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1. INTRODUCTION 
 

Large amounts of data in the form of irregularly 
sampled time series have emerged from several different 

areas, such as astronomy, meteorology, biology, 
oceanography and cyclostratigraphy [Baldysz et al., 
2016; Bowdalo et al., 2016; Dawidowicz and Krzan, 
2016; Jalón-Rojas et al., 2016; Péron et al., 2016; 
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ABSTRACT 
 
Irregularly sampled time series are common in several different areas, such as astronomy, meteorology, biology, oceanography, cy-

clostratigraphy, and others. The periodogram is a primary tool to extract meaningful information from irregularly spaced and noisy time 

series. It is an element of decision theory, meaning the periodogram usually transforms the data, and its ordinates are subsequently sub-

mitted to a statistical test compared to a population originating from a known stochastic model (white Gaussian noise). If some ordinate f0 

(usually a local maximum, a peak) fails in this test, we declare that it is a ‘periodicity’ at a frequency f0. Besides its full usage, this method 

until now suffer from numerous theoretical difficulties in adapting to real case situations and shows lack of usefulness for very poorly sam-

pled and high noise cases. All of it implies low usefulness for applying in most sedimentary sequences at our disposal nowadays. 

The LSTperiod is an application, written in Matlab, conceived to perform spectral analysis of multiple irregularly sampled time series. It com-

bines information from Lomb-Scargle periodogram estimates over different time series sampling the same phenomenon, enabling the re-

covering of signals from very poorly sampled and noisy time series. The software comprises a set of four Graphical User Interfaces (GUIs) 

that allow the user to: 

1) Have broad choices of the frequency-domain range and density for spectral estimation;  

2) Select possible spectral features (i.e., pick “T”) for testing as a model [𝐴∗sin(  𝑡–𝜃)] through the visualization of several goodness-

of-fit statistics;  

3) Visualize the fitting residuals in the time domain, for each time series, for the chosen sinusoidal model.  

These tools help the user to identify and analyze any suspected feature in the estimated spectra through its related linear system responses. 

All estimated parameter can be saved on worksheets and the visualizations in several different figure formats. We illustrate the use of the 

software with a set of Ocean Drilling Program (ODP) data series that show long-period Milankovitch-related spectral features and demon-

strate its performance using synthetic time series.  
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Mortier and Cameron, 2017]. In all these fields, the time 
series are very often the product of irregular sampling. 
For example, in astronomy, the time series are regularly 
sampled but usually present inevitable gaps due to 
interruptions on observations, due to daylight time or 
bad weather conditions. Additionally, in 
cyclostratigraphy, it is not possible to control the 
sampling times at all, leaving us with a set of averaged 
data points defined by the deposition rate. These issues 
pose a significant challenge to spectral analysis since it 
prevents the building of an equivalent set of 
independent points in the frequency domain similar to 
that obtained from applying a Discrete Fourier 
Transform (DFT) to a regularly spaced time series. 
Therefore, over the last years, many efforts have been 
devoted to understanding the advantages, as well as 
limitations, of the methods dedicated to extracting 
meaningful spectral information from irregularly 
sampled time series, and vast literature on the subject 
has been produced [e.g., Schwarzenberg-Czerny, 1989; 
Babu & Stoica, 2010; Baluev, 2013; Vio et al., 2013; 
Munteanu et al., 2016; Jalón-Rojas et al., 2016; 
VanderPlas, 2018]. 

Deep-sea sedimentary columns have revealed 
valuable records of climatic fluctuations, and they are 
currently abundant due to global ocean drilling projects 
such as the DSDP, ODP, and IODP. A great deal of 
literature has been devoted to Quaternary 
cyclostratigraphy [see Hinnov, 2013 for a review], and 
its recording of the climate response to the external 
forcing (i.e., the Milankovitch theory of orbital forcing) 
has become a leading issue [e.g., Berger, 2013]. Global 
analyses and comparisons of sedimentary systems at 
different latitudes and in different environments aim to 
evaluate the sensitivities of sedimentary records 
(climatic proxies) to orbital forcing over time [e.g., 
Lisiecki and Raymo, 2007]; however, as stressed by 
Berger [2013], there is not a simple link between orbital 
forcing and climate response. Also, climatic 
components, as expressed in sedimentary records, are 
not usually stationary, showing regional modulated 
expressiveness, and correlation with the sampling 
process itself (sedimentary deposition rate). 

There is currently a multitude of different methods 
available to analyze time series – both in time and 
frequency domains. Among them, Fourier methods 
accomplish a decomposition of the time series in an 
orthogonal basis (very frequently sines and cosines). 
Especially the so-called Discrete Fourier Transform 
(DFT) - could be highlighted mainly for being 
numerically fast (through Fast Fourier Transform - FFT 
algorithm), physically insightful (simple physical 

interpretation for its decomposition terms), and have 
straightforward extensions to non-equally sampled data 
(as in the periodogram, classical or the least squares).  

Considering the inevitably irregularly sampling of 
deep-sea records (as for records from many other 
sources), the usual methods of spectral decomposition 
based on the DFT, as the Fast Fourier Transform (FFT) 
algorithm, are not directly applicable. Therefore, the 
least squares periodogram, also called the Lomb-Scargle 
(LS) periodogram [Lomb, 1976; Scargle, 1982; 
VanderPlas, 2018] appears as a natural extension of FFT 
methods. The LS periodogram and its variants, which 
add statistical significance tests for spectral peaks 
[Stoica et al., 2009; Vio et al., 2010; Baluev et al., 2013; 
Vio et al., 2013; Mortier et al., 2015], have been the tool 
of choice for these cases. The lack of orthogonality 
requires several strong assumptions for the time series 
(i.e., regarding the high total length compared to signal 
period, high average sampling rate, and noise frequency 
domain characterization) to conduct these peak 
significance tests. Also, the recovery of spectral 
information from time series data also introduces 
artifacts such as aliasing (power leakage to distant 
frequencies), spectral leakage (power leakage to nearby 
frequencies), mixing with red noise, mixing with 
sampling noise, and other distortions of the original 
spectral content. Additional issues such as the lack of a 
sufficient frequency resolution and the presence of 
statistical biases remain unsolved [e.g., Zechmeister and 
Kürster, 2009; Mortier et al., 2015]. Moreover, as 
stressed by Hernandez [1999], some procedures, 
including de-trending, filtering or pre-whitening, 
routinely applied to data subject to spectral analysis 
may modify the signal power and displace the original 
spectral peaks.  

Besides that, real-world dynamical systems do not 
always exhibit sharp lines since they generally evolve. 
Therefore, stationary frequency components for all 
times are not very common on well-sampled natural 
time series, especially in cyclostratigraphy. Therefore, 
new methods of analysis are required; particularly those 
devoted to properly analyzing and displaying these 
signals, as well as to access uncertainties on the 
estimated spectral content from irregularly sampled 
time series. 

Caminha-Maciel and Ernesto [2013] presented a 
method to address these issues through a Bayesian 
combination of independent experimental information 
derived from multiple time series as a stacking 
procedure applied within the frequency domain aimed 
to smooth the periodogram and to enhance the signal. 
We developed this method to study weak signals in 
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short and arbitrarily sampled time series with spectral 
distortions caused by noise and sampling deficiencies. 
We tested the method numerically for synthetic 
Gaussian noisy and poorly sampled time series.  

This estimation process is based on the LS 
periodogram, but instead of decision theory method 
(statistical significance test), it incorporates the inverse 
problem approach envisioned by Tarantola and Valette 
[1982], Tarantola and Mosegaard [2000] and Tarantola 
[2006] for a combination of experimental and 
theoretical information. For this reason, we will 
designate it as the Lomb-Scargle-Tarantola (LST) 
periodogram - a process not based on optimized 
quantities such as averages or standard deviations (i.e., 
confidence limits) but in smoothing the periodogram 
estimates through a combination of information.  

Indeed, in this approach, we assume that we can 
express the information for the estimated parameter 
using freely normalizable probability functions called 
"state of information" functions, defined over a finite 
set of domain points. Then, the solution of the inverse 
problem can be stated as the result of the logical 
operations OR and AND applied among these 
independent state of information functions. The results 
of the OR and AND operators can be shortly explained 
in the following way: the OR operator represents the 
generalized creation of histograms and is related to the 
arithmetic average of the curves; while the AND 
operator represents the generalized concept of 
conditional probabilities and suggests an initial null 
probability distribution conditioned to several 
independent experimental probability distributions. The 
AND curve enhances the common features between 
each of the individual spectra primarily and represents 
the set of 'surviving models', and it is assumed to be 
the main result of the inversion process.  

Here we summarise the main steps of the algorithm: 
1) For each time series, define the minimal time in-

terval between two consecutive points as 𝑡(𝑖)
𝑚𝑖𝑛, 

and define 𝑡(𝑖)
𝑚𝑎𝑥 as the length of each time series.  

2) The Nyquist frequency is set as 𝑓𝑁𝑦𝑞𝑢𝑖𝑠𝑡 = 
½*max𝑖{𝑡(𝑖)

𝑚𝑖𝑛}, which defines the minimum pe-
riodicity 𝑇𝑚𝑖𝑛=1/𝑓 ������� (or the highest frequency) 
tested in the analysis. The maximum permitted 
periodicity (or lowest frequency) is set as 𝑇𝑚𝑎𝑥 = 
1.5 ∗ min{𝑡(𝑖)

𝑚𝑎𝑥}.  
3) The program calculates the Lomb-Scargle peri-

odogram for each series between 𝑇𝑚𝑖𝑛 and 𝑇𝑚𝑎𝑥 
using a pre-selected first grid density N0 over the 
interval. We set the initial N0 as 100, but the user 
can later change this number to an adequate 
number. 

4) Each periodogram is normalized by its total power. 
The resulting state of information functions have 
total areas equal to one and retain the estimated 
signal/noise ratio (S/N) for each time series, i.e., it 
maintain 𝑃�𝑓1�/𝑃�𝑓2� for any grid points 𝑓1 and 
𝑓2, where 𝑃�𝑓� stands for the power of 𝑓.  

5) Combine these state of information functions with 
the OR and AND operators [see Tarantola and 
Mosegaard, 2000] and then conduct the normal-
ization step again for a total area (i.e., power) 
equals one.  

In this paper, we present the software LSTperiod for 
spectral analysis according to the Caminha-Maciel and 
Ernesto [2013] method. The software also provides 
complementary information to help during the 
interpretation process including a set of four Graphical 
User Interfaces (GUIs) allowing for broad frequency-
domain visualization of periodogram estimates and 
selection of spectral features regardless of any 
interpretation of its dynamical origin (i.e., signal or 
noise). We also illustrate the use of the program with 
an application to a set of ODP data series and some 
synthetic data series. 

The remainder of this paper is organized as follows: 
Section 2 contains the essential background to 
introduce the LST periodogram; Section 3 contains a 
description of the LSTperiod software with its main 
features e mode of operation; Section 4 shows the 
application to a real set of cyclostratigraphic series with 
very well known results, and its performance when 
applied to synthetic time series; and Section 5 presents 
the final considerations. 

 

2. THEORETICAL BACKGROUND  
 
This section contains a brief review of the main 

mathematical background needed to introduce the 
LSTperiod, briefly discuss the Lomb-Scargle 
periodogram and the Tarantola’s combination of 
information approach for inverse problems. We also 
present the new idea of periodogram analysis: linear 
fitting on multiple time series of a known (pre-chosen) 
physical model followed by statistical diagnosis metrics 
(goodness-of-fit statistics).  

The Fourier Transform (e.g., DFT) is a function that 
gives a sequence of N0/2 (different) complex coefficients 
from a time series X(t), with N0 equally time spaced 
points. In this case, the modulus of those coefficients 
makes a function known as the “spectrum” (its estimator 
is the periodogram). This function gives information 
about the splitting of energy among frequencies (or 
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periods) and has central physical meaning in the study 
of dynamical systems. These frequencies are spaced by 
an increment of 1/T, where T stands for the total time 
covered by the series (this is called “resolution” of the 
spectrum). Moreover, another important parameter is 
the Nyquist frequency, which is the highest frequency 
about what there is, theoretically, any recoverable 
information on the time series. The Nyquist frequency 
is defined as 1/(2*Δt), where Δt stands for the sampling 
interval. One important result in this area, the so-called 
Shannon-Nyquist theorem states that if the time series 
is equally spaced, and it does not contain information 
above the Nyquist frequency, then all the information in 
the time series is in its DFT. When the series are 
unevenly-spaced, this theorem no longer applies. 

 
2.1 PERIODOGRAM ANALYSIS  
Since a very long time periodograms have been used to 

make estimates of times series spectral distribution and to 
search for hidden periodicities in experimental data. At 
first, a formulation similar to the squared absolute 
values of DFT was used, the so-called “classical 
periodogram”. This periodogram shows very noisy 
results even for a slightly noisy time series. One of the 
reasons for this is the lack of orthogonality on Fourier 
basis for irregular spaced data.  

After the Lomb and Scargle’s works [Lomb, 1976; 
Scargle, 1982; Vio et al., 2013], a new form of 
periodogram takes place, the now-called “Lomb-Scargle 
periodogram”. Scargle introduced a shift parameter τ, 
calculated for each frequency, that plays the role of 
minimizing the inter-cross terms in the Fourier basis,    
∑𝑗𝑠𝑖𝑛(𝜔𝑡𝑗)𝑐𝑜𝑠(𝜔𝑡𝑗), improving overall separation 
between the basis. This periodogram, which was proved 
equivalent to a least square fitting of a sinusoidal 
signal, shows much smoother results:  

 

(1)
 

 

Where the parameter τ is given by:   
 

(2)

 
 
Scargle also introduced a statistical test for a 

periodicity on the ordinates of a periodogram (a 
decision theory). This theory suggests testing the 
maximum ordinate (also called Fisher criteria) of the 
periodogram against the hypothesis of an entire 
stochastic generated population of ordinates. What 

means to test if a white Gaussian noise process, which 
implies an exponential distribution of the ordinates, 
could generate this maximum ordinate. Hence the 
probability α that at least one of P(ω) would exceed a 
certain level is given by:  

 

(3)
 

 
Throughout this equation, it is possible to determine 

a “false alarm level” (or detection threshold) given by: 
 

𝐿𝑡ℎ= – 𝜎𝑛
2 𝑙𝑛 �1 – (1– α)1/𝑁* � (4) 

 
A critical aspect of this statistical test is that it can 

be applied only over independent ordinates, what bring 
limitations to poorly sampled time series (with a small 
number of points):  

a) The maximum number of independent points ide-
ally allowable over the frequency interval would 
be N/2 – what may not coincide with the interest 
signals frequencies;  

b) Since there is no orthogonality on the basis, there 
is no way to re-establish independence between 
periodogram ordinates.  

A large part of the subsequent literature on the 
subject is dedicated to finding conditions to establish 
independence between the periodogram ordinates. Most 
of this literature indicates conditions of the statistical 
regularity of the time series – a long time length of the 
series compared to periodicities of interest, uniformly 
random sampling, stationary periodic components and 
stochastic regularity of the noise (a closed model for it). 
However, rarely, in real data cases, we can verify these 
premises beforehand.  

2.2 STATE OF INFORMATION FUNCTIONS  
Inverse problems is a set of techniques developed in 

geophysics to deal with broad classes of statistical 
problems related to incomplete information – 
incomplete theoretical formulation or incomplete data 
(ill-posed problems). Albert Tarantola’s theory of inverse 
problems also called “combination of information” has 
some advantages such as:  

a) Simplicity - being physically intuitive, 
b) It allows incorporating in a natural way multi-

modal (or weakly defined) distributions for data 
as well as for the solution. 

This technique has, however, the drawback of being 
computationally costly, although not so acute for low-
dimensional problems. Also, this computational issue 
is continuously waived as modern computers improve. 

τ (𝜔)=      𝑎𝑟𝑐 𝑡𝑎𝑛 �              �1 
2𝜔

∑𝑗𝑠𝑖𝑛2𝜔𝑡𝑗�
 

 ∑𝑗𝑐𝑜𝑠2𝜔𝑡𝑗

𝛼 = 1 – �1 – 𝑒        �
𝑁*_ 𝑃𝑘� 𝜎𝑛

2

𝑃(𝜔)=     �                 +                 �[∑�𝑋�𝑐𝑜𝑠𝜔(𝑡� –τ)]² 
∑�𝑐𝑜𝑠²𝜔(𝑡� –τ)

[∑�𝑋�𝑠𝑖𝑛𝜔(𝑡� –τ)]² 
∑�𝑠𝑖𝑛²𝜔(𝑡� –τ)
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Here we summarise this approach (Tarantola and 
Valette, 1982; Tarantola and Mosegaard, 2007; 
Tarantola, 2009):  

a) Replace analytical theories with optimized quan-
tities like as means and variances, for operations 
between probability distributions over the param-
eter space. These probability distributions could 
be freely normalizable and multi-modal, and 
should express our actual knowledge on the vari-
able; 

2) Operate these probability distributions (also called 
“state of information functions”) with the two 
logical operands “AND” and “OR”. The operator 
OR can be seen as a generalization of doing his-
tograms and is defined as an arithmetic average of 
the individual distributions ∑𝑖𝑃𝑖(𝑓). The operator 
AND represents the generalization of the idea of 
conditional probabilities and is defined as , 
where μ is the null information function – de-
pending on the geometry of the problem.  

The null information function 𝜇 is usually assumed 
as constant over the whole interval. In some cases, for 
example in physical problems involving the variable 
frequency, it has been shown that it is better if it takes 
another functional form as 1/𝑓. In our case however, 
these frequencies (or periodicities) are only labels for a 
wide class of eigen-functions (sines and cosines) and 
we can use a constant function as null information 
distribution. 

2.3 LST PERIODOGRAM  
Due to Shannon’s theorem, we already know that an 

irregularly sampled time series may not contain 
complete information on the frequency components of 
the original series. Any attempt to recover these 
components should apply some additional a priori 
information – explicitly or implicitly. Here we consider 
all the information that could potentially be resolved 
by each time series. 

Then we choose searching bandwidths that start with 
a period which is one and a half times the length of the 
shortest time series, up to the shortest period (or 
maximum frequency, the Nyquist frequency) taken as 
twice the shortest distance between two consecutive 
points, considering all series.  

The basic idea of LSTperiod is, for each frequency, to 
define for each time series a linear factor proportional 
to the estimated power in that frequency. To do this, we 
need to find invariant statistics that capture the S/N 
(signal to noise ratio) without being much sensitive to 
each series total variance – which depends on noise 
variance, length of the series, sampling pattern, among 

other aspects. The solution found was to normalize each 
periodogram by the total power (area under the 
periodogram), i.e., all periodograms exhibits total 
variance equals one. This procedure is equivalent to 
stretching the X variable in the time domain (i.e., X(t) 
versus t) and does not alter P(fi)/P(fj), with i ≠ j.  

After this normalization, these distributions are 
operated with the OR and AND logical operators 
described above, and so normalized again. These two 
distributions represent the stacking of all experimental 
data periodograms and incorporate within all available 
information on S/N.  

The density of calculation is initially set as 100 
points on the interval, but it is allowable to change 
depending on the user’s needs and computational 
hardware.  

2.3.1 LINEAR SYSTEMS AND GOODNESS-OF-FIT 
STATISTICS  

Any point in these curves (including the original 
periodograms) can be set as a possible candidate for a 
sinusoidal model fitting. Several visualizations are 
possible to the complete set of parameters originated 
from this fitting – powers, amplitudes and phases. 
Another window also displays some residuals 
visualizations and statistics (commonly used goodness-
of-fit metrics).  

In this way, the results (amplitudes and phases), as 
well as the quality of fitting (residuals metrics), can be 
compared among all-time series. This method allows 
us to study the coherent signals present in times series 
as well as the sampling process itself. Moreover, it 
could be more enlightening, from the physical 
standpoint, than merely to determine some confidence 
level for a periodicity, regardless of critical analysis 
over the time series and the sampling process 
underlined.  
 

3. THE LSTPERIOD SOFTWARE 
 
The LSTperiod software was developed within the 

MATLAB platform, and is freely available 
(http://www.iag.usp.br/paleo/sites/default/files/LST
period‐files.zip) as a Matlab (R2012b or newer) m-code 
(with some graphical “.fig” files and “.dat” test files) to 
run within the Matlab environment, or as an executable 
“.exe” Windows 10 version (which does not requires the 
Matlab previously installed). The software comprises 
four GUIs: LSTgui, guiFitFreq, guiResiduals, and 
LST_Table. With the software, we also deliver a brief 
manual and a set of synthetic data to help users to 
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format their time series and have an initial experience. 
To run LSTperiod, the program (executable file, or 

source code plus “fig” files) and all of the data files must 
be in the same folder. Data files should be low-level text 
files saved with “.dat” extension and should contain only 
two columns of numbers separated by space: time (t) and 
the measured variable X(t). For the files, we highly 
recommend adopting short names starting with a letter; 
otherwise, LSTperiod may display chunks in some 
visualization labels.  

As the software starts, it will read all data files in the 
same folder and exhibit the periodograms. However, 
three blank panels will appear, because the frequency 
range must be selected. After that, the user can select 
the wanted files and run again. The user may run as 
many files as wanted; the only restriction is the 
processing time, which will increase for a large number 
of files running simultaneously. It is widely known that 
the periodogram (as well as the DFT) is a slow algorithm, 
and the processing time will quickly rise as the number 
of points used in the calculation of the spectra increases. 
For this reason, LSTperiod comes with two specific tools 
to manage processing time: an adjustable grid density 
slider and a small wait-bar window to display the 
evolution of any actual calculation going on (Figure 1).  

At the first run, LSTperiod opens three panels – one 
(bottom of the window) containing all the spectra for all 

series, the OR spectrum (middle), and the AND spectrum 
(top) (Figure 1). However, at this point, the panels will be 
blank as an adjustment of the frequency range is 
necessary, and this is done by sliding the bars. The next 
step is to set the analysis bandwidth: the user can type 
a numerical value into the ‘central BW’ (central 
bandwidth) editable box, which corresponds to the 
central value of the desired frequency range. The number 
of points (density) in the calculation can be set using the 
bottom (larger) slider. After the adjustments, the program 
must be rerun by pressing the Run button. This operation 
can be repeated as many times as necessary until the 
features of interest are all highlighted. If wanted, one or 
more data files may be removed from the batch of data 
files by pressing the file icon (‘open file’) at the top left 
of the window. The software will list all data files, and 
the desired files must be simultaneously marked (i.e., 
selected using the mouse and pressing the Ctrl button 
on the keyboard) for a new run.  

3.1 GUIFITFREQ: LINEAR SYSTEM – PARAMETER 
ANALYSIS 

A thorough investigation of any peak found in the 
combined AND or OR periodograms or any of the 
individual periodogram may be performed by marking 
the peak with the ‘datatip’ tool at the top of the window 
and then pressing the Fit(T) button. This action will 
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FIGURE 1. First LSTperiod window showing the periodogram calculated for each data file separately (bottom), and the combined 
results for the OR (middle) and AND (top) spectra. The sliding bars at the bottom of the window set the analyzed range 
of frequencies and the number of points in the calculation. The Fit(T) push button opens a second window once the pe−
riod has been selected with the selection (period selector − datatip) tool. 



open a new window showing a bar plot displaying the 
amplitudes of the selected period among each of the 
series. The pop-up menu in the bottom right (Figure 2) 
will display several commonly related parameters, 
including the phase, mean squared error, the coefficient 
of correlation, and coefficient of determination. All of 
the results for each file can be automatically sent to a 
table by pressing the ‘Table’ button. The software will 
open a new GUI called LST_table where the numeric 
results can be seen, selected and copied (using the 
Ctrl+c and Ctrl+v keys), and they can be sent to a 
worksheet file (“.xls” – what only works with Microsoft 
Excel installed). For each analyzed period the 
corresponding parameters will be saved separately in a 
different sheet of a spreadsheet so that the data will be 
available for further analysis according to the user. This 
spreadsheet will be saved with the temporary file name 
‘temp_LST_table.xls’. 

3.2 GUIRESIDUALS: LINEAR SYSTEM – RESIDUAL 
ANALYSIS 

We can see the deviations (or errors) in the fit for a 
selected period for each data file just by pressing the 
Residuals button (Figure 2). A new window will open 
displaying the graphics for the selected data file and a 
goodness-of-fit parameter. In the Residuals pop-up 
menu, we can select several options from a list of possible 
visualizations, including the standard error, error against 
the model, error against the data, Gaussian fit for the 
errors, and quantile-quantile statistics. The definitions of 

these characteristic parameters are available in statistical 
books and texts [e.g., Walpole et al., 2007; Rodgers and 
Nicewander, 1988]. Each window can be printed and 
saved as a Matlab figure (“.fig” files) or in any of several 
other formats, such as “.jpeg”, “.tiff”, “.eps” or “.pdf”.  

 

4. EXAMPLES 
 

4.1 REAL DATA  
To illustrate the performance of LSTperiod, we used 

a set of series showing the variation of benthic �18O 
along sedimentary cores drilled by the Ocean Drilling 
Program (ODP) and reported by Lisiecki and Raymo 
[2005]. The time series were already submitted to 
spectral analyses [Lisiecki and Raymo, 2007] showing 
climatically modulated periods of approximately 19, 23 
and 41 kyr, the last one being relevant only before 1.4 
Myr. For this reason, we limited the maximum length of 
the time series to 1 Myr, although some of the time 
series are longer than 5 Myr. The data were organized 
merely into two-column (i.e., time - t and data values - 
X(t)) text files (“.dat” extension) and were processed 
without any pre-treatment (e.g., filtering or de-
trending). The selected bandwidth was 14.5 - 45 kyr, 
although longer periodicities could also be investigated. 
The results are displayed in Figure 1. The several 
individual spectra (bottom of the figure) are noisy, and 
the real periodicity may be challenging to identify. The 
AND spectrum (top of the figure) is far smoother than 
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FIGURE 2. Second LSTperiod window (guiFitFreq) for the selected parameter analysis, which is chosen using the error analysis menu 
box. The estimated parameters can be exported and saved to a “.xls” table.



the individual spectra, and it expresses features that are 
common to all series.  

Mainly, we are interested in better evaluating the 
~19, ~23 and ~41 kyr periods. The period of 41 kyr 
seems to be the most prominent feature in the spectrum 
as stressed by previous work [Lisiecki and Raymo, 
2007]. The 23 kyr period is also detected, whereas the 19 
kyr period, which is thought to be persistent throughout 
the last 5 Ma, does not appear clearly within our AND 
results. However, the 19 kyr period is present in the OR 
spectrum and is clearly defined in many of the 
individual spectra. It is worth mentioning that these 
data are derived from distant sites in the Atlantic and 

Pacific Oceans and that they might not show the same 
components of the forcing system.  

Furthermore, Lisiecki and Raymo [2007] mentioned 
a low signal-to-noise ratio at this frequency. Other 
peaks at approximately 27 and 31 kyr are also present 
in the AND spectrum and seem unrelated to orbital 
forcing. However, it is beyond the scope of this paper to 
discuss these results further. 

 
4.2 SYNTHETIC DATA 
Here, we illustrate the performance of the method and 

software by analyzing a set of synthetic data series with 
known harmonic content (Figure 4). The synthetic time 
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FIGURE 3. LSTperiod window for one of the options in the guiResiduals. The error analysis refers to the modeling of the selected 
file displayed in the bottom box. Each error type displayed in the menu has a graphical output for visual inspection. 

FIGURE 4. Synthetic series produced as described in the text. The green line (left) represents the original series corresponding to a 
superposition of sinusoidal components; blue dots and line (left) are one of the inhomogenous sampling series; the other 
four are plotted on the right diagram.



series is the result of ten cycles of the superposition of 
two components with periods of 90 (with an amplitude 
of 6 and a phase of zero) and 150 (with an amplitude of 
4 and a phase of π/4) time units. The resulting time series 
was then randomly sampled (30 to 50 points) over the 
entire length of the original series, thereby producing 
five different short time series named S1 through S5. To 
each point of the five series, we added a non-constant 
Gaussian noise level of 5% of its amplitude.  

Considering the poor quality of the final series 
(Figure 4), the recovery of the periodicities was 
excellent. Figure 5a showed periods of ~90.78 and 

~147.52; a very smooth AND spectrum was produced 
compared to the noisy individual spectra. Regarding 
amplitudes and phases (Figure 5d and 5e), it was 
possible to recover amplitudes of ~4 for the 147 period 
and phases of approximately π/4 for at least two series. 
However, it is not surprising that the amplitude and 
phase were not rigorously recovered considering the 
noisy and poorly sampled time series. The other 
diagrams in Figure 5 show the comparison of the 
original and modeled data along with the error bars 
(5b), the error histogram (5c), and the standardized 
errors for the series.  
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FIGURE 5. Spectral results for the synthetic time series with periods of 90 and 150 arbitrary time units. Small boxes show some 
examples of graphical outputs corresponding to analyses of the spectral peaks selected: a) original generated series (green 
line) and the sampling points (blue dots and line); b) calculated model plus error and data; c) error histogram; d) peak 
amplitude for each time series; e) rose diagram for the phase; and f) standardized errors for a particular time series.



5. FINAL REMARKS 
 
The LS periodogram is a well-known algorithm for 

detecting and characterizing signals in unevenly 
sampled data. However, the statistical significance of 
the detected periods may be difficult to ascertain, 
especially if the series has no characteristic sampling 
interval, and is deficient in accurately recording the 
periodic or quasi-periodic event. For this reason, many 
records of this type that carry some valuable 
information are often discarded as considered 
inappropriate for spectral analysis. 

LSTperiod is a software specially designed to 
overcome problems in the calculation of the 
periodograms (e.g., poor data window) of short, noisy 
and irregularly sampled time series through the selective 
choice of the frequency range and grid density. The 
combination of various poor data sets that represent the 
sampling of the same phenomenon allows a reduction 
of the noise through smoothing and signal-noise gain, 
and consequently the extraction of relevant information 
with a low S/N ratio. LSTperiod runs on MatLab 
(R2012b or newer) environment and provides ample 
possibilities to investigate the reliabilities of the 
periodicities in time series data. The examples presented 
in section 4 show the power of LSTperiod in comparing 
variances of different records and statistically analyzing 
each suspected spectral feature. We demonstrated with 
synthetic examples that periodicities could be reliably 
identified in a set of poorly sampled time series. We 
illustrated the use of the LSTperiod method with 
cyclostratigraphic data because this is one prevalent 
issue in Geosciences, but the software can be applied to 
any data set that can benefits from the combination of 
information as proposed here. Time series with periodic 
gaps, as often found in astronomy, are also troublesome 
because they can generate unpredictably common 
patterns (like leakage and aliasing) within the spectral 
windows. In this case, the stacking procedure will 
enhance not only the common signals but also the 
common spectral anomalies.  

Another significant advantage of LSTperiod is 
that it offers a statistical diagnosis for models derived 
from any suspected spectral feature, and thus, we can 
test as many frequency points as desired. On the other 
hand, as periodograms are highly time-consuming 
[Deeming, 1975; Hernandez, 1999; Townsend, 2010], 
LSTperiod may become slow for long time series (i.e., 
exceeding 10,000 readings), which may be a 
disadvantage.  

This software does not intend to be a new tool for 
implementing old statistical methods. Indeed, there is 

much room for improvement in the user’s interface and 
graphical capabilities (we count on the community’s 
feedback to improve future versions).  

Instead, it is a proof-of-concept tool, to demonstrate 
de very idea that spectral analysis of irregularly sampled 
natural time series is a process of extracting incomplete 
information. As so, there is always a need to input some 
a priori information. Nowadays, in the literature, this 
has been performed through the assumption of obscure 
statistical hypotheses (as white noise), and the so-called 
“time series carpentry” – meaning the cutting and 
manipulation of the time series to obtain desired results. 
As a consequence, most of the data obtained as time 
series (especially in cyclostratigraphy) is considered 
non-suitable to spectral analysis. Here we made a clear 
choice for the input of a priori information: starting for 
a broadest possible spectral bandwidth, we show 
graphics of invariant estimates and let to the user select 
and highlight features that seemed consistent with the 
previous physical knowledge of the system. Any 
suspected features can be tested not only relating to its 
amplitude or S/N (signal to noise ratio) but also related 
to its coherence properties – along with the time series 
and in comparison with other samples of the system’s 
variability (other times series with common frequency 
components).  
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