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RiassunTo. — Un’espressione analitica per la distribuzione del con-
tenuto di umiditd, in un problema di carico unidimensionale verticale di
acqua sotterranea, & stata ottenuta mediante il metodo di trasformazione
di Laplace. Il coefliciente medio di diffusibilitd, calcolato sull’intera gam-
ma di valori di umiditad contenuta si considera come costante, mentre si
assume una variazione lineare di permeabilitd con contenuto di umidita.

SUMMARY. — An analytical expression for the moisture content distri-
bution, in a problem of one dimensional vertical groundwater recharge, has
been obtained by using the Laplace transform method. The average dif-
fusivitv coefficient over the whole range of moisture content is regarded
as constant, and a linear variation of permeability with moisture content
is assumed.

1. — INTRODUCTION.

Recently Klute (*-2) and Sarma (3) have discussed the numerical
methods of solution for the flow of water in partially saturated
porous media. In the present paper we have obtained an analytical
solution of a one dimensional problem of groundwater recharge by
spreading.

We consider here that the recharge takes place over a large basin
cf such geological location that the sides are limited by rigid bound-
aries, and the bottom by a thick layer of watertable. Under these
circumstances, water, from the spreading grounds, will flow vertically
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downwards through the unsaturated porous media. It is assumed
that the diffusivity coeflicient is equivalent to its average value over
the whole range of moisture content, and the permeability of the media
is a continuous linear function of the moisture content.

The nonlinear partial differential equation for moisture content
has been solved by employing the Laplace transform technique, and
an analytical expression for moisture distribution is given.

2. — N'ORMULATION OF THE BOUNDARY VALUE PROBLEM.

Following Klute (), we may write the fundamental equations
as helow.
The equation of continuity for an unsaturated medium is given by

d

o @0 ==V, [2.1]

where g, is the bulk density of the medium, 0 is its moisture content
on a dry weight basis, and M is the mass flux of moisture.

Darcy’s law governing the motion of water in a porous medium
may be written as:

V =—KVé, (2.2]

where vo represents the gradient of the total moisture potential,
I” the volume flux of moisture, and K the coefficient of aqueous
conductivity.

From equations [2.1] and [2.2], we getl:

b

. (o) = V- (0KV§), [2.3]
where o is the fluid density.
Since, in the present problem, flow takes place only in the vertical
direction, therefore equation [2.3] reduces to:
d0 d / L1 d .
- o= K- — K 2.4
a 2 |2 bz) 2 OR9) [24]
where y is the pressure (capillary) potential, ¢ is the gravitation content,
and ¢ — -« — gZ. The positive direction of Z axis is the same as
that of the gravity.
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Considering 0 and p to be connected by a single valued function,
we may write equation [4] as:

0 d /. 8, 0 O

= o 2.0
ot 2\ bz}+g¢gaZ’ [2:0]
.oy . e .
where D — B K 20 and is called the diffusivity coeflicient.
Replacing D by its average value D, and assuming K = A0,
K, = "232 (as in [3} and [1]), we have:
= Do =7 — -5 Ko —. 12.6
ot 12 0s

Considering the watertable to be situated at a depth L, and
putting:
t D

= 5, Lz — 1"

L

we may write the boundary value problem as:

30 2% o I 00’ [2.7]

Yk 2k 05 Da O

00,7y = 0., 0(1,7) = 1, [2.8]
00) = 0, [2.9]

where the moisture content throughout the region is zero initially,
at the layer Z = 0 it is 0,, and at the water table (Z = L) it is
assumed to remain 1009, throughout the process of investigation.
It may be remarked that the effect of capillary action at the stationary
groundwater level, being small, is neglected.

3. — ANALYTICAL SOLUTION.

Setting
K,

o

in equation [2.7], we get:

20 0207 — R 20 1R 11
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On multiplying each term of equation [3.1] by e¢-s7dT, integrat-
ing the result from zero to infinity, and using condition [2.9], we obtain

- S = 0. [3.2]
where

0£,8) = | e-sro@,1)ar,

represents the Laplace transform of 0(&,T).
The Laplace transformation of the boundary conditions [2.8] yields

0,

00,8 g

6(1,8) = (3.3]

S
Since equation [3.2] is a linear equation with constant coefficient,
we may write its general solution as:

B

0(,8) = |E cosh (&1 p2/4 +8) + F sinh ('5 1834 +58)| e 27 13.4]

where /¢ and F are constants of integration. For evaluating E and
F, we apply conditions [3.3] to equation [3.4], so that, after some
simplification, we have:

{’S,i cosh 1 B2/4 + 8]

sinh (],.//92/4 +8)
Substituting these values in equation [3.4], we have:

£ s 0. sinh (1 — &) /64 +8
bt

0(&,8) =
&) = § sinh /24 + 8

4 ooy SOBE 1"/32/4 8 [3.5]
S sinh | f2/4 + 8
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The inverse transform (L-!) of the right hand side terms in
equation [3.5] may be determined by recalling a standard result [4] viz.,

¢l | _

_ C(8n) Sul
n(8S)

0 n! (Sﬂ)

-1

13.6]

I ™

where J(S8) and #7(8) represents two entire transcendental functions
such that degree of #(S) is atleast one greater in § (when expressed

C (S)

as power series) than that of {(8), N. is a simple pole of ,’r—(—T, and
nn

7' (Sx) denotes the value of dg(g) at § = S.. Putting:
£ S) sinh (& | 2/4 + 8| sinh (i & [ f2/4 + 8]
, y [3.7)
7 (8) N sinh (1/;‘32/4 + S) S sinh (1 1324 +
and noting that the roots of equation
sinh (1'/92/-1 +S) = 0,
are given by
= — B[+ —n2=a?,
we may write:
“(8.) = sin (nzx§), ((0) = i sinh &
[3.8]
= o , pY(B) = sinh (#/2).
From equations [3.6], [3.7] and [3.8], we get:
sinh & 1 824 + 8§ sinh /;
S sinh ¢/82/4 + 8 sinh g/2
U n n Sl -(R2 2 72}/
Lon X (— 1) n sin (n x &) (B4 + n® =2)T (3.9]

n=1
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Similarly, we have:

| sinh (1 — &) | 34 + 48 sinh ff (1—§&)
S sinh | B4 + S sinh B/2
. ;; nsinh (nzé&) (B )l 15.10)
n -1 ﬂgl‘l +

The inverse transformation of equation [3.5] with the help of
equation [3.9] and [3.10], yields:
p

sinh ) §
0, ° o +
sinh /2
3 (=Drasinh (nxd) - B +wra) I
"o 1 pl4 + n?

f (1L—§&) | sinh ", (1 &

4+ e
sinh /2
o < msin (azmé) (B 4wt T
Do P 4 e

[3.11]

This is the desired analytical expression for the moisture content
distribution.

It follows immediately from equation [3.11] that the graph of
the moisture content versus distance (for given values of time, say
t=1,4, 16..... ete.) may be easily drawn (as in [1]). A numerical
illustration is equally obvious. However, these are not included here
due to our particular interest in only an analytical solution.

4. — CONCLUSION.

An analytical solution for the nonlinear differential equation
governing moisture content distribution has been obtained, by using
Laplace transform method, for those cases of groundwater recharge
by spreading where the flow is essentially one dimensional, and in
the vertical direction.

Though no numerical illustration is included in the present paper
(because of our particular interest) yet the convenient form of the
moisture content expression is immediately evident.
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NOMENCLATURE

D = diffusivity coeflicient (¢m?sec?)

D. = average value of the diffusivity coeflicient over the whole
range of moisture content (¢m? sec-t)

K, = slope of the permeability »s moisture content plot (em sec ?)

K = permeability coefficient (cin sec )

L — depth of permeable stratum (cm)

M = mass flux of moisture (gm)

{ = time (sec)

T = time (dimensionless)

V' = wvelocity of flow of water (¢cm sec-)

Z = depth of penetration of water at any instant ¢ (em)

p = a flow parameter (¢m?2)

& = penetration depth (dimensionless)

& = total pressure potential (cm sec-2)

P = capillary potential (cm see-2)

g = acceleration due to gravity (em sec-?)

0 = mass density of water (gm)

0s = bulk density of the medium on dry weight basis (gm c¢m-3)

0, = moisture content at Z = 0 for all time (gm/gm)

0 — moisture content at any depth Z (gm gm?)

v — vector operator = 1 S + 9 é!/ + K 3z (3, 4, I are

unit veetors)





