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ABSTRACT

First-order moving least-squares are typically used in conjunction with
smoothed particle hydrodynamics in the form of  post-processing filters for
density fields, to smooth out noise that develops in most applications of
smoothed particle hydrodynamics. We show how an approach based on
higher-order moving least-squares can be used to correct some of  the main
limitations in gradient and second-order derivative computation in classic
smoothed particle hydrodynamics formulations. With a small increase in
computational cost, we manage to achieve smooth density distributions
without the need for post-processing and with higher accuracy in the
computation of  the viscous term of  the Navier–Stokes equations, thereby
reducing the formation of  spurious shockwaves or other streaming effects
in the evolution of  fluid flow. Numerical tests on a classic two-dimensional
dam-break problem confirm the improvement of  the new approach.

1. Introduction
Smoothed particles hydrodynamics (SPH) is a meshless

Lagrangian method where a fluid is discretized using virtual
interpolation nodes (particles) that are not fixed in any
predefined mesh and where their evolution is described by
the equation of  motion of  the fluid itself. The advantages of
SPH include direct computation of  all required physical
quantities and their gradients, implicit tracking of  surfaces
(such as the free surface of  the flow or internal solidification
fronts in the case of  thermal evolutions with phase
transition), and the ability to cope with large deformations
without any need for remeshing (which is typically needed,
for example, with the finite elements method).

SPH was originally developed in the late 1970s by
Gingold and Monaghan [1977] and Lucy [1977], with
applications relating to astrophysics. Recently SPH has
gained a lot of  attention in other fields of  computational
fluid dynamics, with important applications ranging from
coastal engineering [Hérault et al. 2009, Dalrymple and
Hérault 2009] to geophysics and volcanology [Hérault et al.
2010b, 2011]. These applications rely heavily on the ease with

which SPH can model both the mechanical and thermal
evolution of  free-surface fluids. These extensive applications
have also highlighted some of  the limitations that standard
SPH formulations encounter, in terms of  accuracy or when
fluids with high viscosity are modeled.

The purpose of  this paper is to present an alternative
approach that while keeping close to the spirit of  SPH,
improves on the general accuracy of  the method, and
provides a stronger foundation for better evaluation of  the
higher order derivatives that are necessary for the viscous
term of  classic fluid-modeling equations.

1.1. Standard smoothed particles hydrodynamics interpolation
for fields

The mathematical foundation for SPH lies in the
properties of  convolutions. For any scalar field u in a domain
X �⊆ Rd , by definition of  the Dirac delta distribution d we
can write, with a typical abuse of  notation:

We can approximate d with a family of  smoothing kernels
W(·, h), parameterized by their smoothing length h, satisfying:

where the limit is intended in the sense of  the distributions.
We then have:

Physically, the domain X represents the body of  the
fluid, which we want to discretize with a finite set of  particles
with given masses mi, densities ti and volumes Vi = mi/ti.
Formally, let a density function t: X→ R and a set of  points
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at locations {xi} ⊂X be given. We approximate t in the weak
sense with a discretization:

where the summation is extended to all of  the particles and
the values mi are called the masses of  the particles. The weak
approximation is read to mean that for any field u defined in
X, we can write:

Hence:

where ti = t(xi) and Vi = mi/ti. This gives us the standard
SPH interpolation for field values:

The smoothing kernels are usually chosen with
compact support, so that the summation is extended only to
particles in a neighborhood of  x.

We note that there are two errors that contribute to the
SPH interpolation. The first is related to the approximation
of  d with the smoothing kernel W with length h, and goes
to zero as h → 0. The second source of  error in the SPH
interpolation is given by the space discretization, and
therefore it depends on the particle density or equivalently
from the average inter-particle spacing H. Again, the
continuous limit must be obtained for H→ 0, and to ensure
that the entire SPH method is consistent, we should have
H/h→ 0 as h→ 0, although some different approaches have
been devised to circumvent this issue, such as the
renormalizing mesh-free scheme of  Lanson and Vila [2008].
In applications, the average inter-particle distance H is usually
a fixed fraction of  the smoothing length h; typically h = aH
with 2 < a < 4, with the actual value depending on the
smoothing kernel used.

The accuracy of  the interpolation is related to the
number of  moments of  W that are zero; this is always
guaranteed for first moments as long as the kernel is
chosen center-symmetric, such that W(·, h) only depends
on |x − xi|.

To simplify the notation in what follows, we will write
ri = |x − xi|, rij = |xi − xj| and Wij as a short form for W(rij, h).
Kernel symmetry ensures that Wij = Wji. We observe that for
center-symmetric kernels, we can compute their gradient as:

(1)

When choosing an SPH kernel, it is often convenient to
select one for which the factor:

(2)

can be computed analytically without an actual division
by r. This ensures that the kernel gradient does not suffer
from singularities from overlapping particles.

SPH kernels are also usually chosen as positive, so that
the interpolated density:

is always strictly positive. This condition, however, prevents
the second moments of  W from being zero, and effectively
limits the accuracy of  the SPH interpolation to first order
at best.

An important limitation of  SPH is that when the
interpolation is computed on the location of  a particle, the
interpolated value is generally different from the
interpolating field value. We have:

for an arbitrary field u.
We say that a numerical interpolation scheme has order

k consistency when the interpolated values and the
interpolating values match on the interpolation nodes for all
of  the polynomials of  degree at most k. A significant limit of
SPH is that in its standard formulation, it does not guarantee
even order 0 consistency, meaning that even constant fields
are not reconstructed exactly. This is usually remedied by
introducing a corrected kernel:

(the Shepard correction) that ensures the exact interpolation
of  constant functions. It should be noted, however, that
while the Shepard correction gives a lower minimum and
average relative error, it can give a higher maximum error
than standard SPH for nonconstant fields. We shall see in
the next section that a correction based on moving least-
squares (MLS) can be used to guarantee a higher order
consistency of  SPH.

1.2. Smoothed particles hydrodynamics for first derivatives
For gradients, SPH takes advantage of  the properties of

convolutions and the divergence theorem to transfer the ∇
operator on the kernel. We have:
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where R = ^X and n is its outer normal.
If  the compact support of  W does not intersect R, the

first integral is zero, and this leads us to the classic first form
of  the SPH interpolation of  the gradient:

(3)

that is first order accurate in h as long as the point x is far
from the boundary of  X.

Near the boundary, the surface integral ∫R u(y)d(y − x)dR
is nonzero. A number of  strategies have been devised to
compensate for this term for particles near the physical
boundaries of  the domain [Liu and Liu 2003]. However, near
the free surface of  the fluid, the term is usually simply
discarded, which introduces an additional error in the
evaluation of  the gradient. We will see later on that this issue
does not affect our proposed MLS approach.

The gradient SPH formula is rarely used in the form
of Equation (3). It is indeed possible to derive other formulations,
which are usually preferred. From ∇u = ∇u ± u∇1 we derive:

(4)

whereas from ∇u = (∇(tu) − u∇t)/t, we get:

(5)

Finally, we can consider (∇u) = t(∇(u/t) + (u/t2)∇t),
to obtain:

(6)

The preference of  one expression over another is usually
driven by considerations with regard to stability or
conservation. For example, Equation (4) (with the plus sign)
and Equation (6) ensure that the influence of  particle j over
particle ī is opposite to the influence of  particle ī over particle
j. On the other hand, the forms of  Equation (4) (with a minus
sign) and Equation (5) guarantee that the gradient of  a
constant function evaluates to zero; the latter expression is
computationally more efficient, but the former is more stable
in the case of  large differences in the density values between
particles, such as in the case of  multiple fluids. Further details
about the ‘golden rules’ of  SPH can be found in Monaghan
[1992], for example.

2. Moving least-squares
in smoothed particles hydrodynamics

The low consistency order of  SPH and the errors
introduced by the surface term in gradient computations can
lead to highly irregular field values during the evolution of  a
system. This can create spurious shocks, isolated particles,
potential wells, streaming and other similar artifacts. This is
usually compensated for by post-processing the field values,
either before or during the integration step. This can be
achieved with techniques such as periodic reinitializations of
the pressure or density fields (see, for example, Colagrossi and
Landrini [2003]) and the XSPH method for the velocity field
[Monaghan 1992], where a weighted neighborhood velocity is
used to move the particle, instead of  the simple particle velocity.

Although the Shepard kernel correction can be used
during pressure-field initialization, this only guarantees order
zero consistency, and the resulting field smoothing is often
excessive. An alternative approach is based on MLS, and it
can be shown that it allows SPH to achieve first-order
consistency [Belytschko et al. 1996, 2000]. This is equivalent
[Belytschko et al. 1998] to correcting the kernel with an affine
function B(x, p) = b0(x) + Ra ba(x)(p − x)a where a goes from
1 to the space dimension d (i.e. the summation is extended to
all of  the components of  the vector p − x).

To derive ba(·) (a = 0,1,... d), we impose:

for the constant function u = u0(x) = 1 and for the affine
functions u = ua(p) = pa − xa (one for each space dimension).
This leads to a linear system with d + 1 equations in d + 1
unknowns, which takes the matrix form:

where b(x) = (b0(x),..., bd(x))T, and:

(7)

Formally, the vector function b(x) is the first column of
the inverse of  the symmetric matrix A. If  A is singular, to
obtain b(x) we can compute the pseudo-inverse of  A, using,
for example, singular value decomposition. More details about
the inversion of  MLS matrices can be found in Section 5.

2.1. First derivatives and the Müller approach
For a scalar field u we can write the Taylor expansion in

a neighborhood of  xj as
(8)

with the shorthand notation uj = u(xj) and truncating this at
first order. Writing this for x = xi and comparing this with
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the actual field value ui = u(xi), we can evaluate the
truncation error as:

where xij = xi − xj and uij = ui − uj. Hence, the (weighted)
mean square error over a neighborhood can be evaluated as:

where wij are given weights, the values of  which will be
discussed later on. Assuming the components of  ∇u|xj

are
unknown, we can find values for them that minimize <Ej >

2.
By setting the derivatives of  < Ej >

2 with respect to each
component of  ∇u|xj

equal to zero, we obtain the linear
system:

(9)

where Mj = Ri xij ⨂ xijwij.
This approach can be used with a variety of  possible

weights, but by setting wij = ViWij for an SPH kernel W, we
can create a clear relationship between the MLS approach
and the SPH method. This is for example the choice that
was made by Müller et al. [2004], and in this case the Mj

matrix is equal to the cofactor of  the a11 element of  the
reinitialization matrix A as defined in Equation (7). With this
choice, the MLS gradient formula becomes:

(10)

where is the (pseudo) inverse of  Mj (see also Section 5),
which shows a distinct formal similarity with Equation (4),
with ∇Wij replaced by:

(11)

With such a choice, the term can be used as a
correction term for the kernel gradient in any SPH formula.
This has been shown to work correctly [Narayanaswamy
2008], although this use does not have the mathematical
foundation of  Equation (10).

We note that the general gradient formula of  Equation
(9) is invariant to weight scaling, in the sense that if  weights

= mwij are used (with m as a given constant), it produces
the same estimate for ∇u(xj). In particular, standard SPH
kernels and Shepard-corrected kernels produce the same
results as from Equation (10).

Additionally, Equation (9) returns exact results for
constant functions and first-order polynomials, which is
proven as follows. Let u(x) = k · x + c for some constant
vector k and constant real number c; Equation (9) then
becomes:

and since (k · xij) xij = k · (xij ⨂ xij), the right-hand side is
exactly k · Mj, and the solution of  the system gives ∇u|xj

=
k (which is exactly the gradient of  u) due to the symmetry
of  Mj. This shows that the MLS approach shown so far has
first-order consistency. Moreover, the first-order consistency
is preserved even close to ^X, as the MLS gradient formula
is not affected by missing surface integral terms.

A final remark is warranted concerning the
neighborhoods in MLS and SPH. As discussed in Section 1.1,
the accuracy of  SPH is affected by both the smoothing
length h of  the kernel W and the average inter-particle
distance H; indeed, improving accuracy in SPH requires
that both h and H tend to zero, with H going to zero faster
than h. This equivalently means that the density of  particles
in a neighborhood must increase as the neighborhood grows
smaller.

In contrast, the MLS accuracy is only affected by the
distance between the point where gradients are to be
evaluated and its farthest neighbor. When using SPH
kernels as MLS weights, this effectively means that the
accuracy is only affected by h, and there is no requirement
for the density of  the particles in a neighborhood to go up
when h → 0. Indeed, the compact support for kernels used
as MLS weights can in general be taken much smaller than
the support chosen for SPH, since the gradient will still be
computed accurately as long as the point has as many
nonaligned neighbors as there are components in the
gradient.

For comparison, consider that in a typical application to
two-dimensional fluid dynamics, the ratio h/H is such that
the kernel support includes about 30 or 40 particles, whereas
for an MLS gradient, three or four particles (and thus
effectively a kernel with h/3 smoothing length) would be
sufficient. In practice, to reduce the chance of  a singular Mj,
the kernel support for MLS can be taken such that each
particle has at least 10 neighbors [Müller et al. 2004].

3. Higher-order derivatives
One of  the long-standing issues in SPH is the

computation of  higher-order derivatives, which is required
when modeling the flow of  a viscous fluid such as lava.
Consider for simplicity the case of  an isotropic,
incompressible fluid with constant viscosity. The Navier–
Stokes equation for the velocity is then given by:

(12)

where t is the density, v the velocity, P the pressure, and o
the kinematic viscosity coefficient, and f collects the external
forces per unit mass (typically, gravity).

To compute the Laplacian of  a field with SPH, it is
possible to apply the same mechanism used for the gradient,
obtaining:
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Once again, under the additional assumption that the
support of  W does not intersect R = ^X, we would obtain
the SPH interpolation:

However, the error induced by discarding the surface
integrals for points near R is now much higher than in the
gradient case, and finding correcting terms to take this into
consideration is even harder.

A different approach to discretize the Laplacian was first
used by Cleary and Monaghan [1999] to model thermal
conduction, and it was adapted by Morris et al. [1997] for the
dynamic case. This is derived from a Taylor expansion of  the
SPH gradient, and it takes the form:

(13)

where f ≃ 0.01 and h is the smoothing length. The fh2 term
is included to prevent singularities in the case of  overlapping
particles. In the case of  symmetric (non-corrected) kernels,
Equation (1) can be used to simplify Equation (13) to:

(14)

where Fij = F(rij, h) with F defined as in Equation (2). This
expression has the benefit of  being computable even in the
case of  overlapping particles, provided that F can be
computed analytically.

3.1. Moving least-squares for second-order derivatives
It is possible to use the first-order MLS gradient

described in Section 2.1 as a kernel correction, replacing the
kernel gradient in Equation (13) with the corrected kernel
gradient of  Equation (11). Since we have:

where      is the unit vector (direction) of  xij , this allows us to
simplify Equation (13) to:

(15)

where 
However, this approach does not take full advantage of

the power of  MLS, and suffers from all of  the drawbacks of
the SPH method. Instead, we can extend the first-order MLS
method from Section 2.1 to allow direct computation of
higher derivatives. For simplicity, we illustrate the approach
in the two-dimensional case. The vector components will be
(x,y) and the derivatives will be written as u,x for ^u/^x, and
so forth for the other derivatives. The Taylor expansion for u
around xj can then be written up to the second error:

and the truncation error when evaluating the expression for
x = xi is now:

Once again, we want to minimize the mean square
error <Ej >

2 = with respect to the partial derivatives.
For simplicity, we can write:

Then equating the derivatives of  < Ej >
2 to zero with

respect to the components of  gives us the linear system:

(16)

where The new formulae are formally
identical to the first-order formulae, with an "extended"
relative position vector       that includes higher powers and
an "extended" differential operator that includes higher-
order derivatives.

A similar approach to the one described here can be
found with the finite pointset method (FPM) that was
developed by Tiwari and Kuhnert [2001]. In the FPM,
second-order MLS are used to locally and iteratively solve
the Poisson equation for the pressure in an incompressible
fluid. In this case, it is also necessary to include boundary
conditions in Equation (16), both on the free surface and on
the physical boundaries of  the fluid. In particular, this
requires the detection of  the surface particles of  the fluid,
which loses one of  the main benefits of  particle methods
such as SPH, which is the automatic and implicit tracking
of  surfaces.
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Instead, we propose to use second-order MLS in an
approach that fits better with the standard SPH modeling of
fluid dynamics. In this respect, our approach follows the
method described by Dilts [1999, 2000] more closely, with
interpolants that are centered on the particle for which the
derivatives are being computed. As noted in Belytschko et al.
[1998], this improves the accuracy and stability of  the
computations, and brings our approach within the general
framework described in Schrader et al. [2010].

The use of  MLS over the standard SPH discretization
gives us higher accuracy for first-order derivatives, as well as
the possibility to directly compute second-order derivatives.
For example, the Laplacian in two dimensions can be
evaluated from Equation (16) with:

(17)

where               denotes the sum of  the third and fifth
components of  the      vector, i.e. the components
corresponding to the pure derivatives of  order two. A similar
formula applies with more than two dimensions.

For second-order MLS, we can make considerations
similar to those for first-order MLS. For example, with the
appropriate choice of  the weighting functions, we can use
MLS as a gradient correction for SPH, effectively replacing
∇Wij in any SPH equation with the first components of:

(18)

Second-order MLS shows second-order consistency
(the proof  follows that for first-order consistency of  first-
order MLS), and it is not affected by the surface integral
terms that affect SPH derivatives of  any order, so that the
accuracy is preserved even near the boundary of  X, as long
as there are enough neighboring particles. The minimum
number of  particles is now higher, with five neighbors as
the bare minimum for the computation of  all of  the
derivatives in two dimensions. Additionally, the particles
must not be laid out on a line (or in a plane in three
dimensions), like in the first-order case, nor in a cross shape,
as otherwise this might prevent mixed derivatives from
being computable. In general, the neighborhoods for
second-order MLS must be larger than those for first order
MLS, although the number of  neighbors in the compact
support of  an SPH kernel is still sufficient.

4. An example
To illustrate the benefits of  our approach, we compare

the results for a classic two-dimensional dam-break problem,
where a mass of  fluid with an initial rectangular
configuration H0 = 2 m high and 1 m wide is left free to flow
within a 4 m × 4 m box.

The fluid is assumed to be isotropic and quasi-

compressible. Its motion is driven by the Navier–Stokes
equations paired with an equation of  state:

(19)

(20)

where g = (0,−g) is gravity (g = 9.81 m2/s), t0 = 1,000 kg/m3

is the density at rest, c = 7, and the speed of  sound cs is
chosen to be an order of  magnitude higher than the
maximum speed expected during the flow, which in our
problem is 

Boundary conditions are implemented using an
approach similar to the one described by Liu et al. [2002].
Near a physical boundary, a particle interacts not only with
its own neighbors, but also with mirror images of  itself
and of  all of  its neighbors. These ghost particles have
material properties that match those of  their original,
except for the velocity.

If  no-slip conditions are wanted at the border, the
mirror velocities are opposite to their original ones, whereas
free-slip conditions are implemented by giving the ghost
particles a mirror velocity, where only the velocity
component normal to the boundary is rejected. Additional
ghost particles with opposite velocities are also added at
corners where two linear components of  the containing box
meet. As we want to simulate a viscous fluid, we use no-slip
conditions in this example.

As ghost particles are not sufficient to guarantee that the
boundary will not be penetrated [Liu et al. 2002], particles
that exert a short-range repulsive Lennard–Jones force are also
added. In contrast to Liu et al. (2002), however, we do not
establish these particles a priori, but they are generated at run-
time as a projection of  the particle itself  on the boundary.

This strategy is particularly efficient in our case, because
the Lennard–Jones particle position can be found quickly as
the midpoint of  the original particle position and its ghost,
which reduces the number of  particles that need to be
tracked during computation. Additionally, the force exerted
by these virtual Lennard–Jones particles is constant for a
particle traveling parallel to a border, which solves one of  the
famous issues with Lennard–Jones boundary particles
[Monaghan and Kajtar 2009].

Our choice for a smoothing kernel both in SPH and as
weighting function in MLS, is based on the }3,1 function by
Wendland [1995]. We have W(r,h) = w(r/h)/h2, where:

We can also define F from Equation (2) as F(r,h)= f(r/h)/h4,
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where:

so that ∇W(xij, h) = xij F (rij, h).
The fluid has a kinematic viscosity o=10−6 m2/s (water),

so we apply the viscosity formula of  Equation (14). The
discretized equations of  motion can then be written as:

where Pij is an artificial viscosity that takes the form:

where   is the average speed of  sound computed at the
particles i and j, and     their average density. The artificial

viscosity coefficient is a = 0.2 in our case, and the correcting
factor fh2 (with f = 0.01) prevents singularities in the case of
overlapping particles. More details on the artificial viscosity
in SPH can be found in Monaghan and Gingold [1983].

In this test, we compare with second-order MLS used
as a gradient correction, with xijFij replaced by       from
Equation (18), except for the viscous term that relies on
Equation (17) to compute the Laplacian of  the velocity.

A second comparison is carried out with second-order
MLS derived from the differential Equations (19) and (20); in
this case, the discrete formulation becomes:

with Equations (16) and (17) to compute the gradients,
divergences and Laplacians. The viscosity    is obtained by
adding acsh to o when ∇ · vi < 0. In this case, Cholesky
decomposition is used to solve the linear systems, as detailed
in Section 5.

In all three cases, integration is carried out using an explicit
predictor/corrector scheme described later, with a dynamic

MLS FOR SPH

Figure 1. Dam-break two-dimensional evolution, at t = 0.01 s; 0.4 s; 0.8 s; 1.6 s, using standard SPH. Color coding by density.
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time-step that is limited by standard Courant-Friedrichs-Lewy
conditions:

where fM denotes the maximum particle force per unit mass,
and we take k = 0.3. With h = 0.02, this gives us Dt ~ 10−4.

From the particle positions Xn and velocities Vn at time
tn, we compute the particle accelerations          (Xn, Vn) and the
maximum timestep Dt*; the predicted new positions and
velocities are then given by:

The correction step evaluates                            and a
new maximum time-step Dt**. We then compute the
maximum time-step as Dt = min(Dt*, Dt**), and the
accelerations as Fn+1 =                             , and integrate with:

The evolution of  the dam break with SPH (Figure 1)
shows typical issues in SPH-driven simulations, with a noisy

density field that leads to streaks of  high-density particles
that infiltrate the main body flow. In addition, the absence
of  correction terms for the tensile instability [Monaghan
2000] leads to particle overlapping in the lower area of  the
flow, with a consequent reduction in precision and an
apparent rarefaction of  the particle positions.

In contrast, the MLS-driven simulations (Figures 2 and 3)
show much cleaner behavior, with the density field evolving
smoothly without any need for post-processing phases or
reinitialization. Some noise is still present, particularly in the
region closer to the physical boundary; this effect does not have
a strong influence on the main body flow, although it allows
a few particles to detach when the fluid layer is very thin.

We can also compare our results with the experimental
timing obtained by Martin and Moyce [1952], which match
our case with a = 1 m and n2 = 2. For the wavefront Z, the
timing is scaled by            ~ 4.43 s and the wavefront Z is
scaled by a; the results are shown in Table 1. The column
height H is expressed as a fraction of  the original column
height H0, and the timing is scaled by               ~ 3.13 s; these
results are shown in Table 2.

We observe that MLS gave the same timing (within two
digits of  accuracy) used both as a kernel correction and
directly, and the results tend to be closer to the experimental
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Figure 2. Dam-break two-dimensional evolution, at t = 0.01 s; 0.4 s; 0.8 s; 1.6 s, using second-order MLS as a kernel correction in SPH. Color coding by
density.
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values than SPH. The major exception is for the lower values
of  H, for which both particle methods, and MLS in particular,
tend to lag behind the experimental data. This appears to be
related to the observable small peak adherent to the left
boundary and clearly visible in Figures 2 and 3, an artifact of
boundary conditions that appears to be exerting excessive drag
in this case. If  this issue is taken into account, the corrected
timing for MLS fall back within the experimental range.

5. Implementation notes
The MLS matrices are symmetric and positive semi-

definite. Rather than computing the inverse, it is therefore
generally more efficient to compute the Cholesky
decomposition in the non-radical form; i.e. to find a lower
triangular matrix L with unitary diagonal, and a diagonal
matrix D such that M = LDLT, and then to solve the linear
systems associated with any derivatives we need to compute,
rather than using the matrix dot vector notation synthetically
used throughout this report.

Such an approach, however, is only possible when the
matrix is strictly definitely positive, as otherwise the standard
constructive Cholesky decompositions fail when elements
of  D are null or very close to zero. In such a case, a better
approach is to compute a pseudo-inverse of  M and then using

MLS FOR SPH

Figure 3. Dam-break two-dimensional evolution at t = 0.01 s; 0.4 s; 0.8 s; 1.6 s, using second-order MLS from the analytical formulation. Color coding by
density.

H T range (exp) T (SPH) T (MLS-corr) T (MLS)

0.89 0.76 − 0.79 0.75 0.79 0.79

0.78 1.05 − 1.11 1.10 1.07 1.07

0.72 1.28 − 1.33 1.32 1.29 1.29

0.67 1.44 − 1.47 1.48 1.54 1.54

0.61 1.66 − 1.68 1.73 1.82 1.82

Z T range (exp) T (SPH) T (MLS-corr) T (MLS)

1.11 0.30 − 0.48 0.40 0.40 0.40

1.89 1.56 − 1.67 1.46 1.51 1.51

2.33 1.87 − 2.02 1.90 1.92 1.92

2.78 2.21 − 2.38 2.31 2.31 2.31

Table 2. Time at which column height H reaches a given fraction of  the
original height in experiments as compared to timing achieved with SPH,
second-order MLS as a kernel correction, and MLS from the analytical
formulation. Scales as detailed in the text.

Table 1. Time to reach wavefront distance Z in experiments as compared
to timing achieved with SPH, second-order MLS as a kernel correction,
and MLS from the analytical formulation. Scales as detailed in the text.



the formulae detailed in this report in their actual forms.
Any symmetric, positive, semi-definite matrix can be

written [Press et al. 1992, Golub and Van Loan 1996] in the
form M = GTEG, where G is an orthogonal matrix (GTG =
GGT = I) and E is a diagonal matrix where its diagonal
elements are the singular values of  M. To find G and E, we
use the iterative Jacobi method [Golub 2000], which writes G
as a product of  Givens rotations.

The pseudo-inverse E+ of  E is then computed as the
diagonal matrix:

and the pseudo-inverse of  M is obtained as M+ = GTE+G.
In practice, both during the Cholesky decomposition

and for the pseudo-inverse creation, the zero test is replaced
by |Aij|< f where Aij is the matrix element to be tested and
f is an appropriately small number.

Picking too small an f can lead to disproportionately
large reciprocals in M+, with a consequent excess force being
exerted on the corresponding particles, which can result in
large instabilities during a simulation; on the other hand, too

large an f will increase the numerical error in the pseudo-
inverse computation, with a consequent perturbation of  the
particle motion.

Our implementation, which is based on the work by
Hérault et al. [2010a], exploits the parallel computing power
offered by NVIDIA graphics processing units (GPUs) to
achieve two orders of  magnitude in speed-up over the
equivalent code for standard central processing units (CPUs).
However, it is also limited by the single precision native to
the hardware by the GPUs themselves. In this case, we found
that the best value for f lies in the range dMfM/2 ≤ f ≤ 2dMfM

where dM is the dimension of  the MLS matrix (e.g. dM = 5 for
a second-order MLS with two space dimensions) and fM is
the machine epsilon for single precision.

5.1. Performance
With respect to standard SPH, the MLS approach has

additional computational cost that is associated with the
generation and use of  the MLS matrix for each particle. The
impact of  the extra computations on our GPU
implementation running on a GTX 280 is shown in Figure 4.
While the average execution time of  the integration (Euler)
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Figure 4. Code performance for SPH versus MLS implementation of  the dam break. The average Euler integration, neighbor list construction, forces
computation times, and number of  iterations are plotted against the total simulated time.
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and the neighbor list construction (Neibs) kernels are
essentially the same with both SPH and MLS, the force
computation (Forces kernel) is relatively consistently about 4
times greater.

The additional cost per iteration is off-set by a slightly
larger time-step in MLS that leads to a lower number of  total
iterations to cover the simulated time. Although this result
might appear a little surprising, it is easily explained by the
highly irregular fields that cause spuriously large forces in
SPH. As a consequence, the total run-time for MLS (158 s) is
only about 60% longer than for pure SPH (98 s).

6. Conclusions
MLS are typically used in SPH in the form of  either a

post-processing smoothing filter for the density, or a kernel
correction for gradient evaluation. In both cases, their use is
based on a first-order Taylor series expansion. We propose a
method to extend the kernel correction approach by using
second-order MLS, which provides improved approximations
for gradients as well as a robust formula for second-order
derivatives.

The new approach can be used both as a kernel
correction in SPH, which preserves the classic SPH
formalism and replacing the ∇W terms with a matrix/vector
product, and also directly, using discrete equations that are
specific to MLS.

The application of  the method described to the solution
of  the Navier–Stokes equations for a viscous fluid shows
visible benefits over the use of  standard SPH, which reduces
the need for post-processing filters, such as XSPH, Shepard or
MLS itself. The computational cost of  our method is,
however, about 60% greater than that of  standard SPH.

A more thorough analysis of  the influence of  the
weighting functions chosen during the MLS process remains
to be undertaken, together with an analysis of  the
opportunity to choose different forms for the derivative
computation by taking advantage of  the standard gradient
identities from which the distinct SPH gradient formulae are
derived. Such an analysis should identify the most appropriate
form to guarantee that the discrete system will preserve
quantities such as total momentum and angular momentum
when they are conserved at the analytical level.
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