O n e d i m e n s i o n a l m o t i o n o f a v i s c o u s fluid C . D E S I M O N E ( * ) - E . P U K I N I ( * * ) - E . S A L U S T I ( * * * ) Received on April 6 t h , 1975 Summary. — T h e effect of t h e f r i c t i o n h a s been s t u d i e d on t h e one d i m e n s i o n a l m o t i o n of a viscous fluid. T h i s f r i c t i o n is usually s c h e m a t i z e d in v a r i o u s s e m i e m p i r i c a l f o r m u l a e . In t-liis work t h e d i f f e r e n t s c l i e m a t i z a t i o n s of t h e f r i c t i o n were n o t s t u d i e d s e p a r a t e l y b u t it was shown t h a t a solution e x i s t s for t h e fluid m o t i o n . T h e r e s u l t s give i n f o r m a t i o n on t h e d a m p i n g of t h e fluid m o t i o n in t h e case of t h e seiches. R iassunto . — Gli e f f e t t i d e l l ' a t t r i t o nel moto di un fluido non possono essere t r a s c u r a t i nello s t u d i o di molti f e n o m e n i geofisici. Le origini di tali a t t r i t i sono riconducibili a v a r i e f f e t t i fisici che n o r m a l m e n t e vengono sche- m a t i z z a t i in diverse f o r m u l e s e m i e m p i r i c h e . Sulla base di u n a s c h e m a t i z z a - zione del m o t o di un fluido lungo u n a sola d i m e n s i o n e si è d e t e r m i n a t a la soluzione d e l l ' e q u a z i o n e del m o t o , c o n s i d e r a n d o le varie f o r m e di a t t r i t o a g e n t i c o n t e m p o r a n e a m e n t e . I r i s u l t a t i d a n n o i n f o r m a z i o n e sullo s m o r z a - m e n t o del moto del fluido e sul peso r e l a t i v o dei v a r i a t t r i t i . T h e e f f e c t of t h e f r i c t i o n i n t h e m o t i o n of a fluid, e . g . t h e s e a , c a n n o t b e n e g l e c t e d i n m a n y g e o p h y s i c a l p h e n o m e n a . I t s o r i g i n c a n b e r e l a t e d t o v a r i o u s p h y s i c a l e f f e c t s , so o n e u s u a l l y p r e f e r s t o s c h e m a - t i z e i t i n d i f f e r e n t s e m i e m p i r i c a l f o r m u l a e . I n a p r e v i o u s w o r k (6) s o m e of t h e p o s s i b i l i t i e s of s c h e m a t i z a t i o n f o r t h e o n e d i m e n s i o n a l m o t i o n of a fluid h a v e b e e n s t u d i e d . P a r t i c u l a r i t y of t h i s w o r k h a s b e e n t h a t t h e s e e f f e c t s w e r e n o t s t u d i e d s e p a r a t e l y b u t i t w a s s h o w n (*) I s t i t u t o di Fisica « G. Marconi », U n i v e r s i t à degli S t u d i - R o m a . (**) C . N . R . - I . F . A . - R o m a . (***) I s t i t u t o di Fisica « G. M a r c o n i » , Università degli S t u d i - R o m a - I . N . F . N . - Sezione di R o m a . 118 C. D E SIMONE - R . J ' U R I N I - E. SALUSTI t h a t a solution exists if one considers also a d i f f e r e n t t y p e of scliema- t i z a t i o n . I n f o r m u l a e t h e ell'ect was r e l a t e d t o t h e non-linear d i f f e r e n t i a l e q u a t i o n : ~i>2tt u — 2xx [u • li (x)] = v t>-xx u — £ Z u\u\a + f (t, x) [1 ] a = o a w h e r e t h e s y m b o l u d e n o t e s t h e v e l o c i t y of t h e fluid a t x = const, section of t h e c h a n n e l , t h e s u r f a c e of w h i c h is h(x) t h e coefficient v is c h a r a c t e r i s t i c of t h e v \ u t y p e f r i c t i o n while y a is t h e o n e r e l a t e d t o y u u \ u \ a f r i c t i o n , / is t h e s y m b o l of a n e x t e r n a l force, in o u r case it could b e t h e w i n d . I n [1] t h e b o u n d a r y c o n d i t i o n a r e t h o s e of an o p e n a n d semi-closed b a s i n . W e h a v e also considered, on t h e basis of com- m o n sense, t h a t t h e r o u g h n e s s of t h e b o t t o m m a y b e considered as a origin of a f r i c t i o n t h e w h i c h is n o t possible t o b e seen t h r o u g h t h e u s u a l n u m e r i c a l s t u d i e s t h a t utilize c o m p u t e r s . So we h a v e p r e f e r r e d t o t r e a t a flat b o t t o m case w h i c h allows a n a n a l y t i c a l t r e a t m e n t of t h e f o r m u l a e . I n t h i s w a y we h a v e s u p p o s e d t h a t t h e s u r f a c e of t h e section x=x0 h a s t h e v a l u e : h (,T0) = h (x0) + d siny.r0 [2] w i t h t w o small v a l u e s of <5 a n d y. O n e can i n t u i t i v e l y say t h a t t h i s r o u g h n e s s increases t h e t u r b u l e n c e a n d t h e n it r e n o r m a l i z e s t h e a b o v e m e n t i o n e d coefficient. T h e p u r p o s e of t h i s w o r k is t o p u t i n t o a c o m p a r i s o n t h e s e effects. W e use a n a l y t i c a l m e t h o d s which in some cases a r e r i c h e r with infor- m a t i o n t h a n t h e p u r e l y ones. T h e r e f o r e we l i m i t ourselves t o a flat s c h e m a t i z a t i o n h0 of t h e A d r i a t i c Sea. T h e m e t h o d u s e d , b e c a u s e of t h e smallness of t h e v, d coefficients, can b e t h e first order p e r t u r - b a t i o n of t h e f r e e m o t i o n . Obviously t h i s m e t h o d gives some i n f o r m a t i o n f o r n o t a long period of t i m e . W e will discuss t h e r e s u l t s in t h e conclusion. 1 . - T H E P R O B L E M A N D I T S E L E M E N T A R Y S O L U T I O N S I n o r d e r to s i m u l a t e a t o u r b e s t t h e A d r i a t i c Sea, d e s p i t e o u r flat h y p o t h e s i s li(x) = h0, we use t h e D e f a n t ' s b o u n d a r y conditions. I t implies t h a t f o r t h e first a n d t h i r d seiches t h e c h a n n e l is closed O N E D I M E N S I O N A L M O T I O N O F A V I S C O U S F L U I D 1 19 a t Venice a n d is o p e n e d a t O t r a n t o . F o r t h e second seiche, a t t h e con- t r a r y , t h e c h a n n e l lias t o b e considered closed b o t h a t Venice a n d a t O t r a n t o . W e t h e n consider t w o m a i n cases: t h e effect of t h e f r i c t i o n on t h e f r e e m o t i o n of t h e w a t e r a n d t h e effect of a s t r o n g w i n d on a q u i e t sea. As f o r t h e w i n d , we h a v e a s s u m e d , in t h i s case, also a n " a d h o c " s h a p e f o r s e m p l i f y i n g c a l c u l a t i o n . W e s u p p o s e t h a t t h e wind s t a r t s s u d d e n l y a t t = 0 a n d t h e f o r c e is m o r e r e l e v a n t a t O t r a n t o t h a n in t h e n o r t h e r n p a r t of t h e b a s i n : ( 0 ' < 0 , r 1 {x> I) = 1 0 sin HL ( > 0 > - = i H a v i n g c o n s i d e r e d t h e s e s c h e m a t i z a t i o n , we s t a r t b y discussing t h e first case. 1 . 1 . - M O T I O N A N D F R I C T I O N O F T U B S E I C H E S W e r e p e a t h e r e t h e e q u a t i o n 1 a S2« u — g ~i2xx[h (x)-u] = v S« h xx u •—S X ^t u\u\ [1] u a "a If we i m p o s e t h a t t h e b a s i n is closed a t Venice a n d opened a t O t r a n t o , t h e s u r é l é v a t i o n is zero, we o b t a i n : U (0, t) = 3* 11 (X, t)x-L = u (L, t) = 0 f o r t h e o d d o r d e r seiches. I n t h e second seiche case we h a v e : u (0, t) = u (L, t) = 0 W e t h e n p r o c e e d b y s u p p o s i n g , as described in t h e first p a r a g r a p h , t h a t S, v a n d y_a a r e small p a r a m e t e r s , of o r d e r e. W e t h e n develop o u r e q u a t i o n in p o w e r of t h i s e p a r a m e t e r . F o r t h e solution, we h a v e : U = Uo + £ Ml + £2M2 + • • • F o r e = 0 we h a v e f o r t h e o d d o r d e r seiches: S2» Uo — gho Wxx Uo = 0; Mo(0, t) = DxUo(L, t) w h i c h solution is also f o r t h e second seiche case: Uo = A sin x cos \n (J~ n = 1 , 2 , 3 [2] 1 2 0 C. D E S I M O N E - R . J ' U R I N I - E . SALUSTI W e now s c h e m a t i z e t h e f r i c t i o n s as a n effect t h a t s t a r t s a t < = 0 in order t o m a k e clearer t h e difference b e t w e e n t h e f r i c t i o n s a n d t h e f r e e m o t i o n . F o r u = ua + eui, we h a v e t o t a k e i n t o a c c o u n t t h e pro- perties of 11 „: D2ttUi — (jlioV-xx ui = F(u0)\ ui(x, 0) = ~bxiii(x, 0) = 0 where F (Me) = g D2xx (u0 (5 sin y x) + v S< ua —• 2 « Z { u° ' I u° l" } o " " I n t h e following we p u t a = 1. T h e case a = 0, which is also a m o n g t h e m o s t i n t e r e s t i n g ones, can b e easily d e d u c e d f r o m calcula- t i o n . We deal now with t h e well k n o w n i n h o m o g e n e o u s w a v e p r o b l e m . W e will follow t h e C o u r a n t - H i l b e r t ' s classical s c h e m e (4). W e develop a t t h e first F (uo) = Ax sin fix • /*(<) Then we m a k e easier our p r o b l e m b y r e m a r k i n g t h a t we can say u = £,Tk(t) sin/9 FT» where t h e u n k n o w n T k (t) a r e d e t e r m i n e d b y } a2,, Tk(t) + g ho /V Tk(t) = fk(t) j TA-(0) = a t Tk(0) = o W e t h e n k n o w t h a t t sin | g h018k (t — s) fk(s) d s Tk(t) = - ßk | g ho a n d it implies t h a t u = £fc sinßkX • Tk(t) 1 . 2 . - E F F E C T O F T H E F R I C T I O N W H E N T H E W I N D M O V E S T H E W A T E R W e s t u d y t h e case of a semiopen c h a n n e l in r e s t a t t 0, when s u d d e n l y t h e wind p r o d u c e s an e x t e r n a l f o r c e : (0 t < 0 f (x.t) = { r . x ' v ' ' ) 0 sin — t > 0 also in t h i s case we will s t a r t bv leaving aside t h e f r i c t i o n . O N E D I M E N S I O N A L M O T I O N O F A V I S C O U S F L U I D 1 19 Tlie motion e q u a t i o n is given b y 32ÍÍWO — gho t>2xx u0 = $ s i n — 8 (t) A t h e solution of which is 0 t < 0 Uo ( X , t ) = { , . X . t ^ n v ' ' 1 1 $ sin — sin — í > 0 I A t Because of t h e r e m a r k a b l e similarity with t h e previous case, we will use also in this case t h e above described m e t h o d to solve t h e equa- tion a t first order in e. T H E A N A L Y T I C A L R E S U L T S F o r t h e first seiche we h a v e F(uo) = j g ô y + y j — y i \ 2 A cos c o s t cos — t Y + J Ì * + vA x , t — sin — Sin h A 2 r A r A2 { 2x ) . 21 cos tir ZoA . x t 7,1 — { cos —r 1 > sin — —— -j sin — cos — r ( A ) r |cos t¡r\ r A t One m a y r e m a r k t h a t t h e first t e r m is related to t h e roughness of t h e b o t t o m . I t is proportional to <5 and it contains t h e y coefficient. The second p a r t is r e l a t e d t o t h e l a m i n a r friction in t h e a = 0 a n d a — 1 cases a n d provides t h e last two t e r m s . W e r e m a r k here t h a t in this case t h e a = 0 p a r t of t h e friction is proportional to t h e l a m i n a r friction, we will t h e n n o t discuss it a n y more. W e now describe F(u0) as S/t-l/t sin (fikX + (fk) • fk(t) f r o m which it follows: Ai = 4" 9 à ( y + T ßi = y + 71 ; «pi = , t fi = cos t A 2 = — — gò\y — ß* = y r This last result is p r o p o r t i o n a l to t h e effect of Xo. The f u n c t i o n 7',, and T5 are more complicated to describe in order to e l e m e n t a r y functions. W e m u s t i n t r o d u c e t h e Sk t i m e i n t e r v a l s : S0 0 < i < Si 71 t 3 — C — < — 71 So 3 t 5 71 ^ — ^ — 71 5 t 7 S2 — JI < — ^ — TI etc. 2 x 2 Then in t h e 7 f t h i n t e r v a l we h a v e T T 4 = , , 1 . 2 1 t 21 l)f c i — sin cos LE TI 1 2 x x x 2< . 2 « - + sin 2 k n X X O N E D I M E N S I O N A L M O T I O N O F A V I S C O U S F L U I D 1 19 F o r t h e second seiche, we can easily calculate t h e result b y p u t t i n g A r A -> — a n d r -*• — in t h e Tk(t) expressions. I n t h e ease of a wind, in analogy with t h e f r e e motion, t h e result is: F (Mo) =6 [y + y j cos (y + y j x sin ~ + , &x ( 1 \2 I 1 \ . t 0v . x t - d - r [ y - T ) C O S v ~ i ) X S M V W S M X 0 0 8 ~x + . 21 sin tlx 2x . 21 sin tlx sin — r— — — cos —i— sin x x |sin T3 (I) = — t sin — 2', ( 0 = ; i 1 . 2< — sin b r 2 r t + T d — ( — ! ) " ) 71 (— 1)* r2 I 1 . 2t t 2t T . W = t ¥ s i n 7 c o s - 7c + - ( l — ( — 1 ) * w ( — 1)* We n o t e here a difference between t h e effect of t h e roughness of t h e b o t t o m (which gives results limited when t increases) a n d t h e t w o other cases, where t h e velocity increases in norm as t oo. I n our opinion this effect is d u e to t h e m a i n effect of t h e roughness: it gives m a n y small m o v e m e n t b u t it d o e s n ' t decrease t h e kinetic energy. So we are encouraged to t r y and see t h e effect of a l a m i n a r friction vAu on this p e r t u r b a t i o n of t h e velocity. This friction should decrease t h e kinetic energy b u t n o t t h e a m p l i t u d e of t h e effect, because t h e wave- length of t h e p e r t u r b a t i o n is 1/y which is v e r y large c o m p a r a t e d with A. W e s t u d y t h e r e f o r e t h e p a r t of U\ which is p r o p o r t i o n a l to <5, Ui to which we apply t h e rA operator. W e o b t a i n : m = A g cos — t r + j I cos \y + y I ® cos [y + y - ) Vi7 t + i \2 cos c o s s \l() ho g-ho [ y - j J l T * t h e n c e Ui cc •• ft cos y x (Jh (t) + c sin ~ sin y x