integration in [3] can be interchanged 
with the integration of the Laplace transformation and also that we 
can use formula [38] (see appendix at the end of the paper). Then e.g. 

0 , j o2 si e-*1 dt = I pz /2 (>•, z) dz j s, e~"1 dt . [14] 

32 

Dissipation in the torsional oscillation of a shell 

W e shall discuss some models of dissipation, obtained by specializing 
the functions fi {r, z) appearing in [3], in the free purely torsional and 
radial vibrations of a shell. 

The equation which governs the motions of the torsional modes in 
a non perfectly elastic shell of radiae and r2, assuming a stress-strain 
relation of the type [3], is: 

fi [r, z) dp 

1 i>2 rs 1 3 ( 1 ì> s sin i 

r 5r2 r I •& \sin# J) •& 
dz 

[15] 

Ì) r fz (r, z) 
d* 

d P 

3 (s 

5 r \ v 
dz = Q 

y-s 

M 2 

W e assume an Earth model defined by a liquid core and a homo-
geneous mantle, and assume also that the dissipation of energy due to 
the viscous interaction between the core and the mantle, is negligible 

i 
[Caputo, 1966] and that — /2 ('", z) = 0, then the boundary condition is 

3 r 

F n (r2) 

Fn (n) 

F-n (r2) 

F-n (>-,) 
= 0 [16] 

F (r) = r-3!2 J (ra) 
± » d r ± » + l/s 
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where 

S, = J An Jn+y2 (a r) + (— 1 ) » « A-n J-n-y2 (CLV) J ^ [17] 

a2 

I-2 = Q-1 I /a («) dz 

is a solution of the Laplace transform of [15]. J_„_i/a ( a » j and Jn+i/2 (ar) 
are Bessel functions, and P „ (cos #) are Legendre polinomials. 

The solutions of [16] determine the periods of free oscillation and 
also the Q. Without loss of generality [10] can be written 

f2 ( * ) = / * + fj,(e)p*de. 

An interesting case arises when 

U (z) =fhà {z — z„ + e) 

equation [16] is then 

fj, + ZO-E P* 

which gives 

p = i I p01 J1 + ^ pzos 

If z0 = 2 TO (m integer) then we have 

|Va 

P» I = «1 
'iL 

Q 

p = i 

and if TO = 0 

r /W 

7r e . . n e 
cos — — t sm —-

2 2 
ll/2 

jr e . . n e 
cos — - — t sin —• 

2 2 

The specific dissipation function is therefore 

q-1 = ~ I y» r 
. 31 

s i n - e 

[18] 

[19] 

[20] 

[21] 

[22] 

[23] 

[24] 
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Dissipation in the purely radial modes 

The study of the dissipation of energy in the purely radial modes, 

can be done as that of the torsional modes. The only difference is 

that in this case the forces which govern the periods of the modes are 

the elastic forces and also the gravitational forces. Assuming a homo-

3/, 
geneous earth model of density p„ and — = 0 one can see that the 

i)r 

periods of the free modes and the dissipation are given by 

¡>i 

[25] 

Q° >\ (V2 — 4 J.) = — x2 I fi (z) p'dz 

. 4 71 G Qo 
A = ——-— 

and ® is a solution of 

tan X 

X 

4 P. 

Without loss of generality f1 can be written 

h 

U = X + J J1(z)rdz. 

An interesting case arisen when 

fi («) = Kà (z — zo + e) 
equation [25] is then 

[26] 

[27] 

[28] 

p° = 4A — ~ (À + 2/j pz°~E)= — |p.|«. 

= -\Po\2-

2 Xa 

Po = a + 2/i). 
* 2 

g r 
o 

(A+ 2/1) — 4A 

erl 
P»' 

Zo—E 

A, 4AÀ, 
+ A + 2/j, r A + 2/i 

Po Zo-E 

[29] 
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Its solutions are 

V = ± » I Vo I 1 + A + 2 / ^ 0 (A+2//)Ipo|21 

which becomes for = 0 

» - + i I „ I J1 + — - 1 — » 4 A A i P ° ~ £ 1 
p — I I p0 I > -L -t- . p0 > f X + 2/i (A + 2 f l ) \ Pa I2} 

Equation [31] can also be written 

p = ± < | p . | i l ' 
2 ( A + 2 p) 

and the specific dissipation is 

£A I 71 . . 71 
cos - £ — i sin — e 

Q-1 = ¿i I V° . 71 
s m - e 

A + 2 ( i 

The ratio of the observed Q's gives e 

«¡! (\ v 

q:1' 

l — 
4 1 

I V» I2 

Pox ly I poi I 

Xx is therefore obtained from [34] by substitution 

(A + 2 | ffo |e 

0 sin 
e 7i 

[30] 

[31] 

[32] 

[33] 

[34] 

[35] 

Gheclcs with the observations 

A very extensive analysis of the attenuation of the Rayleigh waves 
has been made by Ben-Menahem (1964) who measured it from four 
great earthquakes from observation of multiple circuits around 
the earth past one station. By Fourier analysis he obtained the 
specific attenuation factor in the period range between 300 and 40 
seconds; from the attenuation factor he computed then the specific 
dissipation. 

The discrete spectrum of the spheroidal oscillations of the earth, 
where the matter is both compressed and sheared, approaches the con-
tinuous Rayleigh waves spectrum. In order to extend the range where 
the Q is known, we computed it also from the free spheroidal oscillations 
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of tlic Earth of period between 5 and 18 minutes, using the 110 horns 
record fo the 1961 Chilean quake recorded at UCLA. The record was 
subdivided in several intervals whose initial points where 4.5 and 13.5 
hours apart; from the power spectral analysis of these intervals we 
obtained the decrease in energy and subsequently the Q's by means 
of formula [24] of Caputo (1966). Prom a preliminary analysis of these 
Q's we can see that the agreement with the mathematical model of 
dissipation proposed in this paper, with e = — 0.15, is satisfactory. 

Another check of this theory can be made using the Q's obtained 
by Zemaneek and Rudnik (1961) for longitudinal waves in the period 
range between 10-3 and 10"s seconds. Here again the agreement of 
the observed Q's with the model of dissipation proposed in the present 
paper, with e — — 0..15, is satisfactory. W e plan to complete and 
publish soon the discussion of the above mentioned experimental results. 

Appendix 

A generalization of the operation of differentiation with real order 
of differentiation, for a wide class of analytic functions, can be made 
as follows. 

Le t 

d* , U tx~" i i x > o ) o < z < l 
— ( e f ) = r(x + l—z) [36] 

( o if iC = o r i n t e s e r 

I t f(t) is an analytic function, the operator [36] can be applied to 
the terms of its power series expansion; the, resulting series, if convergent, 
can be assumed to be the z order derivative of / (t). 

W e shall need to evaluate the Laplace transform of derivatives of 
order z of a class of analytic functions. Let the power series expansion 
of f(t), convergent in the interval (0, oo), be 

/ It) = Si aiP 
[37] 

at = 0 if i < 0 

and, diffei'entiating, 

d*iit) r ( i +1) . 
= E I A T I ^ T I ^ [ 3 8 ] 
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W e want to prove that for 0 < z < 1 

^ d 1 = V I f ( t) a t. [38] 

To obtain [38] we shall assume that the Laplace transform of 

a* f (t) 
d P 

exists, than we have 

dP I ^ F (i + 1 — z) 

O 0 

and, assuming that it is possible to interchange the sum with the integral 

00 

= p> S i at r (i +1) = ai I P e-rt dt = 

0 
so oo 

= Pz J 2 «'• V e ~ f d t = pz J f (t) e-pt dt 

o n 

which proves [38]. 

R E F E R E N C E S 

BEN-MENAHEM A., Attenuation of seismic surface waves in the upper mantle 

1964. 
CAPUTO M., Estimates of anelastic dissipation in the Earth's torsional modes. 

" Annali (li Geofisica 1, 75-94, (1966). 
KNOPOFF L., On the dissipative viscoelastic constants of higer order. " J. 

Acoustic Soc. A m . " , 26, 183-186, 1954. 
ZEMANEK J. Jr., RUDNICK I., Attenuation and dispersion of elastic waves 

in a cylindrical bar. J. Acoust, Soc. Am. " , 33, 1283-1288, (1961). 




