O n l i n e a r i n t e r n a l w a v e s o n t h e s e a , s t r o n g l y v e r t i c a l l y t r a p p e d E . P U R I N I ( * ) - E . S A L T J S T I ( * * ) Received on A u g u s t 2nd, 1975 Summary. — W e s t u d y some explicit cases of m a r i n e t h e r m o c l i n e . We f o c u s our a t t e n t i o n on t h e s t r o n g l y v e r t i c a l l y t r a p p e d i n t e r n a l waves, which in our cases allow an explicit dispersion r e l a t i o n a n d a simple b e h a v i o u r in t e r m s of e l e m e n t a r y f u n c t i o n s . T h e explicit f o r m of t h e V a i s a l a - B r u n t f r e - q u e n c y N2{z) is p r o p o r t i o n a l t o 1 / \z—20| in one case a n d t o A2—B2(z—zD)2 in t h e o t h e r . A c o m p a r i s o n w i t h some e x p e r i m e n t a l d a t a concerning t h e L i g u r i a n Sea is a c t u a l l y in course. R iassunto . — I n relazione a d e t e r m i n a t e condizioni di superfìcie, l a s t r u t t u r a v e r t i c a l e del m a r e si c a r a t t e r i z z a m e d i a n t e u n a b r u s c a v a r i a z i o n e nella d e n s i t à . Nel p r e s e n t e lavoro vengono s t u d i a t e le o n d e i n t e r n e che vi r i s u l t a n o f o r t e m e n t e i n t r a p p o l a t e , o t t e n e n d o relazione di dispersione, velocità di g r u p p o e correlazione in t e r m i n i di f u n z i o n i e l e m e n t a r i p e r d u e s i t u a z i o n i s p e r i m e n t a l i i n d i v i d u a b i l i a n a l i t i c a m e n t e a t t r a v e r s o la f r e q u e n z a di V à i s à l a - B r u n t N2(z) p r o p o r z i o n a l e a I /\z—za \ in u n caso ed u g u a l e a A2-B2(z—z0)2 n e l l ' a l t r o . È in corso u n c o n f r o n t o con i d a t i p r o v e n i e n t i d a c a m p a g n e di m i s u r a e f f e t t u a t e nel Mar L i g u r e . 1 . - I N T R O D U C T I O N A n i n t e r e s t i n g p r o b l e m i n t h e e n e r g y b a l a n c e of a s e a , c o n c e r n s t h e i n t e r n a l w a v e s a n d t h e i r e n e r g i e s . T h e s e a r e w a v e s w h i c h p r o p a g a t e h o r i z o n t a l l y a n d t h e i r l a r g e s t a m p l i t u d e is r e l a t e d t o t h e v e r t i c a l v a r i a t i o n s of t h e d e n s i t y g(z). T h i s is d u e t o t h e v e r t i c a l v a r i a t i o n s of t e m p e r a t u r e a n d s a l i n i t y , w h i c h a r e o r i g i n a t e d b y t h e i n t e n s e e x - (*) C . N . R . - I s t i t u t o Fisica d e l l ' A t m o s f e r a - R o m a , I t a l y . (**) I s t i t u t o di Fisica " G . M a r c o n i " , U n i v e r s i t à di R o m a , I t a l y - I s t i t u t o di Fisica Nucleare - Sezione di R o m a 2 4 2 11. P U K I N l - E . S A L U S T I change of m o m e n t and h e a t with t h e mowing a t m o s p h e r e . More in detail, one could first separate a " m i x e d l a y e r " which has a v e r t i c a l extension of some t e n s of m e t e r s under t h e air-sea surface. This layer is mixed b y t h e t u r b u l e n c e p r o p a g a t i n g downward f r o m t h e moving a t m o s p h e r e (this is one of t h e effects of winds, storms, a t m o s p h e r i c turbulence etc.). I t s energy p r o p a g a t e s downward freely a n d m a k e s t e m p e r a t u r e , salinity, density and motion-homogeneous in this " m i x e d l a y e r " . The surface u n d e r this m i x e d layer is t h e n a t u r a l d o m a i n of p r o p a g a t i o n f o r t h e m o s t intense i n t e r n a l waves. I t h a s however t o be r e m a r k e d t h a t it is n o t v e r y easy t o distinguish w h a t p e r c e n t a g e of atmospheric energy generates i n t e r n a l waves and w h a t p e r c e n t a g e of energy is used b y t h e system t o erode t h e u n d e r l y i n g stratified region. Practically, moreover, one can r e m a r k t h a t m a n y times t h e mixed layer has n o t a v e r y s h a r p division with t h e underlying stratified region, b u t has a vertical extension of 50 --500 meters. The resulting periodic p h e n o m e n a , t h e i n t e r n a l waves, are in this case related t o a smoother v a r i a t i o n of t h e density t h a n in t h e case of t h e s h a r p division between t h e mixed layer and t h e deeper stratified region. Tts stratification is a r a t h e r curious p h e n o m e n o n : one can experi- mentally r e m a r k m a n y sheets of an horizontal extension of kilometers and this is a surprising contrast with t h e vertical extension of few centimeters. Practically, f o r g e t t i n g this " f i n e - s t r u c t u r e " , one could see it as a stable region of slowly v a r y i n g density g0(z). I n t h e lowest p a r t , g0(z) decreases with t h e d e p t h as a slow expo- nential exp (— az), where a is a c o n s t a n t . I n this contest, we h a v e r e m a r k e d t h a t t h e surface b e t w e e n t h e mixed layer and t h e stratified thermocline is t h e d o m a i n of m a n y interesting and i m p o r t a n t p h e n o m e n a , related t o t h e i n t e r n a l waves d i s t r i b u t i o n of energy inside t h e fluid ("). I t can be shown, m o r e pre- cisely, t h a t t h e knowledge of e x a c t s h a p e of g0(z), t h e s t a t i c d e n s i t y profile, could give essential informations concerning t h e i n t e r n a l waves s t r u c t u r e , their correlations and t h e i r energetics. More explicitly, it has t o be added t h a t t h e e x p e r i m e n t a l evidence stresses t h a t this is n o t really a s h a r p surface, b u t it appears r a t h e r as a vertical region of t r a n s i t i o n between t h e homogeneous mixed layer and t h e stratified thermocline. This appears interesting because t h e i n t e r n a l waves can be described b y a simple equation (if one assumes t h e linear waves and if t h e Boussinesq a p p r o x i m a t i o n is assumed v a l i d : see, for example, Phillips (°) and T h o r p e (7)) where t h e explicit shape of Q0{z) plays an explicit role. O N L I N E A R I N T E R N A L W A V E S O N T H E S E A E T C . 2 4 3 Now, this equation has simple dispersion relation and solution in some cases r a t h e r well known in t h e literature. These are supplied when t h e Vaisala-Brunt f r e q u e n c y , , dp0 q N2 «) = r~ • — > 0 d Z Q O has a d(z) behaviour or JV-(z) = const, behaviour (Phillips (6)) and when N*(z) = 0 for 0 d in t h e density) as in t h e classical analysis of Garret and Munk (3) and in few other cases studied b y T h o r p e (8). The realistic cases are r a t h e r different; one could easily solve t h e m numerically, b u t this would imply some loss of informations. F o r t h i s region we h a v e studied t w o r a t h e r realistic profiles N*(z) = a2l\z—z0\ and N2(z) — A2 — B2{z—z0)2 These profiles can, in some cases, simulate correctly t h e e x p e r i m e n t a l situation and t h e y also allow an explicit calculation of t h e i n t e r n a l waves, their dispersion relation, their group and wave velocities, then- correlations. An experimental verification is actually i n course (x). 2 . L I N E A R T H E O R Y O F M A R I N E I N T E R N A L W A V E S The t h e o r y of internal waves is r a t h e r well known (Phillips (°), T h o r p e (8)). I n t h e following we will r e p e a t t h e essential results on t h e t i m e evolution of these waves. I n fact, in t h e case t h a t t h e Boussinesq a p p r o x i m a t i o n can be assumed and t h e e a r t h ' s r o t a t i o n can be disregarded, t h e velocity components satisfy t h e equations (6|7). 1 i)« + — - f - = 0 Qo + — ~ = 0 (?o ty i q' *tw + — -J- + g = 0 Q o "Z Qo 10 2 4 4 R . P U R 1 N I - E . S A L U S T I where p is t h e d e p a r t u r e f r o m t h e h y d r o s t a t i c pressure and one has assumed Q = QO(z) + Q' (X, y, z, T) with t h e density variation Q'g' at it ix 7>y iz Calculating first t h e t i m e derivative of t h e vorticity, one lias ( i * - + — JL V = o \ iz ix J it Q O ÍX . iv iw \ i a io' Vu — — — + — - - — = 0 iz iy J it go iy a n d , t a k i n g into account t h e 0 is t h e Vàisàla-Brunt frequency. QO d z Assuming a p l a n e progressive wave solution of t h e f o r m w (x, z, t) = 17 (z) exp i(Kxx + Kyy + Kzz — wt) one easily arrives t o t h e equation + K2 — K2\ W(z) = 0 [2-2] d*W\z) , j N2(z) dz2 ON L I N E A I ! I N T E R N A L W A V E S O N T I I E S E A E T C . 2 4 5 w i t h 17(0) = o a t t h e rigid f r e e surface ( 9) W(—d) = 0 a t t h e b o t t o m The informations concerning t h e stratification are included in t h e p a r t i c u l a r shape of N2(z). This is r a t h e r c o n s t a n t in t h e mixed layer. I n t h e lower region it has m a n y sharp variations (the fine-structure). These variations give t h e classical behaviour of N2 (z) in t h e tliermocline when, in some sense, t h e y are averaged in 2. A t last N 2 —> const, value in t h e deepest regions can be f o u n d . As t h e various preceding cases h a v e been studied, we h a v e focused our a t t e n t i o n to two explicitly solvable cases: where a, A, B, are constants to be determined on experimental ground. The d e p t h z0 is t h a t corresponding t o t h e zone of highest v a r i a t i o n of t h e Y a i s a l a - B r u n t frequency N2(z). The cases seem to be general enough t o a p p r o x i m a t e realistic cases, particularly in t h e parabolic case. 3 . T H E E X P L I C I T C A S E N2(Z) = a2/\z— z0\ W e are now going t o s t u d y t h e case above mentioned N2(z) = a21\z—z0\. The equation [2.2] now results W e assume t h a t t h e distance among zD, t h e b o t t o m z = — d and t h e surface 2 = 0 could be considered large. I n practice z0 is 20-50 m e t e r s for localized seas (*) and h u n d r e d m e t e r s for t h e Ocean. The d e p t h d of t h e b o t t o m is usually fixed t o be larger, in order t o avoid b o t t o m effects. F o r strongly t r a p p e d i n t e r n a l waves, t h e vertical region of i n t e r e s t is determined in order t o fix t h e vertical scale of motion. I t usually is of t h e order of m a g n i t u d e of few meters. Outside this region 2 = z0, t h e Yaisala-Brunt f r e q u e n c y decays r a t h e r rapidly, as a power of 2. Much more quick, however, is t h e decay of t h e solution IF, which results in general a negative exponential. So one could also assume for these waves an idealized b o u n d a r y condition a) N2(z) = a211 z—z0 \ b) N2(z) = A2 — B2 (z—zo)2 d2 W(z) dz2 [3.1] W (± 00) = 0 2 4 6 R . P U R 1 N I - E . S A L U S T I which simplifies t h e calculations. T h e n one can say t h a t our eigen- value e q u a t i o n can a s s u m e a n infinity of eigensolutions, labelled b y 11 = 1, 2, 3 . . . T h e g e n e r a l solution is (see A p p e n d i x ) : Wfl = A^xo™o> L}^ {2K\z—z0\} [3.2] where A/t is a c o n s t a n t a n d t h e f u n c t i o n L)i_l (g) is called L a g u e r r e polynomial. A t z — za, t h e f u n c t i o n is c o m p l i c a t e d : t h e e q u a t i o n shows t h a t i t s second d e r i v a t i v e diverges. T h e n Wp results a c o n t i n u o u s f u n c t i o n s y m m e t r i c a r o u n d t h e p e a k z0 One c a n m o r e o v e r say (see A p p e n d i x ) t h a t t h e solution exist if a n d only if a2K - — = p =1,2, . . . I t ' s i n t e r e s t i n g t o n o t e t h a t t h e p r e c e d i n g dispersion r e l a t i o n for t h e s e i n t e r n a l waves is similar t o t h a t of t h e two-fluid s y s t e m . T h e n one can calculate t h e g r o u p v e l o c i t y cg da> 1 a 2 °g = d K = Y 1W(2JL) 1'2 One h a s also t o r e m a r k t h a t W¡i. is p r o p o r t i o n a l t o e x p - / t 12—z0\ so t h a t t h e b e h a v i o u r of t h e w a v e decays e x p o n e n t i a l l y outside t h e zone of s h a r p v a r i a t i o n of A2(2). This implies t h a t we m u s t consider only waves w i t h a large K v a l u e fixed b y t h e dimension of t h e physically i n t e r e s t i n g region t h r o u g h t h e r e l a t i o n K ~ 1 \L. One could enlarge t h e p r e c e d i n g t r e a t m e n t of t h e i n d i v i d u a l s t r u c t u r e of i n t e r n a l waves b y considering t h e correlation f u n c t i o n . This q u a n t i t y is + 00 B/tfl' (K) = l l > u y = I WM W%' dz' I t a p p e a r s i n t e r e s t i n g because it is a p o w e r f u l tool i n t h e comparison b e t w e e n t h e o r e t i c a l models a n d e x p e r i m e n t a l d a t a (4). I n our case i t r e s u l t s : LI 2 B^ (K) = ^XKL j AfxA%' e - 2 ^ 0 ) Lji^ L\*_! d {2K\zr—z0\) ON L I N E A I ! I N T E R N A L W A V E S ON TIIE S E A E T C . 2 4 7 The Laguerre polynomial are on orthogonal set, therefore one has 1 0 for n ^ fi' BNi' ( K ) = i 1 — { l A p U / t - i y . ? 2C-i for ¡X = n ' this K ' 1 behaviour of t h e correlation f u n c t i o n is r a t h e r interesting and is in agreement with t h e results of Phillips (6) for a range of t h e s p e c t r u m of t h e lowest i n t e r n a l mode. If one w a n t s t o calculate also t h e cross-correlation WV, t h e c o n t i n u i t y equation i KyV + W = 0 m u s t be used. This can give t h e m a t r i x element / d W 1 ] W d = 0 d z One could add t h a t t h e m a t r i x element dWn iz Wm &z' is n o t zero if (and only if) w = to ± 1. I n more detail d W. \ _ , , U W ^ dz' = 1 / J L dz J • "" ' 2 and / -dz ) " T i | 2 To finish, also t h e case a2 B- JV2(«) = — a, /? const. z z2 could be exactly t r e a t e d . I t results, however, of different physical interest because it describes an instable case, whereas in this n o t e one studies stable phenomena only. 2 4 8 R . PUR1NI - E . S A L U S T I 4 . T I I E C A S E O F A P A R A B O L A A 2 (Z) = A2 — IP (Z—ZA)2 B y repeating t h e preceding considerations, one can arrive to t h e e q u a t i o n : = (z-zo)2 1 F ( . ) - i ^ f ' - J D 1 * ( . ) ; ^ Az2 to2 [ u)2 J with t h e b o u n d a r y conditions (°), W ( 0 ) = 0 W(—d) = 0 I n t h i s case also t h e r e is an infinity of solutions (see A p p e n d i x ) : ' ft The polynomials obtained in this way are related t o t h e associated L a g u e r r e polynomials: Ln(Q) = £ 0 ? " The first one are: L\ = 1 ; L\ = 4 — 2 g; L\ = 1 8 — 1 8 O — 3 0 10 2 5 2 K. p u r i n i - E. SALUSTI Separating t h e even or add solutions, on t h e n has I = 2 n + 1 The solutions are even or add polynomials, t h e H e r m i t e poly- nomials d » o - G2 H t { e ) = ( - D * • The first one are H o = 1 ; H , = 2 g ; H 2 = ±Q 2—2; H 3 = 8 Q 3 — 12 Q R E F E R E N C E S ( 1 ) C o i . a c i n o 51., P u r i n i R . , R o v e l l i A . , S t o c c i i i n o C . , 1 9 7 0 . - Studio del bilancio termico diurno del ciclo di temperatura e delle onde interne in stazione fissa (Mar Ligure). N o t a i n t e r n a d e l l ' I s t i t u t o Idrografico della M a r i n a , G e n o v a . (2) D icke R., W i t t k e J . , 1900. - Introduction to Quantum Mechanics. " A d d i - son W e s l e y , P u b l . Comp. I n c . " , L o n d o n . (3) G a r r e t C., Munk W . , 1972. - Space-Time Scale oj Internal Waves. "Geopli. F l u i d D y n . " , 2, p p . 225-264. (4) Monin A. S., Y aglom A. M., 1971. - Statistical Fluid Mechanics. " T h e Mit P r e s s " , I. (5) Morse P . , Feshbach H . , 1953. - Methods oj Theoretical Physics. "McGraw- H i l l " . (6) P h i l l i p s O. M., 1900. - The Dynamic of the TJpper Ocean. " C a m b r i d g e U n i v e r s i t y P r e s s " . (7) See t h e classical discussion in t h e book of Phillips, Reference (6). (8) Thorpe S. A . ; On the Shape of Progressive Internal Waves. " R o y a l Soc., L o n d o n , P h i l o s . T r a n s " . , V 2 0 3 A ; I I 4 5 ; p p . 5 0 3 - 0 1 4 . (°) Thorpe S. A. (and other articles), 1975. - " J . of Geopli. R e s e a r c h " , 80.