An inversion model applied to DC soundings interpretation C . D E L G I U D I C E * Received on S e p t e m b e r 10, 1982 A B S T R A C T T h e inversion technique is used in DC soundings intepretation to determine the t h i c k n e s s e s a n d the t r u e resistivities of the layers, starting from the field apparent r e s i s t i v i t i e s . T h e r e l a t i o n s h i p between the predicted a p p a r e n t resistivities and the earth p a r a m e t e r s is not linear. S t a r t i n g from this relationship a methodology is described t o o b t a i n a wellposed system of M linear equations. This system permits to c a l c u l a t e , by m e a n s of a n iterative procedure, the e a r t h p a r a m e t e r s that minimize t h e d i f f e r e n c i e s (error) between the field and the predicted a p p a r e n t resistivities. T h r e e different iterative procedures are described. Practical examples have s h o w n t h a t all the iterative procedures are reliable and give comparable results in t e r m s of m i n i m u m e r r o r reached and CPU time. R I A S S U N T O La t e c n i c a dell'inversione è u s a t a nella interpretazione di sondaggi elettrici v e r t i c a l i p e r d e t e r m i n a r e gli spessori e le resistività vere degli elettrostrati ( p a r a m e t r i del terreno) p a r t e n d o dalle resistività a p p a r e n t i . La relazione tra le r e s i s t i v i t à a p p a r e n t i ed i p a r a m e t r i del terreno non è lineare. * Presently employed by GEOMATH - Via Cavour, 43 - PISA (Italy). 1 6 6 C. D E L G I U D I C E P a r t e n d o da q u e s t a relazione viene descritta u n a metodologia già nota per o t t e n e r e un s i s t e m a ben posto di M equazioni lineari. Q u e s t o s i s t e m a p e r m e t t e di calcolare, per mezzo di u n a procedura iterativa, i p a r a m e t r i del t e r r e n o che m i n i m i z z a n o la differenza tra le resistività a p p a r e n t i di c a m p o e q u e l l e calcolate. Vengono inoltre descritte tre diverse procedure iterative. Gli e s e m p i p r a t i c i h a n n o m o s t r a t o che t u t t e le procedure iterative utilizzate sono a t t e n d i b i l i e p a r a g o n a b i l i tra loro per q u a n t o riguarda i risultati del procedimento di m i n i m i z z a z i o n e e i tempi di calcolo utilizzati. 1 . S T A T M E N T O F P R O B L E M T h e a p p a r e n t resistivities in ohm- m versus the AB/2 distances in M r e p r e s e n t the field d a t a . In t e r m s of the voltage V,, currents I, a n d g e o m e t r i c factor K, (i = 1, N) where N is the n u m b e r of s a m p l e s , t h e a p p a r e n t resistivity is: K, AV, I, We w a n t to find an e a r t h model, consisting of a distribution of t r u e resistivities a n d thicknesses t h a t minimize the error between t h e field a p p a r e n t resistivities and the predicted ones. T h e observed a p p a r e n t resistivities are, in vectorial form: Pa, P a2 If w e call P' the resistivities predicted by a forward earth model P c o n s i s t i n g of the t r u e resistivities a n d the thicknesses of the ^ ^ ^ l a y e r s AN I N V E R S I O N M O D E L APPLIED, ECC. 1 6 7 T h e a b o v e values are functions of the p a r t i c u l a r earth model P, ( / = 1, M) w h e r e generally M < N. P i " P2 T h e n P' = f(P) [1] T h e r e l a t i o n s h i p [1] between P and P' is not linear. By expanding t h e e q u a t i o n [1] in a Taylor series and by keeping only the linear t e r m s , w e o b t a i n : - - - - 8«P) _ Pi = f ( P + A P) = f (P) + - y ^ - AP w h e r e AP is t h e model i m p r o v e m e n t . W e n e e d the P' to fit the observed d a t a : P., = P' O r : ö f ( P ) _ Po = f ( P ) + " T T " AP 1 6 8 C. D E L G I U D I C E C a l l i n g d = pu — f (P), this is: a f ( P ) - d = AP dP Or: d = [A) AP [2] w h e r e [A] is t h e sensitivity matr ix a n d AP is the vector p a r a m e - t e r c o r r e c t i o n (Jupp, Vozof 1975, Lanczos 1961, M a r q u a r d t 1963). W r i t i n g o u t the matrices of equation [2] we have: d , 8 f, (P) ¿ P , d 2 • • • • • • • • • • d f.v (P) 0 P , 8 f , ( P ) d P „ 3 t \ , ( P ) 3 P M A P , A P 2 A P. [3] T h i s is a system of N equations in M unknowns with N > M. The a b o v e s y s t e m of e q u a t i o n s is then over-determined and generally ill-posed in the sense that small changes in the d a t a lead to large c h a n g e s in the solutions. To solve this r e d u n d a n t system of e q u a t i o n s , we ca n apply the method of least squares. C a l l i n g e = d —[A] AP we have: N • S « ; - i e t e AN I N V E R S I O N M O D E L A P P L I E D , ECC. 1 6 9 w h e r e eT is the transpose of e or: e2 = [ d —[A] AP]T • [d — [A] AP] F o r e2 to be a m i n i m u m ; its derivative with respect to AP must be z e r o . T h e n d i f f e r e n t i a t i n g the above equation we have: [A]T [A] AP = [A]t d [4] We h a v e t r a n s f o r m e d the old system [2] of N equations in M u n k n o w n s i n t o a n M x M system [4], From the above expression [4] w e h a v e : ' AP = [ A T A ] " 1 [ A ] T d [5] 2 . I T E R A T I V E P R O C E D U R E S In t h e i t e r a t i v e procedure we do not use the algorithm [5] but its m o d i f i c a t i o n m a d e by M a r q u a r d t (Marquardt 1963): AP = [AT A -I- k 2 1]" 1 [A]T d [6] w h e r e k2 is called « M a r q u a r d t p a r a m e t e r » and I is the unit m a t r i x . T h e s y s t e m of e q u a t i o n s [6] is well-posed. T h e a l g o r i t h m [6] has the advantage over [5] that the region of c o n v e r g e n c e is g r e a t e r a n d the a m p l i t u d e of the p a r a m e t e r correc- t i o n A P i s s m a l l e r . T h e g e n e r a l expression for the iterative procedure is: pimi _ p (m-1) ^ p (m) [7] 1 7 0 C. D E L G I U D I C E w h e r e m i n d i c a t e s the iteration n u m b e r a n d : Ap(m, = [ (A T A)