Some cOllsideratiollS OD the usual derivation or the Pockels (or Helmholtz) equation in steady two dimensionaI fluid dYllamics I~. lJRLI.'OS."lO (*) - E. SAJ:t:STI (**) - F. 7.IltILJ.I (***) :-\U'l\IARL 'l'hl' simplest non·!inear motion of <1 lIui,1 i~ stmlh'd; i.e. the ~tea,ly two dimension<11 motio!l of a pedect flni,\. 'l'hes!' equation8 h<1YC il l"emarkahle pradiC'al importanc(' hecause they ,leSlTihe the air- 1l1Otion over Il1011ntains ami a wake on an oeeallic (lunen"" In partieular the numbel' of physieal ~olutions is discusse,l in r('!atio!l to the known bonnd- i1l'y ('OIHlitions. RL\.~I'CYru. - :-:'i ~tlHlia il caHO più semplice di l1Ioto non lineare di nn fluido: t'ome, ad esempio, il moto non viscoso stazionario hidillwn~io­ n;J!e di un lluido omogenco. QUl'sj(' ('(Illazioni hanno applkazioni pratielw notevoli, come l1Ioto sopra lc montag!le o scia ,li isole in conenti sta· zionari!'. ~i esaminano l' discutono, in partif'olarc, il nlllll('TO Ili soluzioni fisielli' in rapporto alle conllizioni al ('ontol'!lO f'lIllOSI'.iuÌ\'. III t1w sl.m]y of tlte Vl'oblem or t.he 8teally two tlÌmlmsÌonal air- Ho\\" over a mOlllltaÌll or of 1.JlC wake generatetl by an islantl OlT a sl.muly-stal.e no\\', many ]leOvle IIÌsellssel1 t.he Ilel'ivat,Ìon of all eqllatiol! fol' the stream fllllr,t,iol! a.m] st.lltlietl the conespontling solutions. (*) Istituto di Fisica dell'Atmosfera del C.~.H. - Hom<1. (U) Istitut.o ,li FisÌl'a dl'll'l~niYcrsitil, 1.X.F.X. _ Homa. (***) Rockfellpl" tllliversity, X,l',C., lO021 XCIV l'ork, U.i-l.A. 3 8 L . D E L L ' O S S O - E . S A L U S T I - F . Z I K I L L I One of t h e s e equations has been known as t h e Pockels (or Helm- holtz) equation, it is an elliptic linear p a r t i a l differential equation for t h e s t r e a m f u n c t i o n . I n this p a p e r , we derive t h i s equation, as is usually done(3'6-7 , 8-9'1 0), and we p o i n t o u t some inaccuracies of t h e usual derivation. The steady motion of a non viscous t w o dimensional fluid in t h e plane x, z can be described b y t h e following e q u a t i o n s : 7)u Ï)X tWC a « Dx ¡¡u + w + w - + w Ml ôit> w Î>71 ix = — + À 0 = — .S'(z) w + i>W = a w [1] [2] [3] [4] where , are p a r t i a l derivatives respect t o x and 2 respectively, DX <)Z m, w are t h e velocity components in t h e x and z directions respectively, / - c o n s t a n t is t h e so called convection or buoyancy p a r a m e t e r , S(z) is a given f u n c t i o n , a = c o n s t a n t (the t e r m aw in t h e c o n t i n u i t y equa- tion [4] allows a r e d u c t i o n of t h e fluid density w i t h t h e a l t i t u d e if t h e z-axis is directed u p w a r d ) , n is a q u a n t i t y connected with t h e pressure and 0 is t h e p o t e n t i a l t e m p e r a t u r e . F o r a complete derivation of equations [1], [2], [3], [4] see t h e very interesting book of G u t m a n (6). I n t r o d u c i n g t h e s t r e a m f u n c t i o n y> b y eq. [5] az ~iz t>x [5] we derive f r o m eqs. [1], [2], [3], [4] an e q u a t i o n for rp. F i r s t of all we notice t h a t eq. [4] is always satisfied b y t h e choice of eq. [5]. Multiplying eq. [3] b y c~az we h a v e -az -az W c u + e w 7>x î)z S(z) w S O M E C O N S I D E R A T I O N S ON T I I E U S U A I . D E R I V A T I O N E T C . 3 9 t h a t means by eq. [5] i*. J® J® 8(z) ^ = o t h a t is 5 a <*, , ) ^ + I *<*> d S ' } = 0 o t h e d e t e r m i n a n t of t h e J a c o b i a n is zero. Then we h a v e 0 + J S(z') dz' = ft (y>) [6] where fi(y>) is an a r b i t r a r y function (some r e q u i r e m e n t of regularity of fi{y>) is needed). E l i m i n a t i n g n f r o m equations [1], [2] and m a k i n g use of eq. [5] we h a v e where 5 (ip, L y>) I ^ aO 5 (x, z) ¡| 1 t>x 2az ( a-w y-w 7>w L w = e - ——h —1 H 0 —— r \ a#2 az2 Dz [7] Using eq. [6] so t h a t iO „ ~dw ,r = ™ J |S| a (f> L yj) I1 cty; a (x, z) i dx t h a t is in J a c o b i a n f o r m a a(x z) L f — z) I = o 40 L . D E L L ' O S S O - E . S A L U S T I - F . Z I R I L L I Then we h a v e hip = U(y) + /•/'i(V') « where /2 as /1 is an a r b i t r a r y f u n c t i o n . Thus t h e system of eqs. [1], [2], [3], [4], has been reduced t o eq. [9] for t h e stream f u n c t i o n ip t h a t depends 011 t h e a r b i t r a r y f u n c t i o n s /1, /2. I n order t o h a v e a "well posed" problem t h e domain where t h e equation lias t o b e verified, t h e b o u n d a r y conditions and t h e properties of t h e f u n c t i o n s /1, /2 h a v e t o be specified. T h e Pockels (or Helmholtz) e q u a t i o n is a p a r t i c u l a r form of eq. [9]. In p a r t i c u l a r t h e Pockels e q u a t i o n is commonly derived in t h i s way. The region where eq. [9] is studied is of t h e t y p e z > 8 (x) where 8(®) is a regular f u n c t i o n of x (i.e. S(x) is t h e profile of a m o u n t a i n ) see Fig. 1. (in order t o simplify t h e problem we assume now S(z) = S = const. a = 0 ) The b o u n d a r y condition 011 t h e system of eqs. [1], [2], [3], [4] are t h e following [ G u t m a n (")]: X x = — 00 z ^ 8 ( — 0 0 ) [10] [ 1 1 ] S O M E C O N S I D E R A T I O N S ON T I I E U S U A I . D E R I V A T I O N E T C . 41 Wo cam assume S (— oo) = 0. By eqs. [5] and [10] we h a v e xp = y>x = Vz + c x = — oo, z > 0 [12] Assuming c = 0 b y eqs. [5] [11] a n d [12] we h a v e M F ) = - Y R - Y> X = — 0 0 , 2 > 0 [13] and finally from eqs. [9], [12] a n d [13] we obtain J2(YJ) = Y) X = O O , 2 ^ 0 . [ 1 4 ] Assuming t h a t fi(y>), U(f) h a v e everywhere t h e f o r m given by eqs. [13] [14] we reach to t h e Pockels' equation: - r- + - + —- (w — V z) = 0 [15 7>x2 ii/2 V2 r L J A r a t h e r similar discussion is usually done for t h e oceanographic case: t h e wake of an island on an oceanic stream. I t has t o be remarked t h a t in this problem t h e Coriolis force is t a k e n into account, as in m a n y other meteorological cases. F r o m our p o i n t of view t h e derivation of eq. [15] is non satis- f a c t o r y for t w o different reason: 1) The t r a n s l a t i o n of t h e b o u n d a r y conditions on u, 0 in t e r m s of tp is n o t completely correct. I n f a c t u = V where x = — oo 2 > 0 and u = —- does n o t 1>z imply y> = Vt in a n y finite region. The meaning of u = V when x = — oo, z ^ 0 is lim u (x, z) = V, z >-• 0. X —> - OO So t h a t w h a t we can expect is t h a t lim ip (x, z) = = Vz if X -»- - oo 2 ^ 0 t h a t means y> = Vz, x = — oo, 2 ^ 0 . 42 L . D E L L ' O S S O - E . S A L U S T I - F . Z I K I L L I Moreover t h e b o u n d a r y condition on 0 a n d eq. [6] tell us t h a t l i m 0 (x, z) = l i m (S z — ft(ip (x, z))), z > 0 X—> — x — CO t h a t is 0=£z — fi(Vz), 0. So we h a v e t h a t /i is fixed only for p o s i t i v e a r g u m e n t s (z ^ 0) and n o t everywhere as people seems t o believe. Finally using eq. [9| in order t o derive t h e f o r m of /2 we use t h e following f a c t : lim A y> (x, z) = A lim ip (x, z) = A y>x = 0, (A = 5 + ) X - CO \ 0Ji 0 Z 1 this is also incorrect if no special assumptions are done on t h e previous limit. However if we s t u d y t h e problem in a compact domain, as it is t h e case of a numerical c o m p u t a t i o n , t h e f a r u p s t r e a m p a r t of t h e domain t a k e t h e rule of I n this case t h e s i t u a t i o n is t h a t people, hope t o know f r o m t h e conditions in p a r t of t h e b o u n d a r y not only the solutions of one well determined elliptic non linear differential equation b u t also t h e explicit shape of t h e non linear p a r t ji(y>) and Mr)- This appears to us as an o v e r s t a t e m e n t . 2) The b o u n d a r y condition eqs. [10], [11] are not enough t o deter- mine an u n i q u e solution of eqs. [1], [2], [3], [4] and so also t h e equation [15] has only t h e b o u n d a r y condition given b y eq. [12] which is not, enough t o determine a u n i q u e solution. Concluding t h e idea t h a t t h e b o u n d a r y conditions can d e t e r m i n e t h e form of /i, /2 in eq. [9] seems due t o other non rigorous reasons, p e r h a p s of historical origin. I t has t o be remarked, however, t h a t t h e above derivation of eq. [15] is now a classical method in geophysics and t h a t an enormous a m o u n t of practical work is done on it. But it has t o be said also t h a t an enormous m a t h e m a t i c a l litera- t u r e exists on eq. [9] under various assumptions of ft, /2 [see for exam- ple (7)]. The problem however of determining t h e physical f o r m of /1, /•> and so t h e physical solutions of eq. [9] is in our opinion essentially open, so t h e use of t h e p r i m i t i v e equations [1], [2], [3], [4] seems to us t h e most reasonable way t o h a n d l e these problems. S O M E C O N S I D E R A T I O N S O N T I I E U S U A I . D E R I V A T I O N E T C . 43 R E F E R E N C E S ( • ) B A R D O S ( ' . , 1 9 7 3 . - Existence et. unicité de la solution de l'équation d'Euler en dimension deux. P r e p r i n g Université de P a r i s , V I I . ( 2 ) B E R G E R M . S . , 1 9 7 0 . - Multiple solutions oj non linear operator equations arising from the calculus of variations. " P r o c e e d i n g s in P u r e M a t h e - m a t i c s " , 18, p p . 10-27. (3) CIIIA-SIIUN-Yin, 1960. - Exact solutions for steady two-dimensional flow of a stratified fluid. " J . Fluid M e c h . " , 9. p p . 161-174. ( 4 ) D A P R A T O G., 1 9 7 1 . - Somme d'applications non linéaires. " S y m p o s i a M a t h e m a t i c a " , 7, p p . 233-268. ( 5 ) D A P R A T O G., 1 9 7 3 . - Seminario di Analisi non lineare. I s t i t u t o Mate- m a t i c o " G . C a s t e l n u o v o " , R o m a . ( 6 ) G U T M A N L . N . , 1 9 7 2 . - Introduction to the non linear theory of inesoscale methereological processes. Israel press, J e r u s a l e m . ( ' ) K A T O T . , 1 9 6 7 . - On the classical solutions oj the two-dimensional non- stationary Euler equation. " A r c h . R a t . Mech. A n a l . " , 24, p p . 3 0 2 - 3 2 4 . («) L O N G R . R . , 1 9 5 2 . - The flow of a liquid pas a barrier in a rotating spheri- cal shell. " . I . M e t e o r " , 9, p p . 1 8 7 - 1 9 9 . ( 9 ) L O N G R . R . , 1 9 5 3 . - Some aspects in the flow of a stratified fluid, I. " T e l - l u s " , 5, p p . 41-58. ( 1 0 ) S A I N T G U I L T B . , 1 9 6 0 . - Ecoulement plan. autour d'un cercle en présence d'une force de Coriolis de paramètre variant avec la latitude. "C. R . Acati. Sei.", P a r i s , 2 5 0 , p p . 2 9 2 0 - 2 9 2 1 . ( U ) W H I T E W . B . , 1 9 7 1 . - A Rossby wake due to an island in an eastward current. " J . Pliys. O c e a n o g r a p h y " , 1.