48,06,2005misc 899 ANNALS OF GEOPHYSICS, VOL. 48, N. 6, December 2005 Key words Panarea – bathimetry – DEM – hy- drotermal systems 1. Introduction Panarea Island is located in the Southern Tyrrhenian Sea and is part of the volcanic arc of the Aeolian Islands that is made up of seven is- lands, some minor islets and several seamounts (fig. 1a). The area is characterized by a com- plex geodynamics (Falsaperla et al., 1999) be- ing affected by shallow to deep seismicity due to a slab deepening under the Calabrian Arc (Chiarabba et al., 2005), active crustal defor- mation (Anzidei et al., 2000; Hollenstein et al., 2003; Tallarico et al., 2003; D’Agostino and Selvaggi, 2004; Serpelloni et al., 2005), active volcanoes (Lipari, Vulcano and Stromboli) and hydrothermalism. The above features witness a long lasting activity, as described by Italiano and Nuccio (1991), Gamberi et al. (1997), Calanchi et al. (1999, 2002), De Astis et al. (2003) and Caliro et al. (2004). Panarea is the smallest among the Aeolian Islands, representing the subaerial portion of a submarine stratovolcano about 2000 m high and 20 km wide (Gabbianelli et al., 1993; Gam- beri et al., 1997). East of Panarea, the islets of Basiluzzo, Dattilo, Panarelli, Lisca Bianca, Bottaro, Lisca Nera and Le Formiche (hereafter referred as the ‘Islets’) form an archipelago that The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) Marco Anzidei (1), Alessandra Esposito (1), Giovanni Bortoluzzi (2) and Francesco De Giosa (3) (1) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy (2) Istituto di Geologia Marina (ISMAR), CNR, Bologna, Italy (3) Coastal Consulting and Exploration srl, Bari, Italy Abstract On November 3, 2002 a shallow submarine gas eruption occurred in an area of 2.3 km2 east of Panarea (Aeo- lian volcanic arc, Southern Thyrrenian Sea, Italy). The exhalative area, surrounded by the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, has been known since historical times for the hydrothermal ac- tivity related to the Panarea volcanic complex. Due to the exceptional characteristics of the phenomenon, differ- ent geological, geochemical, geophysical and studies were carried out in this still poorly known volcanic area. A particular effort was devoted to producing a high resolution bathymetric map that also aimed to estimate the amount and location of the active exhalative centers and their variations in space and time. Data were obtained by three RTK multibeam surveys performed between December 2002 and December 2003. Here we show and discuss the technical details of the bathymetric surveys, the bathymetric map at 0.5 m resolution, and the accu- rate location of the 606 main exhalative centres active during the 2002-2003 crisis. The bathymetric data and the maps show two prevailing principal NE-SW and NW-SE alignments that match the spatial distribution of the exhalation centres. The accurate positioning at submeter accuracy of the gas vents is useful in the monitoring activity and to study their temporal and spatial variability. Mailing address: Dr. Marco Anzidei, Istituto Naziona- le di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Roma, Italy, e-mail: anzidei@ingv.it 900 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa emerges from the eastern flank of the volcano (fig. 1b). Panarea is made up of dacite to rhyo- lite lava domes, dated up to 149 ± 5 kyr (Calanchi et al., 1999), interbedded with pyro- clastic deposits. The island is topped by the py- roclastic deposits of Punta del Torrione forma- tion, dated between 42 kyr and 11 kyr, which also outcrop at Salina, Lipari, Filicudi, Vulcano and along the northern coast of Calabria and Sicily (Lucchi et al., 2003). Boiling of the sea-water has been described since historical times in the Aeolian Islands by Titus Livius, Strabo, Julis Obsequens, Orosius Palulus, Posidonius and Plinius the Elder (SGA, 1993). An event that produced sudden changes in the sea level, hot steam from sea surface, stinky air, death of fishes, mud emerging from seafloor occurred on 126 b.C. This event is likely referred to the formation of Vulcanello, nowadays linked to Vulcano Island. The exhalative activity at Panarea has been described by Houel (1782), Dolomieu (1783), Ferrara (1810), Spallanzani (1825), Dumas (1860), Mercalli (1883), Luigi Salvatore d’Austria (1895), Romano (1973), Ital- iano and Nuccio (1991), Gabbianelli et al. (1990), Calanchi et al. (1995), Anzidei (2000), Caliro et al., (2004), Caracausi et al. (2005). At the beginning of November 2002, during the eruptions of Etna and Stromboli volcanoes, a submarine gas eruption started in a shallow area up to 30 m water depth and 2.3 km2 of sur- face, bordered by the Islets. The event occurred Fig. 1a-c. a) Regional setting of Panarea Island; b) Panarea Archipelago; c) the ALSEA vessel used during ba- thymetric surveys. In the map are also displayed the locations of the tide gauge, the TyrGeoNet GPS station and the area investigated by the bathymetric surveys. cb a 901 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) suddenly, without significant seismicity (Sac- carotti et al., 2003) and reached an intensity level never observed before during the last cen- tury (SGA, 1996). The gas output was estimat- ed to be 109 l/day, two orders of magnitude higher than that previously measured (Caliro et al., 2004). The most active exhalation center (EC-1, fig. 7b) was located close to the SW wall of the islet of Bottaro, with gas flowing vigorously up to the water surface. To provide the present day locations of the submarine gas Exhalation Centres (EC) with respect to previ- ous studies (Gabbianelli et al., 1990; Anzidei, 2000) and a first high resolution morphobathy- metric map of the exhalation centres, bathymet- ric surveys were planned and performed during the maximum activity. Surveys were carried out in the early days of December 2002, with par- tial repetitions in selected areas during July 2003 and December 2003. 2. Bathymetric surveys A multibeam high resolution survey that covered an area of about 9 km2 around the Islets was performed for the first time in December 8- 12, 2002, using the Alsea boat of Coastal Con- sulting and Exploration Company (fig. 1c), equipped with an ultra high resolution Reson Seabat 8125 multibeam (240 beams, 120° sec- tor coverage, 455 kHz) (table I). Before starting the surveys, a check of the health of the GPS/RTK data link was performed Table I. Instrumentation used during the bathymetric surveys. Instrumentation Type Features Vessel M/B ALSEA - Differential GPS receiver Ashtech-Aquarius 02 10 mm + 0.5 ppm, XY (RTK mode) 20 mm + 1.0 ppm, Z Multi beam Reson SeaBat 8125 Frequency 455 kHz Angle 120° Beams 240 Max depth 120 m Resolution 6 mm Gyrocompass SG Brown Meridian 0.05° static secant latitude 0.2° dynamic secant latitude Velocity sounder Navitronic SVP 15 Resolution 0.1 m/s Accuracy ± 0.25 m/s CTD Microcat SBE 37-SI Conductivity accuracy 0.0003 S/m Temperature accuracy 0.002°C Motion sensor TSS DMS 2-05 Waves Static accuracy 5 cm Dynamic accuracy 0 ÷ 20 s period Pitch and roll Static accuracy 0.025° Dynamic accuracy 0.03°± 5° Digital tide gauge Ott Hydrometry Accuracy <1 cm (at Panarea) Orphimedes On board computers Pentium IV- Data acquisition Windows 2000 Software RESON B.V. PDS 2000 Navigation and data analysis Software CARIS-HIPS 5.2 Data analysis Software ArcView GIS 8.2 Data management 902 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa throughout the planned survey, having previ- ously found a local shadow area behind the eastern wall of Dattilo. The bathymetric datum was established by measuring the sea level through a high accuracy tide gauge, temporari- ly installed along the pier at S. Pietro, Panarea (fig. 1a and 2). The instrumental height of the zero level was referred to a WGS84 geodetic benchmark previously set up over the pier (fig. 2 and table II). The latter was measured by ge- odetic space techniques using a couple of dual frequency GPS receivers and by ground meas- urements using a Total Station, with reference to the GPS geodetic monument of PANA, locat- ed at Panarea (fig. 1a), which belongs to the Tyrrhenian Geodetic Network (TyrGeoNet), whose 3D coordinates are known at a few mm level (Anzidei et al., 1995; Serpelloni et al., 2005), (table II). The decimetric positioning of the vessel was computed by GPS technique in RTK mode. Real time coordinates were obtained by in- stalling an Ashtech Aquarius reference station located on the GPS station PANA and transmit- Fig. 2. Sketch (not in scale) of the Panarea Pier with the location of the tide gauge and the geodetic benchmark used to define its coordinates with respect to the TyrGeoNet GPS station of Panarea. Table II. Coordinates of PANA TyrGeoNet station and tide gauge benchmark (WGS84, ellipsoidal heights). Station Geographic UTM Height (m) PANA (TyrGeoNet) Lat N 38°37l58.909 N 4276057.468 144 554 Long E 15°04l26.457 E 506442.1583 Tide Gauge Lat N 38°38l16.772 N 4276608.335 43.30 Long E 15°04l40.257 E 506775.313 903 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) ting the differential corrections by a High Fre- quency link at 1 Hz rate to the mobile Aquarius receiver which was placed on board of the ves- sel. In addition to this, a Sg-Brown Meridian Surveyor gyrocompass, a Tss DM505 MRU and a Fugro Omnistar Differential GPS, were interfaced to the Reson PDS2000 Navigation software (www.reson.com) for data acquisition (multibeam and positioning), control, calibra- tion and pre-processing. A SBE 37-SI Microcat CTD probe was located at the sonar head and interfaced to the sonar processor, so providing the real time speed of sound data for the beam forming, while the Navitronics SVP15 and a SeaBird CTD probes were also used for profil- ing the speed of sound along the water column (fig. 3). Additional details on the instrumenta- tion are reported in table I. Navigation routes were planned with the aim to achieve the full coverage of the sea bot- tom (fig. 4), with at least 20-30% overlap of the nearby swaths. The Reson PDS2000 software was able to show in real time to the operator and the pilot the ongoing multibeam and Digi- tal Terrain Model (DTM) and the positioning information that were used for guidance. Fig. 4. Course over the ground performed by ALSEA vessel during bathymetric surveys. The 30% overlapping between nearby lines guarantee the full coverage of the area. Fig. 3. Sound speed profile. Data were used to cal- ibrate the multibeam system for sound speed veloci- ty in the water to determine depths at 1 cm formal ac- curacy. 904 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa At the beginning of each survey, a full set of multibeam calibration lines were acquired, on flat bottoms and steep targets at 30-70 m water depth. The roll, pitch and yaw correction angles were then used to correct the installation geometries. Calibration parameters were taken into account during data analysis to correct the observations. 3. Data analysis, bathymetric map and exhalation centres Data analysis was performed by the Com- puter Aided Resource Information System- Hydrographic Information Processing System (CARIS-HIPS) Pro v. 5.2 software (CARIS, Fig. 5a,b. a) Example of tide gauge recordings collected at 5 min sampling rate at Panarea Pier in the time span December 19-21, 2003 during bathymetric surveys. Tide amplitudes are < 0.4 m, typical of the Central Mediter- ranean Sea. b) Comparison between tide data recorded by the tide gauge located at Panarea (grey line) and those registered by the GPS/RTK system located on board of the vessel (black line) during bathymetric surveys. The GPS/RTK tide data have been collected at 1 min sampling rate but averaged at 10 min to remove the high fre- quency noise. The two data sets are in good agreement. Tidal values were used to correct depth measurements, that were reduced to a mean sea level. a b 905 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) 2000), specifically designed to process multi- beam data under Windows NT® and capable to manage images in a mosaic of the seafloor and produce raster and analytical maps. The data processing sequence was as follows: 1. System calibration and multibeam data reprocessing. 2. Data quality check: only 15% of the data were discarded due to a low signal to noise ratio. 3. Sea level correction using the tide gauge and RTK data (fig. 5a,b). 4. High and medium frequency spike remov- al, keeping intact the signatures produced by the uprising gas bubbles from the seafloor (fig. 6a-d). Fig. 6a-d. a-c) Multibeam images of some typical exhalation centres (vertical exaggeration 4X), showing upris- ing gas bubbles from the seafloor and the related small size craters produced by the exhalation activity; d) under- water picture of exhalation centres west of Bottaro Island. Gas bubbles are reaching the sea surface (0A class). a b c d 906 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa 5. Production of high accuracy Marine Dig- ital Elevation Models (MDEM) (table III). Through the repeated computations, the sig- nal to noise ratio was greatly improved, allow- ing a precise discrimination of the significant signal and the subsequent identification and lo- cation of EC (table IV). A total of 606 EC were detected (Appendix) and classified by intensity and significance lev- el (fig. 7b). The latter criteria were expressed by the number of soundings that identified each EC from multiple overlapping swaths (0-1-2 levels of table IV) and from their height above the seafloor (A-B-C levels of table IV). The exhalation centres were further divided into three classes (table IV): A) High activity centres, with bubbles columns interesting the entire water column up to the sea surface (figs. 6d and 8). B) Medium activity centres, with bubble columns extending for 3 to 4 m from the bottom but not reaching the sea surface (fig. 8). C) Moderate activity centres, with bubble columns extending up to 2 m from the ground floor, not reaching the sea surface (fig. 6a). The classified EC were mapped over the MDEM, allowing a view of the active exhala- tion centres for the whole area during the time span 2002-2003 (fig. 7a), and at December 2002, during the maximum intensity of the cri- sis (fig. 7b). Bathymetric surveys were partial- ly repeated during July and December 2003 (fig. 4), focusing on the most active area around Lisca Bianca, Bottaro and EC-1 (fig. 7b). To produce the MDEM at 0.5 m average pixel size, of 9 million of 3D punctual data in the UTM33-WGS84 coordinate system were used. The MDEM for each survey data set (De- cember 2002, July and December 2003), was analysed to reduce any positioning offset or er- ror. The difference grids display pixels whose values are the difference of depth at two survey epochs. The residuals between the three MDEMs were estimated, as reported in table III. By the av- erage standard deviations and excluding values > 1 m, supposed to be related to the active exha- lation centres, the statistical difference between the surveys for all the investigated area was esti- mated within 14 cm. Table III. Accuracy of the MDEMs. Survey epoch Average of the residuals Average standard deviation (month/year) between grids (m) between grids (m) 12/03-12/02 + 0.02 0.14 07/03-12/02 + 0.10 0.13 12/03-07/03 −0.09 0.11 Table IV. Classification of the exhalation centres. Detection level Based on the number Based on the height Based on the quality of lines which detected extension of the gas column of the detection the exhalation centre High 0 (>3 lines) A (all water column, 0A (high) from seafloor to sea surface) 0B (medium) 0C (low) Medium 1 (2÷3 lines) B (4 m height from the seafloor) 1A (high) 1B (medium) 1C (low) Low 2 (1÷2 lines) C (2 m height from seafloor) 2A (high) 2B (medium) 2C (low) 907 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) Fig. 7a,b. a) Bathymetry of Panarea Archipelago at 2.0 m countour level. The red dots are the A and B class- es of exhalation centres, respectively, detected in the time span December 2002-December 2003. Blue lines are the cross sections aal and bbl; b) location of the main exhalation centres active during December 2002, based on their classification (Appendix). In the map are shown the EC-1 (latitude 383818.8N; longitude 150634.0E, depth 13.3 m), EC-8 (latitude 383819.9N, longitude 150637.1E, depth 8.7 m), which were the largest exhalation cen- tres and the EC named black smoke (latitude 383815.1N, longitude 150617.4E, depth 20.8 m). The latter is a 175 m wide and 5 m deep subcircular depression, interested by moderate dark exhalation, surrounded by lava outcrops that show deposition of alunite, sulfur and sulfates. a b 908 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa Fig. 8. Classification of the exhalation centres based on their intensity, as detected by the multibeam sensor. See also table III. Fig. 9a,b. Cross sections of the investigated area: aal, bbl, running a) W-E and b) NW-SE, respectively. It is remarkable the 20 m height vertical slope in cross section aal, that could be related with a tectonic structure run- ning SW-NE (labelled with A in fig.10a). a b 909 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) Once the offsets were analysed and applied, the final MDEMs were produced and made available for the morphostructural analysis, in- cluding the Exhalation Center (EC) detection, production of contour maps at 1:2500 scale (fig. 7a,b), cross sections (fig. 9a,b) and shaded relief (fig. 10a,b), which show the roughness and complexity of this sector of the Panarea volcano surface. Applying this analysis to a limited area in- cluding the EC-1, a crater about 40 m long, 15 m wide and 9 m deep (fig. 11), which was the largest activated on December 2002, the mor- phological differences during time were evi- denced. Figure 12 shows the results obtained by comparing the December 2002-December 2003 data: starting from a reference surface which fits the average surface of the seafloor around Fig. 10a. Marine Digital Elevation Model (MDEM) showing the morphobathymetry of the area. Scale colour shows depths ranging between 0 and –60 m. Exhalation centres (red dots) and main lineaments (red lines) re- vealed by the exhalation centres distribution are reported in the map. The exhalation area is located at the top of the stratovolcano. A and B, are two areas that displays relevant tectonic features; C, is likely to be a past exha- lation centre. 910 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa Fig. 10b. Three dimensional view of the area (vertical exaggeration = 2). Fig. 11. Digital Terrain Model of the EC-1. The cross section profiles obtained by multibeam data displayed a crater about 40 m long, 15 m wide and 9 m deep. The spikes located in the deepest part of the crater are the up- rising gas bubbles. 911 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) the EC-1, we tentatively estimated that the ex- plosive opening of the crater produced an ex- traction at 3852 m3 of rock during the maximum of the crisis. One year after its opening, the crater was partially filled with approximately 221 m3 of debris due to rock falls of the inner flank of the crater the upwelling gas and water flows. 4. Discussion and conclusions The high resolution multibeam technique provided the first 3D detailed bathymetric map of the seafloor at 0.5 m average pixel resolution and the location and distribution of the exhala- tion centres, during the crisis that has affected the Panarea area since November 2002 (fig. 10a,b). These data are useful to improve and support the geological, volcanological, geo- chemical, geophysical research and monitoring of this still poorly known volcanic area. More- over, they represent the first accurate record of the last submarine exhalation crisis which oc- curred at Panarea. The MDEM (fig. 10a,b) shows that the area of Panarea Archipelago represents a positive geomorphic feature which is defined by the the coalescence of individual volcanic edifices. This is an asymmetric structure sloping at high angle in its southeastern flank while the others flanks display smoother slopes. The area within the Islets is characterised by a shallow seafloor platform, bewteen 0 and –30 m, gently slooping to NW between Panarelli and Secca dei Panarelli (fig. 10a,b). Lisca Bianca, Bottaro and Lisca Nera islets are NE-trending coalescent structures. The Dattilo structure shows an elon- gated tongue-like marine abrasion platform, SE trending, for 0.8 km at depths between –5 and –8 m. The area within the Islets is dotted by hun- dreds of circular or horseshoe-shaped depres- sions up to several metres deep and wide, large- ly distributed especially surrounding Dattilo, Lisca Nera and Bottaro. The high frequency re- lief of coarse textured morphology, at metre to decimetre size pinnacles and troughs, is well developed between Lisca Bianca, Bottaro and Secca dei Panarelli. In the area between Panarelli and Secca dei Panarelli the map re- veals large lava flow surfaces, smooth and lobed. The deepest sector dislays evident morpho- logical structures such as those located in the northwest area, NE- NNE- NNW- and E-trend- ing lineaments (fig. 10a: A,B). The southwest sector displays a sub-elliptical shape wide de- pression probably due gravitative movements (C in fig. 10a). The shaded relief (fig. 10a,b) does not show a caldera-like structure as suggested in Gabi- anelli et al. (1990) and Caliro et al. (2004). The high quality of the surveys disclosed 606 exhalation centres (Apppendix), which were classified on the basis of their different size and activity level, as estimated from the in- terferences on the multibeam sensor. The loca- tion of the gas vents, mapped on the bathymet- ric maps, revealed the existence of preferential EC aligments NE-SW and NW-SE trending (fig. 10a,b) and along which the gas eruption took place. These alignments match those measured from the fractures, the alunite veins and the fossil gas-pipes exposed on the lava of the seafloor and along the Islets’ cliffs (Anzidei et al., 2003, 2004a,b; Esposito et al., 2005). Therefore we suggest that the NE-SW and NW- SE systems are the main pathways for the up- welling of hydrothermal fluids. The comparison between the gas bubble alignments and those inferred by morphology- cal analysis, suggests that presently the gas path is mainly driven by an active extension along the NE- and NW-trending fracture systems.The trends of the fracture systems are in agreement with the main regional tectonic structures (De Astis et al., 2003). The maximum number of exhalation centres was located in a limited extended zone, west of Bottaro and Lisca Bianca islets, whereas clus- ters of minor centres were sparse in the area. The largest and most active exhalation centre EC-1 was located a few tenths of metres south of Bottaro (figs. 7b and 11). The ellipsoidal crater rim spans between –8 m and –15 m. Its main axis, NW-oriented, is 40 m long and the minor axis is 25 m long. The hundreds of de- pression features identified on the seafloor (fig. 10a,b) can be related to fossil exhalation cen- 912 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa tres suggesting that the area has been the site of past episodes of gas eruptions similar to that of November 2002 (Anzidei et al., 2003, 2004 a,b; Esposito et al., 2005). The differential MDEM obtained from multibeam data in the time span December 2002-December 2003, estimated 3852 m3 of ex- tracted rock during the gas explosion; 221 m3 were recovered after 12 months, due to a con- tinuous but decreasing gas flux from the seafloor (fig. 12). As far as the tectonic and vol- canic interpretations are not the object of this paper, which aims to shows bathymetric survey data and results applied to the submarine part of Panarea volcano, we think that a change in the regional and local strain fields in this area may have produced a reactivation of previous frac- tures or the opening of new ones, causing a sub- sequent gas exhalation during the 2002-2003 Panarea crisis, as more extensively described in Caliro et al. (2004), Caracausi et al. (2005) and Esposito et al. (2005). Fig. 12. Topographic changes of the groundfloor at the EC-1, after one year from its opening. The differential MDEM obtained from multibeam data in the time span December 2002-December 2003, estimated 3852 m3 of extracted rock during the gas explosion; 221 m3 were recovered after 12 months, due to a continuous but de- creasing gas flux from the seafloor. Positive values are negative groundfloor changes (blue) due to slides inside the crater; negative values (red) are positive groundfloor changes, due to the progressive filling of the bottom of the crater. 913 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) Appendix. Coordinates of the 606 exhalation centres (UTM 33 coordinates). Their depth reported to the mean sea level during surveys, classification and epoch of detection, are also reported. EC 0A 12/02 No. Long Lat Depth Class Date 1 150634.05 383823.87 13.6 0A 12/02 2 150634.41 383814.31 13.2 0A 12/02 3 150634.41 383814.35 13.1 0A 12/02 4 150631.68 383815.80 11.8 0A 12/02 5 150629.03 383818.20 12.4 0A 12/02 6 150629.03 383818.17 12.5 0A 12/02 7 150628.99 383818.04 12.3 0A 12/02 8 150634.32 383814.30 13 0A 12/02 9 150634.12 383814.56 11.3 0A 12/02 10 150634.16 383814.52 11.2 0A 12/02 11 150634.09 383814.51 11.3 0A 12/02 12 150634.20 383814.48 11.3 0A 12/02 13 150634.20 383814.43 11.3 0A 12/02 14 150633.83 383814.66 11.4 0A 12/02 15 150632.67 383815.37 11.2 0A 12/02 16 150632.69 383815.44 11.5 0A 12/02 17 150634.01 383823.68 13.7 0A 12/02 18 150634.05 383823.84 12.7 0A 12/02 19 150634.88 383823.74 16 0A 12/02 20 150634.09 383823.94 13 0A 12/02 21 150634.13 383824.00 12.6 0A 12/02 22 150635.17 383824.03 16.2 0A 12/02 23 150634.26 383824.16 11.9 0A 12/02 24 150634.88 383824.39 15.1 0A 12/02 25 150634.63 383824.49 14.7 0A 12/02 26 150635.70 383825.14 17.5 0A 12/02 27 150635.71 383825.20 17.5 0A 12/02 28 150638.02 383826.82 19.2 0A 12/02 29 150638.07 383826.85 19.2 0A 12/02 30 150634.09 383821.99 10.8 0A 12/02 31 150634.21 383822.06 10.7 0A 12/02 32 150634.25 383822.12 10.9 0A 12/02 33 150634.96 383823.58 15.7 0A 12/02 34 150635.21 383823.55 15.2 0A 12/02 35 150635.37 383823.51 15.2 0A 12/02 36 150634.09 383823.00 12.6 0A 12/02 37 150637.76 383819.49 6.7 0A 12/02 38 150637.97 383819.59 6.6 0A 12/02 39 150637.10 383819.65 8 0A 12/02 40 150637.27 383819.65 8.1 0A 12/02 41 150637.77 383819.72 8 0A 12/02 42 150626.09 383813.30 12.5 0A 12/02 43 150617.69 383814.06 22.5 0A 12/02 EC 0B 12/02 No. Long Lat Depth Class Date 44 150631.80 383815.70 11.9 0B 12/02 45 150631.84 383815.67 11.7 0B 12/02 46 150631.80 383815.70 11.7 0B 12/02 47 150631.80 383815.76 11.8 0B 12/02 48 150631.80 383815.76 11.9 0B 12/02 49 150631.89 383815.76 12.2 0B 12/02 50 150631.89 383815.83 12.2 0B 12/02 51 150631.89 383815.83 12 0B 12/02 52 150631.72 383815.83 12.1 0B 12/02 53 150631.55 383816.02 12.2 0B 12/02 54 150631.72 383815.86 12.1 0B 12/02 55 150633.93 383814.60 11.3 0B 12/02 56 150633.77 383814.73 11.3 0B 12/02 57 150623.37 383818.43 21.5 0B 12/02 58 150628.63 383821.44 13.2 0B 12/02 59 150634.54 383823.78 17 0B 12/02 60 150635.04 383823.94 16.5 0B 12/02 61 150634.09 383822.02 10.8 0B 12/02 62 150634.54 383822.22 10.9 0B 12/02 63 150636.20 383822.28 10.3 0B 12/02 64 150634.67 383823.58 16.1 0B 12/02 65 150634.59 383823.52 15.8 0B 12/02 66 150634.17 383822.96 12.5 0B 12/02 67 150637.97 383819.55 6.3 0B 12/02 68 150638.01 383819.62 6.7 0B 12/02 69 150637.64 383819.62 7.7 0B 12/02 70 150637.56 383819.75 8.2 0B 12/02 71 150619.28 383821.52 25.4 0B 12/02 72 150625.47 383813.40 12.4 0B 12/02 73 150617.15 3838,08.87 13.4 0B 12/02 74 150616.49 383809.35 14 0B 12/02 75 150616.57 383809.55 13.9 0B 12/02 76 150618.92 383806.66 12.5 0B 12/02 914 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa EC 0C 12/02 No. Long Lat Depth Class Date 77 150632.71 383815.54 11.6 0C 12/02 78 150634.88 383823.81 16.4 0C 12/02 79 150637.23 383819.75 8 0C 12/02 EC 1A 12/02 No. Long Lat Depth Class Date 80 150639.03 383806.35 28.8 1A 12/02 81 150641.02 383808.49 27.5 1A 12/02 82 150639.03 383806.35 29 1A 12/02 83 150641.18 383808.39 27.6 1A 12/02 84 150641.22 383808.39 27.7 1A 12/02 85 150639.32 383810.27 15 1A 12/02 86 150636.93 383812.19 8 1A 12/02 87 150636.88 383812.03 10.2 1A 12/02 88 150636.88 383811.93 10.7 1A 12/02 89 150636.97 383811.83 11.2 1A 12/02 90 150636.97 383811.83 11.3 1A 12/02 91 150636.97 383811.74 11.6 1A 12/02 92 150637.71 383811.54 11.2 1A 12/02 93 150636.88 383811.64 11.6 1A 12/02 94 150636.80 383811.57 11.7 1A 12/02 95 150636.93 383811.57 11.6 1A 12/02 96 150637.75 383811.38 11.5 1A 12/02 97 150639.08 383811.38 10.4 1A 12/02 98 150637.63 383812.06 10.8 1A 12/02 99 150637.30 383812.06 9.7 1A 12/02 100 150636.21 383803.14 6.9 1A 12/02 101 150636.09 383803.17 6.4 1A 12/02 102 150636.17 383803.20 5.9 1A 12/02 103 150636.21 383803.14 5.4 1A 12/02 104 150636.13 383803.01 6 1A 12/02 105 150636.08 383803.01 6.4 1A 12/02 106 150636.08 383802.85 6.4 1A 12/02 107 150636.13 383802.82 5.9 1A 12/02 108 150635.92 383803.04 6.4 1A 12/02 109 150631.68 383815.67 11.7 1A 12/02 110 150631.64 383815.80 11.8 1A 12/02 111 150628.99 383818.01 12.3 1A 12/02 112 150629.12 383817.97 11.9 1A 12/02 113 150629.08 383817.97 11.8 1A 12/02 114 150634.36 383814.14 9.1 1A 12/02 115 150633.70 383814.78 11.3 1A 12/02 116 150633.70 383814.87 11.3 1A 12/02 117 150633.71 383814.94 11.3 1A 12/02 118 150623.41 383818.14 20.9 1A 12/02 119 150626.73 383823.20 18.9 1A 12/02 120 150627.47 383822.00 16.7 1A 12/02 121 150626.02 383821.93 17 1A 12/02 122 150626.35 383819.63 17.2 1A 12/02 123 150633.55 383822.87 12.2 1A 12/02 124 150633.55 383822.87 12.2 1A 12/02 125 150634.01 383823.06 12.5 1A 12/02 126 150633.76 383823.29 12.9 1A 12/02 127 150628.21 383822.48 15.8 1A 12/02 128 150628.50 383821.51 13.5 1A 12/02 129 150628.38 383821.45 13.7 1A 12/02 130 150629.20 383821.05 13.4 1A 12/02 131 150628.87 383820.37 13.9 1A 12/02 132 150624.53 383823.72 21.1 1A 12/02 133 150636.20 383823.77 13.2 1A 12/02 134 150636.16 383823.77 13.8 1A 12/02 135 150636.24 383823.87 13.6 1A 12/02 136 150635.83 383824.00 15 1A 12/02 137 150636.28 383824.03 14.2 1A 12/02 138 150635.46 383824.13 15.9 1A 12/02 139 150634.96 383824.20 15.7 1A 12/02 140 150634.38 383824.23 13 1A 12/02 141 150635.95 383824.33 14.5 1A 12/02 142 150634.88 383824.33 16.6 1A 12/02 143 150636.16 383824.33 15 1A 12/02 144 150634.59 383824.42 15 1A 12/02 145 150634.96 383824.49 16.2 1A 12/02 146 150635.46 383824.49 15.5 1A 12/02 147 150634.63 383824.52 15.2 1A 12/02 148 150634.84 383824.55 15.3 1A 12/02 149 150635.71 383825.33 17.5 1A 12/02 150 150636.78 383825.40 15.6 1A 12/02 151 150636.74 383825.53 16.5 1A 12/02 152 150635.83 383825.98 15.9 1A 12/02 153 150636.08 383826.08 16.1 1A 12/02 154 150635.95 383826.14 16 1A 12/02 155 150638.19 383826.50 17.8 1A 12/02 156 150638.11 383826.59 18 1A 12/02 157 150637.90 383826.72 18.4 1A 12/02 158 150637.82 383827.21 19.9 1A 12/02 159 150638.31 383827.60 21.4 1A 12/02 160 150638.19 383827.57 21.2 1A 12/02 161 150634.17 383821.73 10.7 1A 12/02 162 150634.21 383821.83 10.7 1A 12/02 163 150634.21 383821.89 10.8 1A 12/02 164 150634.21 383821.99 10.7 1A 12/02 915 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) 165 150634.25 383822.19 11.1 1A 12/02 166 150634.34 383822.22 11.3 1A 12/02 167 150634.38 383822.35 11.4 1A 12/02 168 150634.30 383822.90 12.6 1A 12/02 169 150634.42 383822.83 12.7 1A 12/02 170 150634.50 383822.80 12.6 1A 12/02 171 150634.67 383822.80 12.5 1A 12/02 172 150635.08 383823.19 14.3 1A 12/02 173 150637.39 383819.36 7.1 1A 12/02 174 150637.56 383819.36 7 1A 12/02 175 150637.89 383819.36 4.4 1A 12/02 176 150637.68 383819.39 7.5 1A 12/02 177 150637.43 383819.81 8 1A 12/02 178 150637.81 383820.27 7.9 1A 12/02 179 150638.06 383820.27 7.1 1A 12/02 180 150638.23 383827.50 21.1 1A 12/02 181 150641.96 383830.91 31.7 1A 12/02 182 150641.92 383830.91 31.7 1A 12/02 183 150638.43 383831.80 31 1A 12/02 184 150641.75 383831.26 30 1A 12/02 185 150621.14 383825.02 26.3 1A 12/02 186 150621.70 383811.33 13.7 1A 12/02 187 150613.64 383809.91 14.8 1A 12/02 188 150612.51 383804.07 19.1 1A 12/02 189 150626.61 383803.73 8.1 1A 12/02 190 150620.38 383809.45 12.8 1A 12/02 EC 1B 12/02 No. Long Lat Depth Class Date 191 150637.55 383812.00 11 1B 12/02 192 150637.59 383811.90 11.2 1B 12/02 193 150637.13 383811.90 11.3 1B 12/02 194 150636.84 383811.83 11.3 1B 12/02 195 150636.55 383811.64 11.8 1B 12/02 196 150636.76 383811.57 11.2 1B 12/02 197 150638.62 383810.63 12.7 1B 12/02 198 150635.71 383801.03 19.7 1B 12/02 199 150635.67 383801.26 18.4 1B 12/02 200 150636.00 383802.85 6.5 1B 12/02 201 150635.96 383803.24 6.5 1B 12/02 202 150633.70 383814.89 11.4 1B 12/02 203 150632.63 383815.24 11.1 1B 12/02 204 150632.88 383818.03 11.4 1B 12/02 205 150633.09 383817.61 8.1 1B 12/02 206 150624.24 383818.14 17.6 1B 12/02 207 150623.08 383817.82 16.3 1B 12/02 208 150627.55 383822.39 17.8 1B 12/02 209 150627.26 383822.32 17.6 1B 12/02 210 150627.01 383822.22 17.6 1B 12/02 211 150627.18 383822.13 17.6 1B 12/02 212 150625.86 383821.80 17.1 1B 12/02 213 150626.10 383820.57 16.1 1B 12/02 214 150626.31 383819.66 17.6 1B 12/02 215 150628.75 383820.44 14.1 1B 12/02 216 150628.83 383820.37 13.7 1B 12/02 217 150627.88 383819.24 14.3 1B 12/02 218 150628.08 383819.30 14.4 1B 12/02 219 150632.31 383824.10 14.3 1B 12/02 220 150632.15 383824.10 14.3 1B 12/02 221 150636.41 383823.71 12.7 1B 12/02 222 150635.54 383823.74 16.3 1B 12/02 223 150635.17 383824.94 16.1 1B 12/02 224 150635.75 383824.88 16.4 1B 12/02 225 150637.98 383827.31 20 1B 12/02 226 150638.19 383827.50 20.7 1B 12/02 227 150638.56 383827.70 21.4 1B 12/02 228 150638.44 383827.70 21.7 1B 12/02 229 150634.71 383822.57 12.2 1B 12/02 230 150635.87 383822.61 10.3 1B 12/02 231 150636.03 383823.55 14.6 1B 12/02 232 150635.50 383823.22 14.2 1B 12/02 233 150637.48 383819.98 8.5 1B 12/02 234 150638.40 383827.05 20 1B 12/02 235 150638.60 383827.73 21.9 1B 12/02 236 150649.07 383826.32 15.2 1B 12/02 237 150649.07 383826.45 15.3 1B 12/02 238 150649.40 383826.45 15.4 1B 12/02 239 150649.28 383826.49 15.2 1B 12/02 240 150625.72 383813.30 12.2 1B 12/02 241 150614.38 383809.49 14.7 1B 12/02 242 150617.36 383808.87 13.3 1B 12/02 EC 1C 12/02 No. Long Lat Depth Class Date 243 150644.70 383809.85 26.8 1C 12/02 244 150639.36 383810.21 15.2 1C 12/02 245 150642.80 383812.96 12.8 1C 12/02 246 150639.36 383810.27 14.8 1C 12/02 247 150636.80 383812.32 7.4 1C 12/02 248 150636.68 383812.29 7.5 1C 12/02 249 150637.01 383812.22 7.7 1C 12/02 250 150636.76 383812.19 8.1 1C 12/02 251 150636.76 383812.29 7.3 1C 12/02 252 150636.76 383812.13 8 1C 12/02 916 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa 253 150636.76 383812.00 9.3 1C 12/02 254 150637.21 383811.74 11.5 1C 12/02 255 150636.55 383811.54 11.8 1C 12/02 256 150639.16 383811.18 10.9 1C 12/02 257 150638.66 383811.38 10.5 1C 12/02 258 150626.23 383821.74 16.1 1C 12/02 259 150626.43 383819.47 17 1C 12/02 260 150632.73 383824.85 15 1C 12/02 261 150632.23 383824.26 14.7 1C 12/02 262 150634.05 383823.84 13 1C 12/02 263 150637.86 383827.24 20.2 1C 12/02 264 150614.83 383810.13 15.5 1C 12/02 EC 2A 12/02 No. Long Lat Depth Class Date 265 150636.67 383806.64 19.2 2A 12/02 266 150639.16 383811.48 9.8 2A 12/02 267 150635.91 383821.02 8 2A 12/02 268 150635.53 383821.21 8 2A 12/02 269 150638.65 383827.24 21 2A 12/02 270 150638.36 383827.24 21 2A 12/02 271 150619.20 383825.05 26.2 2A 12/02 272 150619.61 383825.22 26.1 2A 12/02 273 150621.37 383808.64 12 2A 12/02 274 150621.33 383808.64 12 2A 12/02 275 150612.51 383803.03 19.8 2A 12/02 276 150612.63 383803.13 19.8 2A 12/02 277 150626.12 383802.86 10.6 2A 12/02 EC 2B 12/02 No. Long Lat Depth Class Date 278 150638.74 383810.57 13 2B 12/02 279 150638.56 383827.47 21.8 2B 12/02 280 150620.44 383824.92 26.2 2B 12/02 281 150617.60 383809.09 13.6 2B 12/02 282 150617.36 383809.09 13.6 2B 12/02 283 150612.80 383803.32 18.7 2B 12/02 284 150612.76 383803.26 18.9 2B 12/02 285 150620.50 383809.51 12.5 2B 12/02 286 150606.81 383811.70 18.2 2B 12/02 EC 0A 07/03 No. Long Lat Depth Class Date 287 150632.63 383815.41 11.2 0A 07/03 288 150634.39 383814.30 13.1 0A 07/03 EC 0B 07/03 No. Long Lat Depth Class Date 289 150641.06 383808.59 27.4 0B 07/03 290 150641.06 383808.46 27.4 0B 07/03 291 150641.10 383808.39 27.5 0B 07/03 292 150631.68 383815.83 11.7 0B 07/03 293 150631.80 383815.80 11.8 0B 07/03 294 150631.93 383815.83 11.9 0B 07/03 295 150631.68 383815.76 11.8 0B 07/03 296 150631.72 383815.70 11.7 0B 07/03 297 150631.84 383815.70 11.6 0B 07/03 298 150631.84 383815.67 11.5 0B 07/03 299 150632.71 383815.54 11 0B 07/03 300 150632.71 383815.50 11 0B 07/03 301 150632.55 383815.47 11.5 0B 07/03 302 150632.67 383815.44 11 0B 07/03 303 150632.67 383815.34 11.1 0B 07/03 EC 0C 07/03 No. Long Lat Depth Class Date 304 150641.18 383808.39 27.4 0C 07/03 EC 1A 07/03 No. Long Lat Depth Class Date 305 150639.03 383806.15 30.9 1A 07/03 306 150638.78 383805.96 28.1 1A 07/03 307 150638.90 383805.99 29.5 1A 07/03 308 150638.82 383805.90 29.2 1A 07/03 309 150638.82 383805.83 29.1 1A 07/03 310 150636.08 383802.88 5.9 1A 07/03 311 150641.10 383808.78 27.2 1A 07/03 312 150636.97 383811.80 11.5 1A 07/03 313 150636.84 383811.80 11.5 1A 07/03 314 150636.76 383811.77 11.5 1A 07/03 315 150636.84 383811.80 11.4 1A 07/03 316 150636.84 383811.87 11.4 1A 07/03 317 150637.01 383811.77 11.6 1A 07/03 318 150636.80 383811.77 11.6 1A 07/03 319 150641.77 383814.07 8.6 1A 07/03 320 150641.81 383814.10 9 1A 07/03 321 150631.68 383815.67 11.6 1A 07/03 322 150632.67 383815.31 11 1A 07/03 323 150627.92 383822.94 16.6 1A 07/03 324 150626.77 383823.17 18.5 1A 07/03 325 150626.10 383820.51 16.3 1A 07/03 326 150626.10 383820.60 16.1 1A 07/03 327 150626.10 383820.64 16.4 1A 07/03 328 150623.78 383817.72 17.1 1A 07/03 329 150623.57 383817.78 16.3 1A 07/03 330 150624.77 383818.01 17.3 1A 07/03 917 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) 331 150624.82 383818.01 18 1A 07/03 332 150624.28 383818.14 17.4 1A 07/03 333 150623.45 383818.40 21.1 1A 07/03 334 150624.58 383823.72 21.3 1A 07/03 335 150624.04 383823.72 21.8 1A 07/03 336 150624.37 383823.88 22.5 1A 07/03 337 150634.63 383823.58 16.2 1A 07/03 338 150634.63 383823.55 16 1A 07/03 339 150634.21 383823.45 14.6 1A 07/03 340 150633.80 383823.32 13.2 1A 07/03 341 150633.80 383823.32 13 1A 07/03 342 150634.25 383823.16 13.7 1A 07/03 343 150634.21 383823.00 13.1 1A 07/03 344 150634.38 383822.93 12.6 1A 07/03 345 150634.38 383822.93 12.7 1A 07/03 346 150634.83 383822.87 12.5 1A 07/03 347 150634.87 383822.83 12.4 1A 07/03 348 150634.58 383822.80 12.4 1A 07/03 349 150634.67 383822.80 12.5 1A 07/03 350 150634.58 383822.80 12.4 1A 07/03 351 150634.25 383822.12 11.1 1A 07/03 352 150634.54 383823.68 16 1A 07/03 353 150634.88 383823.71 16.1 1A 07/03 354 150634.92 383823.77 16.2 1A 07/03 355 150634.09 383823.87 13.7 1A 07/03 356 150634.09 383823.87 13.6 1A 07/03 357 150634.88 383823.90 16.7 1A 07/03 358 150634.88 383823.94 16.8 1A 07/03 359 150634.79 383823.97 17.2 1A 07/03 360 150634.13 383823.97 12.9 1A 07/03 361 150634.63 383824.42 15.4 1A 07/03 362 150634.59 383824.42 15.4 1A 07/03 363 150636.45 383823.74 12.9 1A 07/03 364 150636.32 383823.87 13.6 1A 07/03 365 150636.32 383823.90 13.6 1A 07/03 366 150636.32 383823.90 14.4 1A 07/03 367 150636.20 383824.00 12.5 1A 07/03 368 150636.32 383824.07 14.3 1A 07/03 369 150636.32 383824.13 14.8 1A 07/03 370 150636.65 383824.16 12.7 1A 07/03 371 150636.32 383824.13 14.6 1A 07/03 372 150636.28 383824.20 15 1A 07/03 373 150636.57 383824.32 13.3 1A 07/03 374 150636.20 383824.33 14.9 1A 07/03 375 150636.57 383824.42 13.6 1A 07/03 376 150636.20 383824.33 15.1 1A 07/03 377 150636.57 383824.49 13.7 1A 07/03 378 150636.66 383824.65 13.8 1A 07/03 379 150635.58 383825.20 17.4 1A 07/03 380 150635.33 383825.49 16.6 1A 07/03 381 150638.23 383826.56 17.8 1A 07/03 382 150638.07 383826.85 19.2 1A 07/03 383 150635.41 383823.58 15 1A 07/03 384 150635.25 383823.55 15.1 1A 07/03 385 150634.96 383823.58 15.5 1A 07/03 386 150635.21 383823.48 15.1 1A 07/03 387 150638.11 383826.89 19.1 1A 07/03 388 150637.90 383827.24 20 1A 07/03 398 150617.37 383821.58 25.2 1A 07/03 399 150616.34 383821.39 25 1A 07/03 400 150615.43 383820.87 24 1A 07/03 401 150636.58 383824.50 13.7 1A 07/03 402 150634.93 383833.83 33.5 1A 07/03 403 150634.85 383833.90 33.6 1A 07/03 404 150620.75 383809.51 12.5 1A 07/03 405 150620.71 383809.51 12.5 1A 07/03 EC 1B 07/03 No. Long Lat Depth Class Date 406 150638.99 383806.25 29.6 1B 07/03 407 150638.98 383806.09 30.4 1B 07/03 408 150638.78 383806.06 26.8 1B 07/03 409 150638.86 383806.02 29.2 1B 07/03 410 150638.82 383805.93 28 1B 07/03 411 150638.82 383805.93 29.2 1B 07/03 412 150638.90 383805.80 29 1B 07/03 413 150636.13 383802.85 6.2 1B 07/03 414 150636.00 383802.82 6.6 1B 07/03 415 150636.04 383802.36 6.2 1B 07/03 416 150635.92 383802.43 6.3 1B 07/03 417 150641.14 383808.59 27.2 1B 07/03 418 150636.84 383811.87 11.3 1B 07/03 419 150642.10 383814.46 10.5 1B 07/03 420 150642.31 383814.07 11.3 1B 07/03 421 150641.81 383814.13 8.9 1B 07/03 422 150631.72 383815.83 11.6 1B 07/03 423 150631.93 383815.83 11.9 1B 07/03 424 150632.17 383815.50 11.6 1B 07/03 425 150632.67 383815.28 11 1B 07/03 426 150627.34 383822.26 17.6 1B 07/03 427 150627.59 383822.39 17.5 1B 07/03 428 150627.43 383822.52 15.7 1B 07/03 429 150626.10 383820.44 16.6 1B 07/03 430 150626.56 383821.32 16.6 1B 07/03 918 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa 431 150626.27 383821.77 16.4 1B 07/03 432 150623.08 383817.85 16.3 1B 07/03 433 150623.37 383818.17 17.1 1B 07/03 434 150623.45 383818.17 17.5 1B 07/03 435 150623.41 383818.40 21 1B 07/03 436 150624.58 383823.72 21.2 1B 07/03 437 150634.63 383823.45 15.5 1B 07/03 438 150634.09 383823.42 14 1B 07/03 439 150634.25 383823.35 14 1B 07/03 440 150634.25 383823.29 13.6 1B 07/03 441 150634.38 383823.06 13.6 1B 07/03 442 150634.92 383823.81 16.2 1B 07/03 443 150634.88 383823.87 16.2 1B 07/03 444 150634.59 383823.81 17.2 1B 07/03 445 150634.92 383823.87 16.2 1B 07/03 446 150634.88 383823.90 16.5 1B 07/03 447 150636.32 383823.77 13.1 1B 07/03 448 150636.61 383823.94 12.2 1B 07/03 449 150636.57 383824.23 12.2 1B 07/03 450 150635.99 383824.33 14.5 1B 07/03 451 150635.50 383823.29 14.2 1B 07/03 452 150638.44 383827.08 20.3 1B 07/03 453 150637.08 383832.66 31.6 1B 07/03 454 150637.08 383832.63 31.7 1B 07/03 455 150617.78 383814.06 22.6 1B 07/03 456 150618.19 383814.32 23 1B 07/03 457 150617.03 383814.22 20.1 1B 07/03 458 150636.61 383823.90 18.8 1B 07/03 459 150620.91 383809.45 12.4 1B 07/03 460 150620.83 383809.61 12.4 1B 07/03 461 150614.83 383810.13 15.2 1B 07/03 C 1C 07/03 No. Long Lat Depth Class Date 462 150638.74 383806.06 26.9 1C 07/03 463 150638.94 383805.77 29 1C 07/03 464 150636.00 383802.82 6.6 1C 07/03 465 150636.00 383802.78 6 1C 07/03 466 150641.18 383808.36 27.4 1C 07/03 467 150641.18 383808.85 27.4 1C 07/03 468 150642.18 383814.23 11 1C 07/03 469 150642.31 383814.36 11.2 1C 07/03 470 150642.89 383814.36 11.2 1C 07/03 471 150631.72 383815.76 11.7 1C 07/03 472 150632.09 383815.57 11.9 1C 07/03 473 150632.26 383815.41 11.2 1C 07/03 474 150627.34 383822.29 17.5 1C 07/03 475 150627.14 383822.39 18.2 1C 07/03 476 150628.71 383822.42 14.5 1C 07/03 477 150627.59 383822.42 17.4 1C 07/03 478 150628.71 383822.42 14.4 1C 07/03 479 150627.97 383822.52 16.5 1C 07/03 480 150627.47 383822.65 16.7 1C 07/03 481 150626.06 383820.86 17.2 1C 07/03 482 150626.02 383821.97 17.2 1C 07/03 483 150623.08 383817.98 16.5 1C 07/03 484 150624.11 383818.14 17.6 1C 07/03 485 150624.08 383823.72 22.2 1C 07/03 486 150624.12 383823.88 21.8 1C 07/03 487 150634.88 383823.58 15.7 1C 07/03 488 150634.09 383823.35 13.8 1C 07/03 489 150632.77 383823.26 12.6 1C 07/03 490 150634.83 383823.13 13.8 1C 07/03 491 150634.75 383823.09 13.5 1C 07/03 492 150634.75 383823.06 13 1C 07/03 493 150634.21 383823.00 13 1C 07/03 494 150634.21 383821.83 10.9 1C 07/03 495 150634.63 383823.74 16.7 1C 07/03 496 150632.52 383823.84 13.9 1C 07/03 497 150632.68 383824.00 14.3 1C 07/03 498 150635.58 383823.68 14.9 1C 07/03 499 150636.20 383823.94 14.2 1C 07/03 500 150635.83 383824.00 15.3 1C 07/03 501 150635.83 383824.00 15.3 1C 07/03 502 150635.79 383824.07 15 1C 07/03 503 150635.70 383824.13 15.1 1C 07/03 504 150636.03 383824.26 13.8 1C 07/03 505 150635.95 383824.46 14.7 1C 07/03 506 150635.71 383825.33 17.9 1C 07/03 507 150635.42 383825.36 16.9 1C 07/03 508 150635.62 383825.49 17.9 1C 07/03 509 150634.96 383823.45 15.2 1C 07/03 510 150638.44 383827.11 20.2 1C 07/03 511 150638.56 383827.28 21 1C 07/03 512 150638.36 383827.24 20.5 1C 07/03 513 150638.11 383827.02 19.2 1C 07/03 514 150639.69 383832.40 32.7 1C 07/03 515 150616.91 383814.32 20.1 1C 07/03 516 150621.00 383809.42 12.3 1C 07/03 C 2C 07/03 No. Long Lat Depth Class Date 517 150638.78 383805.73 29 2B 07/03 518 150636.08 383802.72 5.9 2B 07/03 919 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) 519 150636.04 383800.41 24.6 2B 07/03 520 150636.41 383802.33 7 2B 07/03 521 150619.61 383825.22 27 2B 07/03 522 150620.81 383823.98 25.9 2B 07/03 523 150636.04 383800.41 24.6 2B 07/03 524 150636.41 383802.33 7 2B 07/03 525 150619.61 383825.22 27 2B 07/03 526 150620.81 383823.98 25.9 2B 07/03 EC 1A 12/03 No. Long Lat Depth Class Date 528 150634.58 383822.83 12.4 1A 12/03 529 150634.67 383822.80 12.4 1A 12/03 530 150634.79 383822.87 12.5 1A 12/03 531 150634.34 383822.90 12.2 1A 12/03 532 150634.83 383822.87 12.1 1A 12/03 533 150634.38 383823.06 13.1 1A 12/03 534 150633.80 383823.32 13 1A 12/03 535 150634.63 383823.52 15.7 1A 12/03 536 150634.13 383824.00 13.1 1A 12/03 537 150636.66 383824.68 14 1A 12/03 538 150636.53 383824.45 14.1 1A 12/03 539 150636.49 383824.42 13.6 1A 12/03 540 150636.53 383824.36 13.6 1A 12/03 541 150636.16 383824.33 15.1 1A 12/03 542 150636.53 383824.29 13.3 1A 12/03 543 150636.16 383824.33 15.1 1A 12/03 544 150636.24 383824.07 14.2 1A 12/03 545 150636.28 383823.90 14.1 1A 12/03 546 150636.24 383823.94 14.1 1A 12/03 547 150634.88 383823.81 16.2 1A 12/03 548 150634.88 383823.78 16 1A 12/03 549 150634.96 383823.61 15.6 1A 12/03 550 150635.29 383823.55 14.9 1A 12/03 551 150635.24 383823.54 14.8 1A 12/03 552 150635.26 383823.52 14.7 1A 12/03 553 150634.83 383822.87 12.7 1A 12/03 554 150635.16 383822.90 12.2 1A 12/03 555 150638.23 383826.53 17.7 1A 12/03 556 150637.94 383826.63 18.6 1A 12/03 557 150640.80 383826.66 19.3 1A 12/03 558 150639.64 383826.72 19.6 1A 12/03 1B 12/03 No. Long Lat Depth Class Date 559 150634.75 383822.74 12.6 1B 12/03 560 150634.17 383823.00 12.7 1B 12/03 561 150634.09 383823.35 13.8 1B 12/03 562 150634.09 383823.45 13.9 1B 12/03 563 150634.59 383823.81 16.8 1B 12/03 564 150634.09 383824.00 11.7 1B 12/03 565 150634.88 383825.27 14.9 1B 12/03 566 150636.70 383824.71 14 1B 12/03 567 150636.70 383824.68 13.9 1B 12/03 568 150636.57 383824.49 13.7 1B 12/03 569 150636.28 383824.10 14.4 1B 12/03 570 150635.04 383824.00 16.5 1B 12/03 571 150636.16 383823.94 14.4 1B 12/03 572 150636.16 383823.94 14.4 1B 12/03 573 150635.04 383823.16 13.5 1B 12/03 574 150634.96 383822.83 12.8 1B 12/03 575 150638.23 383826.53 17.9 1B 12/03 576 150638.07 383826.85 19.2 1B 12/03 577 150639.80 383827.66 22.8 1B 12/03 1C 12/03 No. Long Lat Depth Class Date 578 150634.71 383823.09 12.7 1C 12/03 579 150635.58 383825.27 17.3 1C 12/03 580 150635.99 383824.33 15.1 1C 12/03 581 150635.99 383824.33 14.8 1C 12/03 582 150636.61 383824.16 12.9 1C 12/03 583 150635.83 383824.00 15 1C 12/03 584 150636.28 383823.81 13.7 1C 12/03 585 150639.64 383826.76 19.4 1C 12/03 586 150638.07 383826.85 19.2 1C 12/03 587 150638.11 383826.95 19.3 1C 12/03 588 150638.11 383827.02 19.4 1C 12/03 589 150638.48 383827.11 20 1C 12/03 590 150637.98 383827.24 20.1 1C 12/03 591 150638.44 383827.28 20.5 1C 12/03 592 150640.01 383827.53 21.9 1C 12/03 593 150634.92 383825.27 14.5 1C 12/03 A 12/03 No. Long Lat Depth Class Date 594 150634.25 383823.29 13.3 2A 12/03 595 150634.09 383823.87 13.6 2A 12/03 596 150634.63 383824.46 15.2 2A 12/03 597 150635.22 383823.81 15.4 2A 12/03 598 150635.29 383823.85 15.5 2A 12/03 599 150635.37 383823.71 15.2 2A 12/03 600 150635.08 383823.71 15.6 2A 12/03 601 150636.98 383821.53 8.8 2A 12/03 920 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa REFERENCES ANZIDEI, M. (2000): Rapid bathymetric surveys in marine volcano areas: a case study in Panarea aera, Phys. Chem. Earth A, 25 (1), 77-80. ANZIDEI, M., P. BALDI, G. CASULA, F. RIGUZZI and L. SURACE (1995): La rete TyrGeoNet, Boll. Geod. Sci. Affini, LIV (2), pp. 120. ANZIDEI, M., A. ESPOSITO, G. GIORDANO and A. BENINI (2003): Diving in the Panarea volcanic complex (Aeo- lian Islands, Italy), in Cities on Volcanoes 3, July 14- 18, 2003, Hilo, Hawaii. ANZIDEI, M., A. ESPOSITO, A. PESCI and E. SERPELLONI (2004a): The 2002-2003 crisis of the Panarea volcanic complex (Aeolian Islands, Italy): new volcanologgical, geodetic and bathymetric data, in GNV General Assem- bly, 20-22 December, Napoli, Italy (abstract). ANZIDEI, M., M.L. CARAPEZZA, R. CIONI, A. ESPOSITO, G. GIORDANO, M. GUIDI, M. LELLI and C. PICCIONE (2004b): Indagini geologiche e geochimiche nella zona ad est di Panarea sede delle emissioni anomale di gas del Novembre 2002, in GNV General Assembly, 20-22 December, Napoli, Italy (abstract). CALANCHI, N., B. CAPACCIONI, M. MARTINI, F. TASSI and L. VALENTINI (1995): Submarine gas-emission from Panarea Island Aeolian Archipelago: distribution of in- organic and organic compounds and inferences about source conditions, Acta Vulcanol., 7 (1), 43-48. CALANCHI, N., C.A. TRANNE, F. LUCCHINI, P.L. ROSSI and I.M. VILLA (1999): Explanatory notes to the geological map (1:10 000) of Panarea and Basiluzzo islands (Aeo- lian Arc, Italy), Acta Vulcanol., 11 (2), 223-243. CALANCHI, N., A. PECCERILLO, C.A.TRANNE, F. LUCCHINI, P.L. ROSSI, P. KEMPTON, M. BARBIERI and T.W. WU (2002): Petrology and geochemistry of volcanic rocks from the Island of Panarea: implications for mantle evolution be- neath the Aeolian Island Arc (Southern Tyrrhenian Sea), J. Volcanol. Geotherm. Res., 115, 367-395. CALIRO, S., A. CARACAUSI, G. CHIODINI, M. DITTA, F. ITAL- IANO, M. LONGO, C. MINOPOLI, P.M. NUCCIO, A. PAONI- TA and A. RIZZO (2004): Evidence of a new magmatic input to the quiescent volcanic edifice of Panarea, Ae- olian Islands, Italy, Geophys. Res. Lett., 31, L07619, doi: 10.1029/2003GL019359 CARACAUSI, A., M. DITTA, F. ITALIANO, M. LONGO, P.M. NUCCIO and A. PAONITA (2005): Massive submarine gas output during the volcanic unrest off Panarea Is- land (Aeolian arc, Italy): inferences for explosive con- ditions, Geochem. J. (in press). CARIS (2000): CARIS-HIPS (Hydrographic Information Processing System) and SIPS Professional v. 5.2 Soft- ware User Guide: MA-HIPS-UG-02-02 (on line http://www.caris.com/). CHIARABBA, C., L. JOVANE and R. DI STEFANO (2005): A new view of Italian seismicity using 20 years of instru- mental seismicity, Tectonophysics, 395, 251-268. D’AGOSTINO, N. and G. SELVAGGI (2004): Crustal motion along the Eurasia-Nubia plate boundary in the Calabria Arc and Sicily and active extension in the Messina Straits from GPS measurements, J. Geophys. Res., 109 (B11402), doi: 10.1029/2004JB002998. DE ASTIS, G., G. VENTURA and G. VILARDO (2003): Geody- namic significance of the Aeolian volcanism (Southern Tyrrhenian Sea, Italy) in light of structural, seismologi- cal and geochemical data, Tectonics, 22 (4), 1040, doi: 10.1029/2003TC001506. DOLOMIEU, D. (1783): Voyage aux Iles de Lipari Fait en 1781 ou Notice sur les Iles Aeoliennes, Paris, pp. 208. DUMAS, A. (1860): Dove il Vento Suona. Viaggio nelle Isole Eolie (Ed. Pungitopo, Marina di Patti, Messina). ESPOSITO, A., G. GIORDANO and M. ANZIDEI (2005): The 2002-2003 submarine gas eruption at Panarea Island (Aeolian Archipelago, Italy): structure and volcanolo- gy of the seafloor and implications for hazard evalua- tion, Mar. Geol. (submitted). FALSAPERLA, S., G. LANZAFAME, V. LONGO and S. SPAMPINA- TO (1999): Regional stress field in the area of Stromboli (Italy): insights into structural data and crustal tectonic earthquakes, J. Volcanol. Geotherm. Res., 88, 147-166. FERRARA, F. (1810): Campi Flegrei della Sicilia e delle Isole che le sono intorno (Messina), pp. 424. GABBIANELLI, G., P.Y. GILLOT, G. LANZAFAME, C. ROMAG- NOLI and P.L. ROSSI (1990): Tectonic and volcanic evo- lution of Panarea (Aaeolian Island, Italy), Mar. Geol., 92, 312-326. GABBIANELLI, G., C. ROMAGNOLI, P.L. ROSSI and N. CALANCHE (1993): Marine Geology of Panarea-Strom- boli area, Aeolian Archipelago, Southeastern Tyrrhen- ian Sea, Acta Vulcanol., 3, 11-20. GAMBERI, F., P.M. MARANI and C. SAVELLI (1997): Tectonic volcanic and hydrothermal features of submarine por- tion of Aeolian arc (Tyrrhenian Sea), Mar. Geol., 140, 167-181. HOLLESTEIN, CH., H.G. KAHLE, A. GEIGER, S. JENNY, S. GOES and D. GIARDINI (2003): New GPS constraints on the Africa-Eurasia plate boundary zone in Southern Ita- ly, Geophys. Res. Lett., 30 (18), 1935, doi: 10.1029/ /2003GL017554. HOUEL, L. (1782): Voyage Pittoressque des Isles de Sicilie, de Malte et de Lipari ect., Paris. ITALIANO, F. and P.M. NUCCIO (1991): Geochemical inves- tigations of submarine volcanic exhalations to the eat Panarea, Aeolian Islands, Italy, J. Volcanol. Geotherm. Res., 46, 125-141. LUCCHI, F., C.A. TRANNE, N. CALANCHI, J. KELLER and P.L. ROSSI (2003): Geological Map of Panarea and Minor Islets (Aaeolian Islands), (Università di Bologna, IN- GV, LAC Firenze). 12/03 No. Long Lat Depth Class Date 602 150631.65 383823.84 14.8 2B 12/03 603 150632.48 383823.84 13.9 2B 12/03 604 150632.68 383824.00 13.8 2B 12/03 605 150636.78 383825.56 16 2B 12/03 606 150635.12 383823.74 15.7 2B 12/03 921 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) LUIGI SALVATORE D’AUSTRIA (1895): Die Liparischen, In- seln vierter Heft: Panaris (new edition by P. PAINO, Li- pari (ME), 1977). MERCALLI, G. (1883): Vulcani e fenomeni Vulcanici, in Ge- ologia d’Italia, edited by G. NEGRI, A. STOPPANI and G. MERCALLI (Milano), 3rd part, pp. 374. ROMANO, R. (1973): Le isole di Panarea e Basiluzzo, Riv. Miner. Siciliana, 139-141, 49-86. SACCAROTTI, G., D. GALLUZZO, M. LA ROCCA, E. DEL PEZZO and D. PATANÈ (2003): Monitoraggio dell’attività sismica a Panarea, in GNV General Assembly, 9-11 June, Roma, Italy. SERPELLONI, E., M. ANZIDEI, P. BALDI, G. CASULA and A. GALVANI (2005): Crustal velocity and strain-rate fields in Italy and surrounding regions: new results from the analysis of permanent and non-permanent GPS net- works, Geophys. J. Int. (in press). SPALLANZANI, L. (1825): Viaggi alle Due Sicilie e in Alcune Parti dell’Appennino (Milano), tomo I. SGA (STORIA GEOFISICA E AMBIENTE) (1996): Fenomeni vul- canici nell’Arcipelago delle Eolie dall’antichità al XX secolo, Studio di Fattibilità RPT 156,96 (Bologna, Italy). TALLARICO, A., M. DRAGONI, M. ANZIDEI and A. ESPOSITO (2003): Modeling long-term ground deformation due to the cooling of a magma chamber: case of Basiluzzo Island, Aeolian Islands, Italy, J. Geophys. Res., 108 (B 12), 2568, doi: 10.1029/2002JB002376. (received January 13, 2005; accepted June 21, 2005)