On the plane strain in a theory f o r self-gravitating elastic configuration with initial static stress field (*) E . BOSCHI ( * * ) R e c e i v e d on March 22nd, 1974 SUMMARY. — This paper is concerned w i t h the plane strain in a theory for an arbitrary, uniformly rotating, self-gravitating, perfectly elastic Earth model with a hydrostatic initial stress field. Using the associated matrices method, a representation of Galerkin t y p e is given. This representation enables us to derive the solution of the vibration problem corresponding to concentrated b o d y forces. RIASSUNTO. — Tn questo lavoro si t r a t t a il problema della deformazione piana nell'ambito di un modello terrestre arbitrario, uniformemente ruo- tante, autogravitante, p e r f e t t a m e n t e elastico e soggetto ad un campo idro- statico di sforzo iniziale. Usando il metodo delle matrici associate, viene data una rappresentazione di tipo Galerkin. Questa rappresentazione per- mette la soluzione del problema delle vibrazioni corrispondenti a forze di massa concentrate. INTRODUCTION. D a h l e n ( 3 ) has d e v e l o p e d t h e l i n e a r i z e d e q u a t i o n s a n d l i n e a r i z e d b o u n d a r y a n d c o n t i n u i t y c o n d i t i o n s g o v e r n i n g s m a l l e l a s t i c - g r a v i t a - t i o n a l d i s t u r b a n c e s a w a y f r o m e q u i l i b r i u m of an a r b i t r a r y u n i f o r m l y r o t a t i n g , s e l f - g r a v i t a t i n g , p e r f e c t l y e l a s t i c E a r t h m o d e l w i t h an ar- b i t r a r y i n i t i a l s t a t i c stress f i e l d [see, also, B o s c h i ( ' ) ] . ( * ) This w o r k has been made during a tenure of a C . N . R . fellowship. Cavendish L a b o r a t o r y , University of Cambridge. ( * * ) On leave f r o m i s t i t u t o di Geofisica, Università di Bologna, and Istituto di Scienze della Terra, Università di A n c o n a . 2 1 4 E . B O S C H I In this paper we consider this theory in the case of a hydrostatic initial stress field and derive the equations for the plane strain. The medium is assumed homogeneous and isotropic. By making use of the associated matrices method (5), we give a representation of Ga- lerkin type. This representation enables us to obtain the solution corresponding to concentrated loads in an infinite medium for the case of stationary vibrations. Analogous problems have been studied in other fields. («• 2) BASIC EQUATIONS. In the following we employ a rectangular coordinate system Oxk and the usual indicial notations. The Greek indices are supposed to take the values 1, 2 and the Latin indices the values 1, 2, 3. Let 2 be a plane region occupied by the considered medium. We denote by sa the components of the displacement vector and by 0 i the perturbation in the gravitational potential. In the case of plane strain, we have: sa = sa («1, t) , 01 = 01 («1, »2, t), S3 = 0. [1] From the equations established by Dahlen (3), we can derive the following basic equations for the plane strain problem in the case of a hydrostatic initial stress tensor T°j = — p 0 S u (pa = const.): — the equations of motion: aa = [2] Q0 Si — 2 Q0 Q3 S2 = — go Zltl + p + ^ g0 Sj — 2 g0 Q3 = — go + Tp».p + — the constitutive equations: T n = (2 + 2 ft — 2 p0) si.i + (A — po) S2.2 T 2 2 = (A — po) si.i + (A + 2 /i — 2 p0) s2,2 [ 4 ] Tl2 = (1 «2,1 + (fl Po) Si,2 T2I = ¡1 Si ,2 + (fl Po) 82,1 In the above equations, we have used the following notations: Tap - the components of the incremental pseudostress tensor; Fa - the components of body forces; Q = (0, 0, Q3) - the steady angular ON T H E P L A N E S T R A I N I N A T H E O R Y F O R S E L F - G R A V I T A T I N G E T C . 215 velocity rotation; A, ¡i - the appropriate constants of the material; Qo - the mass density; G - the gravitational constant; a comma denotes partial differentiation with respect to space variables and a superposed dot denotes partial differentiation with respect to the time t. Using equations [4], the differential equations [2] and [3] may be written as: p A + (A + p — 2 p . ) + 2 Qo Q V- 3 %i2 7) <)2 • Qo 5 t2 « i + (A + p - 2 p a ) + 0X1 0 X2 5 t S2 — Po — 0! = F1 Dxi (X+fi—2 p0) t)X2 • 2 g o Qz 5 t Si 32 DX22 a2 - Qo at2 S 2 — p0 a X2 p A + (A + p — 2 Po) 0 i = — ^ 2 [ 5 ] 3 a 4 71 Qo G • Si + 4 n Qo G - — s2 + A 0i = 0 diCi 1)X2 G A L E R K I N REPRESENTATION. Using the associated matrices method (5), we obtain the following representation of Galerkin type: si = p L-'2 1 V22 DX22 i 2 + p Qo (A + p — 2 po) 2 a 2 Qz a 2 V22 *X22 a + 2Q0Q3 ciXi 3,»2 ai A + 4 71 Po2 G " | A c hXl DX2 ) • 2 hXi V21 t)X2 i)t r3. (X + p—2p0) • — ^ 2QoQZ^- r t>x2 ai A + 4 71 po2 G y- + p + p Qo N • vi 2 a2 V22 '¿Xi2 A + A 2 Qz a2 2 V22 i>i D22 a^i2 n A [6] 21(5 E . B O S C H I 01 = Ì7I Qo G [X • 3 2 Q 3 Ì>2 4 71 Qo G ¡1 • 2 ÛiCl V22 Ì>X2 ìli S 2 Q 3 i 2 A A where • 2 òa;2 ®22 ûa;i ì)i 4 Q 3 2 ì>2 1 2 Di2 «22 ~ì)t2 r. L a2 V ' A = ô a ,a2 ®12 = (X + 2 n — 2 Po) I go [ 7 ] ®22 = [X j Qo The functions A = A («i, ìc2, ì) satisfy to the following equations: 1 A , where where D F a ~ fx (X + 2 ¿t — 2 p „ ) n n = o 1 ¡>2 M2 t, 2 = „ 2 M fi 2 \ - i 71 QOG [8] [9] STATIONARY VIBRATIONS. I n what follows, we assume that: Fa = Be j j 1 * (an, x2) icot In this case we seek the solution in the form: icot ] io)t a = Be l S (Xi, x2) e cpl = Re 10* (x„ x2) e [10] [11] ON T I I E P L A N E S T R A I N I N A T H E O R Y F O R S E L F - G R A V I T A T I N G E T C . 2 1 7 From the Galerkin representation [6], by putting icut Pi = Be ITi (xi, xi) e we obtain « :=/* Qo (A — 2 Po) Vl2 a2 A 4 71 Qo G a2 1 V22 0X22 n V22 a#22 ) + 2 i Qo to • i)Xi ~òXi ÒX2 2 i ü3 co a V22 ÒX2 A A + 4 7t Qo2 G a2 ì)Xi ÒX2 r 2 a s* = - 2 (X + /t—2p0) a2 + P + fi Qo * 2 i ' l 2 Ò 2 *2 a 2 P . . T 5 T + - ¡tei ~òX2 A + ' i Qo Qs CO V2 0 * = — 4 71 Qo G fl , *2 () n 2 + 4 71 Qo G a2 ) V22 a»i2 j a r* 13 òxi r* 13 2 i Q3 co a V2 2 <1X2 A + 4 7t £>o2 G——-—! A 0x2 r2 r; 4 71 go G u • a 2 Ì Ü3 CO a a * V22 a * Po) • *2 *2 1 2 1 ih 2m2 Po) • *2 *2 1 2 Vi2 V22 [12] where • *2 = zl + - - -^ a Va2 [13] Tlie functions A {xi, x2) satisfy the equations 1 d * ra* = — fi (X + 2 ¡1 — 2 p0) d * a * = 0. Fn [14] 218 where with E . B O S C H I D' , , *2 , *2 • • 1 2 4:71 Qo G ® 2 2 3 ' • " = A + co21 v32. [15] The operator D can be written in the form: D* = A (A — A-I2) (A — A-22), where fti2, 7i22 are the roots of the equation k" + fc2 TO 2 ft)2 + 4 TI G I H 2 " ^ Ï 2 2 " + CO* / ft)2 î)22 4 TI OO G ft)2 Vi- X>3 [16] 0 [17] EFFECT OF CONCENTRATED FORCES. L e t us examine the effect of a body force acting along the axis Xi. In this case, we have: F t = 0, [18] and from equations [14], we can take: r* = r3* = 0 The solution of the problem is given by: r " V22 V2 i>X22 4 71 Qo G 52 ) * 1 1 ) 1)2® ~ÒX22 ' «2 = (A + / * — 2 V o ) ì)Xi ÒX2 2 1 n0 D-3 CO 0Xl ÒX2 [ 1 9 ] „ 1 . 3 co2 3 , 2 i Q3 co û \ _ * 01 = ± 71 Qo G [x\A —— — — 1\ , r X ÏXl V22 ì)®! V22 i)X2 ' ON T H E P L A N E S T R A I N I N A T H E O R Y F O R S E L F - G R A V I T A T I N G E T C . 2 1 9 where 1\" is the solution of the equation: A (A — 7ci2) (A — A-22) n* = [X (X + 2 ¡x — 2 p0) W e can write the solution of equation [20] in the form: r-r * 1 1 = Gi & + 7ci2 (fci2 —• fe2 (7.-i2 —/C22) ' 7ci2 À-2 where the functions Gi satisfy the equations: 1 (A — V ) ©a = Zl (?3 = - IX (X + 2 ̂ — 2 p0) 1 Fi* , ¡x (X + 2 /t — 2 p„) A [20] (?3 . [21] [22] Let us consider the concentrated body force Fi* = 6 (xi)d(x2). In this case the functions Gi are given by: 1 Ga = G3 = 2 n [x (X + 2 [x — 2 p0) 1 2 j r / i (2 + 2 , « — 2 po) j f o (fc0 r) In r [23] [24] where K0 (z) is the modified Bessel function of third kind, and r3 - xi~ + ®22. Using equations [21] and [24], the solution of equation [20], for concentrated body force, is given by: r * 2 71 fx (X + 2 (X — 2 p0) i o (7ci r ) i i o (7c2 r ) fcl2 (fcl2 — fc22) fc22 (fcl2 — 7i22) Ad2 fc22 In r [25] Thus, the solution of the considered problem is given by [19], where f \ * has the expression [25]. I n a similar way, we can obtain the solution for a concentrated body force acting along the axis Ox2. 220 E. BOSCHI ACKNOWLEDGEMENTS. I wish to thank Professor A . H . Cook F.R.S. for his kind hospita- lity in Cambridge, aud Professor M. Caputo for valuable discussions and suggestions. R E F E R E N C E S (X) BOSCHI, E., 1973. - Reciprocity theorem and elastic dislocation theory for an earth model with an initial static stress field. " J . Geophys. R e s . " , 7 8 , 8584. ( 2 ) BOSCIII, E., 1973. - On the plane strain in a Generalized Theory of Ther- moelasticity. Int. " J . E n g . Sci.," 1 2 , 433. ( 3 ) T) AH LEX, F . A . , 1972. - Elastic Dislocation Theory for a Self-Gravitating Elastic Configuration with an Initial Static Stress Field. " G e o p h y s . J. R . Astr. S o c . " , 28, 357-383. ( 4 ) IESAN, D., 1908. - On the plane coupled micropolar thermoelasticity. I , " B u l l . A c a d . Polon. S c i . " , Scr. sci. Teclin., 1 6 , 379-484. ( 5 ) MOISIL, Gr. C., 1952. - Teoria preliminara, a sistemelor de ecuatii cu de- rivate partiale lineare cu coeficienti constanti, Boletinul Stiintific al A c a d . R. P . R., Seria A , 4, 319-326. ( 6 ) NOWACKI, W . , 1904. - Green functions for the thermoelastic medium. I I , " B u l l . A c a d . Polon. S c i . " , Ser. sci. Teclin., 1 2 , 405-472.