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SUMMARY. — Laboratory experituents and field obscrvations indicate
that the @ of many nen ferromagnetic inorganic solids is almost frequeney
independent in the range 107 to L0-2 ¢ps; although no single substance has
been investigated over the eutire frequeney spectrum. One of the purposes
of this investigation is to find the analytic expression of a linear dissipative
mechanisin whose ) ix almost fregquency independent over large frequency
ranges. This will be obtlained by introdneing fractional devivatives in the
stresy strain rvelation.

Since the aim of this research is to also contribute to elueidating the
dissipating meechanisin in the earth free modes. we shall treat the cases of
dissipation in the free purely torsional modes of a shell and the purely
ralial vibration of a solid sphere,

The theory is clhecked with 1he new values determined for the @ of
the splieroidal free modes of the earth in the range between 10 and 5 minutes
integrated with the @ of the Railegh waves in the range between 5 and 0.6
minutes.

Another check of the theory is made with the experimental values
of the @ of the longitudinal waves in an alluiminmn rod, in the range bet-
ween 10-% and 103 seconds,

In both eheks the theory represents the ohserved phenomena very
salistactorly.

Rrassunto, --- [ rizultati delle ricerche di laboratorio ¢ delle osserva-
zioni in fenomeni naturali judicano che il @ di parecchi solidi inorganici
nen ferromaguetici & indipendente dalle frequenze nell'intervallo 10-2, 107
cicli al secondo; per quanto nessuna sostanza sia stata studiata in tutto

(*) This paper was presented at the 1966 unnual mecting of AGLU in
Washington DC,
(¥*) Department of Geophysics, University of British Cohunbia. Canada.
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questo intervallo di frequenze. Uno degli scopi della presente ricerca &
quello i trovare l’espressione analitica di un modello di dissipazione li-
neare in cui @ sia indipendente dalla frequenza in un vasto intervalle di
frequenze. Questo surda ottenuto introducendo derivate di ordine frazionario
nelle relazioni fra sforzo ¢ deformuzione.

Poiché uno degli scopt di questa ricerea & anche di contribuire ad una
miglior cornprensione dei meccanisini di dissipazione dell’energia nelle oscil-
lazioni libere della Terra, in gnesta nota si applichera la legge di dissipazione
citata al caso delle oscillazioni torsionali libeve di uno strato sferico.

La teoria esposta viene poi applicata allo studio dei valori di § osservati
uelle onde di Rayleigh e nelle oscillazioni sferoidali della Terra.

Un’altra applicazione della teoria & fatta allo studio dei valori di @
osservati nelle onde longitudinali di una sbarra di alluminio.

In entrambe le applicazioni la teoria rappresenta in maniera soddi-
sfucente i fenomeni osservati,

INTRODUCTION

In a homogeneous isotropic elastic field (he elastic properties of
the substance are specificd by a deseription of the strain and stre
sses in a limited portion of the field since the strains and stresses ave
linearly related by two parameters which describe the elastic properties
of the field. Tf the elastic field is not howmogeneous nor isotropic the
properties of the fleld ave specified in o similar manner by a larger
number of parameters whieh also depend on the position,

These perfectly elastic fields arve insufficient models for the descript-
ion of muny physical phenomena beenuse they do not allow to explain
the dissipation of energy. A more complete deseription of the actual
elastic fields i3 obtained by introducing stress-strain relations which
include also linear combinations of time derivatives of the strain
and the stress. The numerical cocflicients appearing in the general
linear combinations of higher order derivatives are called viseo-
elastic constants of Thigher order.

Blastic fields desceribed by elastie constants of higher order have
been discussed by many authors, [e.g. see Knopolt, 1934; Capato, 1966].
Knopoft studied the ease in which the siress strain relations are of
the type

d "

Trg = A g"" frs Cas + 2,“’ Crs 'i" ;i t: (Zm g"‘ Grs €n: -+ 2/1”1 crs) I_JJ
where A, and un are constant, he obtained a condition for these visco-

clastic constants of higher order analogous to those existing for the
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perfectly elastic fields and also proved that in order to have a dissi-
pative elastic fleld the stress-strain relations should contain time deriv-
atives of odd order.

A generalization of the relation [1] is

4 dm
Trs = Jim d [Am J¥ Grs Cne - 20m C’rs] [2]
o [

where one can alse consider Zx and . fnnetions of positien.

m
We can generalize [2] to the case when the operation i is perfor-
2 J ;

med with m us a real number 2 (see appendix) and also further by
substituting the summation with an integral as follows

by by
3 dz ) i dz
Trs = f (. 2) = % ges o0 d2 - Zl fo(ry2) o e da. [3]
ay ap

w is the radial coordinate in a spherical coordinate system.
Relations [1] and [2] are a special case of [3] — they are obfained
by setting

P
fl (7', 2) == 2;41116 (z—m);!.,,.

: [4]
fo(r,2) = md (2—m) pu
a

where §(z—m) are unitary delta functions.

If a; = ¢ = p == 0, then we have the case of a perfectly elastic
field: if ¢ = p = 1 then we have a perfectly viscous fleld; if ¢ = a1 =0
and p = 1 then we have a viscoclastic field,

Dissipation in a planc wave
In the simple ease of a plane wave, assuming f = nd(z — 2.), the
stress-strain relation [3] gives the following equation of motion
Ny oy % 3ty
= . L= — =0 5
e Sp Th e T v (5]
By taking the Taplace transform of [5] we have
d2

2T
ep* U +p =0 +npiey

da
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and the nature of the motion depends on the roots of the following
equation
nuipe +opt +uat=0. (6]
The approximate solution of [6], neglecting the term in z, which
we assume to be small with respect to y, is

e M
P, = o

the solution which takes into account the dissipation is

7 |pol® a*

P=ilpollt 2 1pol? o

( 08 — 2, + % sin % 2'0)2 7]

and the specific dissipation is

%o
Q*:ﬁ%iwm%%. i8]

Solution of the equations of motion in spherical coordinates

We shall follow the method described in Caputo [1966]; the operator
o+ introduced in that paper is
d

0 = vy (¥) — -

Y 9]

here, according to the definition [3] of the stress-strain relation, these
operators will be

gt
01 = /fl(;z rlz}d[fg)z)
oz=jn)z [10]

One can sec that the method of solving the equations of equilibrinm
resulting froin the definition [1] of the stress-strain relation (see Caputo
1966) can be applied also to the case when the cstress-strain rela-
tion is [3].
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The Laplace transform S (S, Sg, "W) of the displacement vector
$(8ry 89, q)) — where r, %, p are spherical coordinates, % colatitude, ¢
longitude is:

Sr. = Eu Zk I‘l -::
. > Y 1 Yy
No = " (R —* R — Tt 1
Hp = Zn Y Ry sind g (111
1 27! 2 YE
S, = 3, (R —_— Ry
p = T T Csing 2 ¢ b-ﬁ)
where Yﬁ ate spherical harmonies
i 1\
(-LH_—) Py (cos 9) ifl==0
ix
2041 (n—K)!\Y .
k(2T TR * (08 3) cos —1
"_( om 1K) ) P,, (cos 9) cos K ifk=1,2,...,n [12]

(2)1,—1—1 (z'n—h)‘

1y
3 i ) Pl=m(cos ¥} cos (b—n) @, ifk=n-+1,...,2n
n /

W

and Ry.a, Ryn, Ry arve solutious of the system

d [O V} + 20, ti,v_,-—Oz Rl w(n-+1)— L ﬂlﬁ n(n—i—l)] +
T r2 dy
o OR aP, =  d(P—P,) 4 apP, . _
)01— e ur v+ ar er(RL dr )—-p oFy =0
~ de a2 ( 22) R, ar, /r ]
1?0 V=0 ar — dr [ RS {
?l Q&_ 2 —
+ % (P—Po)+o "D oR,=0 [13]
o @ AP—P)] {n—l—l)P P, dR,
rgd?_[rg——dr ()’V—I— inGo—— ir
1 d*rR., n-+1) . AR, .
02[? dre — (,) R3]+Oz da/ + 0, R, =0
vo_nedlp 18 g,
r reodr
with
Inm oo

P—F, ﬂ] / /(V— Vo) et gin d dopdddt.

o D
0 o Q
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V — V. is the perturbation of the gravitational potential arising from
the perturbation of the density field and from the attraction of the
density perturbation at the deformed interfaces.

We assume also that the integration in [3] can be interchanged
with the integration of the Laplace transformation and also that we
can use formula [38] (sce appendix at the end of the paper). Then c.g.

be

; |
02=/ozs;cwdt_:|]pf2() 2 {/Ssc-l"dt‘ [14]

| I
O ap

Dissipation in the torsional oscillation of « shell

We shall discuss some models of dissipation, obtained by specializing
the functions fi {r, ) appearing in [3], in the free purely torsional and
radial vibrations of a shell.

The eguation which governs the motions of the torsional modes in
2 non perfectly elastic shell of radiae 1, and r,, assuming a stress-strain
relation of the type [3], is:

b2
i de [19d%rs 1 D 1 dssin .
[hna gy L‘ 30 rap g 0d ‘)l d +
2 [15]
bg ] { 3 i dg
i D z ! 8. 2
W A PR o LS
ay )

We assume an Earth model defined by a liquid core and a homo-
gencous mantle, and assume also that the dissipation of energy due to
the viscous interaction between the core and the mantle, is negligible

? e
[{Caputo, 1966] and that 37 fs (r, 2) = 0, then the boundary condition is

l F, (ry) F_g(rs) -0 [16]
l £y (1y) B ()

F (= —-d— =2 J (ra)
+n dr +a+1;
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where

S, = 2 Andnia, (@r) + (— 1) A pd_ayy, (ar) [RTLE [17]

{ a9
az
at =gt [ fo (@) prde
b2
is a solution of the Laplace transform of [15]. J_ 41y, (a@7) and Jas1y, (@?)
are Bessel funetions, and P, (cos &) are Legendre polinomials.

The solutiong of [16] determine the periods of free oscillation and
also the . Without loss of generality [10]) can be written

by
fo0) =+ | o @ p2 e [18]

An interesting case arises when

f2(&) = m b (@—2 + o) [19]
equation {16] is then
— |+ ]—m 20
which gives
p=ﬂmdl+ %ﬂm, wn:aV% [21]

If 2z, = 2m (m integer) then we have

2m—e 1/,
pqmﬂ+wm-HmM%—M$ﬂWm
U
and if m = 0
p=1|po| ?1 —|—M1Ep‘;| [cosn—;——isinﬂ—;—“ [23]

The specific dissipation function is therefore

[24)

|
@2 =" Ipo e sinTe|
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Dissipation in the purely radial modes

The study of the dissipation of energy in the purely radial modes,
can be done as that of the torsional modes. The only difterence is
that in this case the forees which govern the periods of the modes are
the elastic forces and also the gravitational forces. Assuming a homo-

. 3
geneous earth model of density g, and bil = 0 one can see that the
.
periods of the free modes and the dissipation are given by

by
0 P —44) = —a* [ h@)prdz
“ (28]
4 b A G Qo
A= 3
and x is a solution of
tan @ _ 1
N - 2 *
z 1 o a 9 +}:) [26]
4 JZ

Without loss of generality f, can be written
by
1=1+2u+fﬁwmwz- (27]
a1

An interesting case arisen when

fi &) = 216 (5 —20 + &) (28]
equation [25] is then
—_ - w_z 2o~y — __. . ajz ll Ro—
pz—4A gr:(/?.-i-Z,u-}-llP )= Ipol“ Q?’: Po €
z? A plo e 442
=—1o I“—l (A2 —4 4| =m0 o = p ot
er, AtZu itz
[29]

2 x?
pu:4‘A'_ET,: (A+2p).
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Tts solutions are

]‘1 Zo-& ___ é_‘.l A p"z?:g 11/2

p=Zilp {1+ L Po 30
d it2u? (A+2p) 2ol { 0]
which becomes for z, = 0
L Lo LA psc
- K4 1] l '{' P e T ____! . 31
P P T S TS 1]

Fquation [31] can also be written

—&
—-:L_ilpo|$1+—~l‘[p“[ 31 14 | "

2G+2u) [ pol®y

and the specific dissipation is

[(:os Ze—isinZ sJ é [32]

Aifpe|” ! 14

.7
-1 = —_ —
Q it oa singe|,1 TRk [33]
The ratio of the observed ’s gives ¢
-1 . .
Q,,_l _ (LP&!) C e lPel g @ [34]
Q) | Poy | Doii Q:
A, i8 therefore obtained from [34] by substitution
2 €
iy = g‘i—_ﬁl_pi . [35]
@ | sin EOE

Checks with the observations

A very extensive analysis of the attenuation of the Rayleigh waves
has been made by Ben-Menahem (1964) who measured it from four
great  earthquakes from observation of multiple circnits around
the earth past one station. By Fourier analysis he obtained the
specific attenuation factor in the period range between 300 and 40
seconds; from the attenuation factor he computed then the specific
dissipation.

The discrete spectrum of ihe spheroidal oscillations of the earth,
where the matter is both compressed and sheared, approaches the con-
tinuous Rayleigh waves spectrum. In order to exfend the range where
the Q is known, we computed it also from the free spheroidal oscillations
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of the Earth of period between 5 and 18 minuates, using the 110 hours
record fo the 1961 Chilean quake recorded at UCLA. The record was
gubdivided in several intervals whose initial points where 4.5 and 13.5
hours apart; from the power spectral analysis of these intervals we
obtained the deerease in enerey and subsequently the @'s by means
of formula [24] of Caputo (1966). From a preliminary analysis of these
@’s we can see thal the agreement with the mathematical model of
dissipation proposed in this paper, with ¢ — — 0.15, i3 satisfactory.

Another check of this theory can be made using the @’s obtained
by Zemaneck and Rudnik (1961) for longitudinal waves in the period
range between 10-* and 1078 seconds. IHere again the agreement of
the observed @°s with the model of dissipation proposed in the present
paper, with ¢ = — 0.13, is satisfactory. We plan te complete and
publish soon the discussion of the above mentioned experimental results.

Appendiz

A generalization of the operation of differentiation with real order
of differentiation, for a wide class of analytic functions, ¢an be made
as follows.

Let
: o 0/0 1
4 o (ct®) = ‘Taw+1—2z) x> Z <z < 136,
“ 0 it 2 =0 S @ integer

Tt f(t) is an analytic function, the operator [36] can be applied to
the terms of its power series expansion; the resulting series, if convergent,
can be assumed to be the z order derivative of f (2).

We shall need to evaluate the Laplace transform of derivatives of
order z of a class of analytic functions. Let the power series expansion
of f(1), conveigent in the interval (0, co), be

f@) = 2Ziaiti

37
ar =0 ifi <0 7]
and, differentiating,
Ll KON A Ul o2 ) R :
S dt oA I'ei+1—z) ! zf v [?8]
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We want to prove that for 0 < z << 1

ke

i '
, (dft(z) et = pe f () e=otd . 38]

%

o o

To obtain [38] we shall assume that the Laplace transform of
d £ (1)

Fre exists, than we have

I+
(i +1—2)

(dzdf() et gt = ’Zz

o U

T gzt

and, assuming that it is possible to interchange the sum with the integral
,m

A By R T Tali+l)pt =

2@ I’(z-l—l—z)

=pyaa D (i 1) p—r~l= p¥ ! tiemrtdt =

.
o
£l w

= p* { Duaitiemeedt == p=’ F(tye »tdt
o

o

o

which proves [38].
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