M o d e r a t e c h n i q u e s o f t r e n d a n a l y s i s a n d i n t e r p o l a t i o n L . T O R E L L I ( * ) R e c e i v e d o n A u g u s t 2 0 t h , 1 9 7 5 SUMMARY. — T h i s a r t i c l e c o n t a i n s a s c h e m a t i c e x p o s i t i o n of t h e t h e o r e - t i c a l f r a m e w o r k o n w h i c h r e c e n t t e c h n i q u e s of t r e n d a n a l y s i s a n d i n t e r - p o l a t i o n r e s t . I t is s h o w n t h a t s u c h t e c h n i q u e s c o n s i s t i n t h e j o i n t a p p l i c a t i o n of Analysis of the Variance a n d of Multivariate Distribution Analysis. T h e t h e o r y of Universal Kriging b y G . M a t h e r o n is a l s o d i s c u s s e d a n d r e d u c e d t o t h e a b o v e t h e o r i e s . RIASSUNTO. — I l p r e s e n t e a r t i c o l o e s p o n e i n f o r m a s c h e m a t i c a i r i - s u l t a t i t e o r i c i s u c u i si b a s a n o l e t e c n i c h e p i ù r e c e n t i d i i n t e r p o l a z i o n e e a n a l i s i d i t e n d e n z a . V i e n e d i m o s t r a t o c h e t a l i t e c n i c h e r i s u l t a n o d a l l ' a p p l i c a z i o n e c o n g i u n t a d i Analisi della Varianza e d i Analisi Multivariata. Si d i s c u t e i n o l t r e l a t e o r i a d e l " K r i g e a g e Universel" d i G . M a t h e r o n , r i d u c e n d o l a a l l e t e o r i e g i à m e n - z i o n a t e . 1 . - I N T R O D U C T I O N One deals with a function y(x) defined in a region of a real space. T h e value of t h e function is known at a few points, xt, of the region. One writes yi — y(xt). Interpolation means prediction of t h e value of t h e function a t points of t h e region where t h e value of t h e f u n c t i o n is unknown. Trend is a simplified f u n c t i o n capable to describe t h e "general behavior" of t h e original function. These concepts are b e t t e r defined when t h e theoretical approach to the problem is described. (*) I D R O T E C N E C O , R o m e . 2 7 2 L. TOEELLI One considers t h e f u n c t i o n in question as a realization of a sto- chastic f u n c t i o n Y(x) -with t h e following s t r u c t u r e : *(«) = /(*) + «(«); Ee(x)±0 [1] where j(x) is a deterministic f u n c t i o n describing t h e e x p e c t a t i o n EY(x) of Y(x) and e(x) is a stochastic residual with e x p e c t a t i o n zero. f(x) is w h a t is usually called t r e n d of y(x) and t h e problem of t r e n d analysis is to find an e s t i m a t e as good as possible of f(x). I t will be shown t h a t it is possible to find an unbiased e s t i m a t o r which has m i n i m u m v a r i a n c e in t h e class of t h e linear estimators of f(x). As to interpolation, one w a n t s to find an o p t i m a l predictor of Y{x), i.e. a predictor Y(x) such t h a t : E( Y(x) — Y(x)) = 0 E()'(x)— Y(x))2 is m i n i m u m . Section 2 gives a schematic account of t h e t h e o r y which can be used to a t t a i n t h e above objectives. I t is a r t i c u l a t e d in t h r e e p a r t s , one a b o u t t r e n d analysis, one a b o u t interpolation when f(x) = 0 and t h e last a b o u t interpolation in general. T h e t h e o r y used is t h e Analysis of the Variance ( S c h e i e , 1959) (8) and Multivariate Distribution Analysis (Anderson, 1958) (2). Section 3 discusses a t h e o r y elaborated in t h e l a t e sixties b y M a t h e r o n and co-workers called Universal Kriging (Matheron, 1969 (5), Matheron, 1971 (6), H u i j b r e g t s and Matheron, 1970 (4) and reduces it t o t h e theory presented in section 2. Conclusions are d r a w n in section 4. 2 . - S C H E M E O F T H E T H E O R Y 2.1. - Trend Analysis Consider equation [1]. If f(x) is f o r m u l a t e d as a linear f u n c t i o n , with known coefficients f u n c t i o n of x, of a n u m b e r of p a r a m e t e r s to be estimated, one can m a k e use of t h e Analysis of t h e Variance to solve t h e problem of e s t i m a t i n g f(x). I n f a c t s one constructs a linear model, which in m a t r i x n o t a t i o n is expressed as follows: y = X'ß + s, Ee = 0, £ = £ e = B [2] M O D E R N T E C H N I Q U E S OF T R E N D A N A L Y S I S A N D I N T E R P O L A T I O N 2 7 3 •where y is t h e vector of t h e observations, ft t h e vector of t h e para- m e t e r s t o b e e s t i m a t e d , e t h e vector of t h e stochastic residuals a n d X' a full r a n k m a t r i x whose ieth row is composed b y t h e coefficients of t h e linear expression of f(xt) in ft. ' m e a n s transposed and are t h e covariance matrices of e a n d y respectively and are assumed k n o w n . Given model 2, t h e following results follow (Scheffe, 1959) (8). 1) ft = (XBxX')^XB Uj is an unbiased estimator of ft which h a s m i n i m u m v a r i a n c e in tlie class of t h e linear estimators of ft. I t should be noted t h a t ft is different f r o m t h e usual least s q u a r e esti- m a t o r of ft, ft = (XX')-1 Xy ft is unbiased b u t has not m i n i m u m v a r i a n c e in t h e class of t h e linear estimators of ft. 2) (Gauss Markov Theorem) Given a vector a if t h e r e exists a vector c such t h a t a = cX',aft is t h e u n i q u e unbiased estimator of aft which has m i n i m u m variance in t h e class of t h e linear estimators of aft. Since /(.») is linear in ft, we get f(x) = a(x) ft where a(x) satisfies t h e condition of t h e Gauss Markov Theorem be- cause X' is full r a n k . Consequently, t h r o u g h t h e Analysis of t h e Variance, one obtains an e s t i m a t o r f(x) = a(x)ft of f(x) which is op- t i m a l in t h e class of t h e linear estimators of f(x). Moreover, tlie t h e o r y gives t h e m a t r i x of t h e covariance of ft Xp = (XB-^X')-1 so t h a t t h e variance of t h e estimator a(x) ft of f(x) is a{x) (XB-lX')~la(x)'. 2.2. - Interpolation ivlien f(x) = 0 To solve this problem one uses Multivariate Distribution Analysis. Let us consider t h e r a n d o m normal vector Y* = ( Y , Y i , Y 2 , . . . , Y „ ) ' where Y = Y(x), x being t h e point of interpolation and Y( = Y(xt), such t h a t BY* = 0. 2 „ * = -4 is assumed to b e known. 2 7 4 L. TORELLI .1 m a y be partioned as follows A = c D' DB where B = 2 of t h e preceding section, c — v a r Y, D = (cov( Y, Yi), c o v ( r , r 2 ) , . . . , c o v ( Y , r „ ) ) ' . One lias t h e following result (Anderson, 1958) (2). Given Yt = yt, i — 1 , 2 , . . .,n, Y is normally d i s t r i b u t e d with m e a n E(YlYt = yr, i = 1 , 2 , . . . , » ) =-- D ' S ^ y and variance var( YI Yt = i = 1,2,. . .,») = c — D'B-W YM(X) — E(YjYi = ?/i, i = 1 , 2 . . .,»)) is obviously an optimal predictor in t h e sense of section 1. Subscript M refers to Multivariate. I n this method t h e assumption of t h e n o r m a l i t y of Y* is m a d e . Such as- sumption can be considered safe and it is based on Central Limit Theorem considerations. 2.3. — Interpolation in general I t is common sense to use t h e following p r o c e d u r e : one gets an o p t i m a l e s t i m a t e / (.r) of f(x) using t h e t h e o r y of section 2.1. Then one applies t h e m e t h o d described in section 2.2 to t h e r a n d o m f u n c t i o n Z(x) = Y(x) — f(x). T h e final i n t e r p o l a t o r is t h e n f (x) + ZM{x). 3 . - U N I V E R S A L K R I G I N G This t h e o r y of interpolation and t r e n d analysis has been developed b y Matheron and co-workers in t h e l a t e sixties. A great mass of lit- e r a t u r e on t h e t h e o r y has been produced b y this school. Only t h e essential references are given here. I n t h e p r e s e n t discussion of Uni- versal Kriging, c o n s t a n t reference is m a d e to t h e article b y H u i j b r e g t s and Matheron, in which this t h e o r y is concisely and clearly exposed. M O D E R N T E C H N I Q U E S OF T R E N D A N A L Y S I S A N D I N T E R P O L A T I O N 2 7 5 The assumption of H u i j b r e g t s and Matheron is t h a t one deals with a realization of a stochastic f u n c t i o n Z(x) for which t h e m o m e n t s of 1st and 2nd order are defined: EZ(x) = m(x) EZ(x)Z(y) = C(x,y) + m(x)m(y) where G(x,y) — cov(Z(x),Z(y)). Moreover m(x) = a, /' (x) (x e 7 ) (I.H-M) (1.H-M) where V is some neighborhood of t h e points of observation. I n other words, m(x) is a linear f u n c t i o n with known coefficents f u n c t i o n of x, viz f'(x), of a n u m b e r of p a r a m e t e r s