Lamb and Love wave propagalion in an infinite micropolar elastic plate E. .Bosem (>!') Reeeive(1 on Febrnary 2w1, Hli:~ SU)I~IAln:. - This puper is eOlwerne,l with mon(lehl'Omatie W;lve propagation in an illfillit.e humogenmlUH lllicropolai' elnsti .. plnte ])()unde,l by two purnllcl free l)lunes. Two kiJl(1s of l)ropagation are ,lis('nsse,l; Lamh an,] Love waveR. \Ye fin,l t.hat a (Iisplaeement field (n" n" O) uwl n mino- I"otution neld (O, 0, 'l'a) le(\(1;; to Lnmb';; waye;;, while a ,Iisplueellwnt fiel,l (O, 0, n,) an(1 a minol'obtion Del(1 (lo!> lo., O) 1ca(18 t.o Love'H wnves. RIA.~SUl>:·I'O. - In qnesto lavoro si tratta la l)rOpngallionc di on,le monoeromatielw in nn piatto elastieo, mirropolare, omog"elwo e,l illnllito, limitato ,In ,1ue piani pnralleli c liheri. Vengono ,liseusRi ,lne tipi (Ii pl"Opa- guzione, qndlo ,li Lamll e quello ,Ii ].ove. :'ii trova ehe il ealllpo di sposta- menti (1!'1' n" O) c,l il e:~mllO ,li mierorotUllioni (O, 0, 't'a) porta a,l on,le (Ii Li!mb, mentre nn eampo ,li spostamenti (0, O, u. J ) e,l Uli eumpo ,li mkro· l'otllllioni ('P" 'Pe, O) port.a n,l owlc ,li Loye. I::\T]UlDl:CTIO:-; OseilJn.tion.~ of an cla~tic plate, ·with stress-f)'{-l(; snrfa.('!'~, lmve been inve~i.igai.c(l by Raylcigh (l~ ), J,amò (") n·nll othcrs, aml more recently by PresC'ott (12), Gogohllllll-l ("), Sai.o (1.1) aml Bwin)..!.', .fn.rdci.zky iJ.ll11 Press ("l). In this VllJCr wc want to (leal ·with thl-l ~amc Vroblem in the frame- ·wark of thc thcary oI mierOllOlal' eJn.si.irity. (~) Istituto ,li Fisiea, Fnivt\1'8itit ,li Bolognu. nipartimento ,Ii i:)l'ienllc ,Iella TelTi!, Lniversitit ,li ,\neona (Haly). 3-l-:! l,. BOSCHI 'l'he linear Llu'or,\" of miero1JOlar ('laHtiC'ity has bCPll illtrodlU,(·a by Erillgl'n ('), rc~an (1") ha,~ (lcl'ivea the [uIHlamenbl equatiolls nsing invariatH'e c'01Hlitions umlel' SUl)('rllOsed righI hody motiom, .:\licl'opolal' clastieity ma.y givc intere,~Ling re,~llllH Khen ullilliea to geollh~-HicHI problelll~, \Ve have all'eady applicd it 1.0 Ilpl'ive an cxplic'it eX1Jr(\SHioll oI the body IOl'ce Hnd Lhe body coullie eqllivalenLs fol' seismie (LiHlocatiolls (1,2), Itunc EQCA1'lOXS 'l'hl'oughOllt thi,~ 1HqH'1' \H\ em1Jloy the uHual in(Licial notatiollH, "\11 r<\1,.'1t!arity hnlOthcses on thc eOllHi(Lel'ea funetiol!H \\-ill be omittcll. \\Te consiacl' a reeLa,nglllal' Cal'LeHiall ft'ame O,t' k (k '--= ',2,3). 'l'he lJH,~ie (\quations in thc lincar thcOl'y of honlOgenco1lH amI allisotropie ela,~Lie ,~olillf; are (la): - the kinematiC' relaliollS: - the eqllatio1lH o[ motion: tll,l +]j'j = e iii -miCJ + f:IJk t} 1t + JL = Iii TI - the constitutive law,~: ti) = AllltI C~I + Bjj~j %kl mi} = Bklil CkJ + GO t i %kl [1.a] Il.bJ [2.a] [2.bJ [3.»J [3.b] III t-he abovc cquaLiollS 'Hl havc med thc follo\\'ing llotations: 1t., the ('01111)()]Hmts oI tlte (liflphl('Pl11ent vectol'; !Pl, Lite eOI111)OllCnL,~ of the lllierOl'otaLioll veetol'; Ci} aIHL %Ih thc killematic eharactel'i,~ti(l,~ of Lhc ,~train; t}l, the COlllj)(mell1:H of t-he stre,~s tenwl'j 1nJI, the (l011111O- nellts oI tlte eouplc HtresH tensol'; 1<'J, Lhc eomvollents oI the bOlly IOl'eej _MI, Llw comllOnents of Llw body COUlllci (!1 the mass densitYi AlJItI, 343 B"I·', 0,,1:1, I", t lre Chanl{!lAwisti c constant.I; {lf t he mllwl"i al ; fjJ l:, t!w nlt.l::rml,ting t~~IlSOI"; a· COIlUllrL (IOllot.es partùl,I <1 cl" ivntioll wit.h ros}lcct to ~pn,ce variab lcs, amI a supcrpo~Nl doL p a rtial dcrivn.tion with reSl) Cct to the ti m e t . FlU·thel"mol'c , wc hav e: A/ikl = A . I / j 00.' = Ol:l/j I" = I j/ , ) [4] Jf the bo(l.y is homogf.l! HWl\S , isotropie a ll d l'.cnLros)"mlllct ric, wc hnvo: A l i t I = À Ilo (hl + (p - ;-; ) b lk bl l + f.l bu b, t Bjj~1 = U CIJ~I = a bj) bkr + r /l/t /lil + {J /lu /ljJr anl1 eql1aLiolis {3] are a lteretl to: t'i = À eu /l" + (p. + xl CII + Il CII mll = a ~H Oli + Y i1:H + P XII [5] whel"e l., Il, x , a, y a·mI p r\1"e materia l const.an ts satis!,rillg llic foll owing i lleq unlities: 3À+2.u + ;-; ~ O I 21l +r.~ O ;< ~ O 3a + /J + i' ~O [G] \ - y ~{J ~y y ;. U whi ch are the necessal".y r ~\lII I; uflicient cOlH1itiollS lol' tlic internaI CIICl"gl' tu be n on-negative. Furt·lrermnrc wc cali n lso write: III =.T (j" [7 ] \\"hcl"t~ I is another m a teri ;11 cOllstan L E. BOHCIIl ][ cquatiom [5] alHl [7J are flubstitutessPs. Eqnation.~ [U.nJ aTI' snt·isfip(l by: pl'oviùell lh c-= (j),1 - lP,Z 112 = (j),z + '1',1 (iì + :3 P + r.) [72 (j~ - f! (j) = O (p, + r.) V2 Ip - f! lp - % g;~, = U [y 17 2 - '2 r. - I ò2 /òP] !f3 + r. 17 ~ !j-' = U [l:3J The fil'~t equnt ion [12J llef\(·l'ibC'.~ thc pl'opag,ltioll of 1ong-itlHtinal (li~­ jlbeement wayes with yt'loeit~·: i,+2 ,u+r. [1:3) The la~t two equations [l:! J ('11ll be rt'(luet'(l to tlll' fol1owillg [orm: {[y [.h _ :! r. - I ~ ~/W] [(II + r.) Vz - !!Ò2/~n -i- %! V~} (f1 = U [l·La] { [y V2 - '2 % - I {l2/W] [(.u --;- r.) V~ - e ~~/N~J ...!.. r. ~ 17~} !fa = U [l·Lb] E. nOSCHI Let us assulllc solutiollS of thc fOl'lll: W (XI, X" t) = ([J* (X!) ei (k";2 ._--" wt) ':1' (Xl, .7:" t) = I.p* (Xl ) ef (!eX, - wl) rp~ (ah, x" t) = rpa* (xI) ei {kf, - wl} The 1irst cqnatioll [12J ancl cquatiollS [HJ beeome: where t.he followillg llotntioll~ have ueeu introc1nccc1: b~ = 2 r.fy a2 = u 2 /[Y (f' + r.)] C2 2 = /tle C3~ = r./e C4 2 = ì'II \ ( [15J ) [lOJ Ip*=O [17.a.J - le') I ~,' ~O, [17.b] [18J Equations [liJ (ltlseribe the moc1if'tccl tranSVCl'flC waves. We seurch solutiollS oI equation8 [16] a!l(l [17J of the fOl'm: rp* = A i\illh (1) Xl ) + B c08h (1J xl) [19J 1.jI* = C sinh (h xl) + D cOflh (7,;1 x'I) + R sinh (k2 xI) + F cosh (7,;. xJ) rpa* = G sinh (1'1 Xl ) + L cosh (h ,'(1) + l' sillh (1;2 xl) + (J eosh (le. xl) LAMU A~D LOYE \l'AVE PROrAGATIQ:s", lèTC, Wher(l 1 ','1 ~~ = k~ + --, . :2 l b2 _ a~_0'~_d2 ± I ( (/.~ + I )I~('l - -1. a~ Vl~ -b~) . '1 = J,.z_ -- ( W' ) VI2 347 Let lL~ 111m Sll(leialize our st.u=O am1 the eXIH'essions [19] he('ome: w* = A sinh (l/ '1'1) Ij'* = j) C'ORh (li. Xl) +}i' eosh U'2,'l'1) 1f/'" = L e08h (kJ .'V I ) + () C'ORli (h ;t',) [2liJ ~\S in n, pnwiously l'onsi(lere(l l'ase, b~' intro(lul'ing Uwsc cX]lmssions into equnt.ions [12], 'Hl get.: L =T,D Q=n}i' ,dwl'e T I a1\(l n ha"c heen aheaet us a,ssume solutions oi the iorm: A (x" X2, t) = ..1* I ~ ,\ ~'i;' ",,-fI)l) ,_o, y r (Xl, X2, t) =r* (Xl) ei ( I,; X2 - wt) '!I~ (.1.'1, X2, t) = 1~3* (:lh) ei (f~ x, - Wf) 'l'hen the first. equatioll [33] and equations [34J heeome: , .. 2 , + ":'A l ..1* = O ti!- I [3,LaJ [3U] [35] [36] _ko)!r. ~ O [37.a] 1( "0 ·(dO -- - k2 + a~ -- d.l.'l ~ ) d.1.'1 ~ -70"11 , , tI~* = O [37.hJ ~:, I\n~('lll where w' \\'e f;eal'eh, as iu the {Jn'vious pase, wllll.ious of equalions 13li] a1l(1 [37] or lhe ffJl'lll: whel'e L1'~' =.iI Sillh (~,r l ) + n eoslt (~,rl) F* = C sinh (1.-1 xl) + /) eosh (10 1 ;rJ) + + p; siuh (b xd + p cosh (h ;:t'l) 1t3 * = U sinh (l'1 xd + L eosh ('" ,Td -i· + r f;illh (1.- 2 ;1'd + Q ('osh (h :l',) l~et Il,~ uow speeialize om' study to tlw ('.Hse or synullet.l'ie vihm·· t.ions. 'J'hen lIte POllllloupnt (f2 of t)l(' miel'ol'olalion YW'j:OI', t.he C'om· ponents mll a.Jl(1 m~~ or the eOllple stl'e~s teusoi' an!! lhe ('omllOlll'nl tl~ of lIte f;h'es8 tellsor must he symll1etl'iC' with l'espert to the pIane Xl ~ (I. 'J'hiR leadR lo: whel'e: (" ..-1=D=P=L G = el () 'II=],~. From the a~sllmplion thllt t.he delel'lniuant of lite system or the three homogeneous ewwtions, obtl1.ine!! giying tu! eXlllieH expression to the ])Ollllllllry tonditiollS F~:.!J, nllV;t. be zero, wc get tlw followiug pel'ifHl equation: L,nlll A:s"D LOVE WAVE PROPAGA'no:-.-, ~:TC. 3;)3 t~h (l; 11 ) I . ( t ~h (/;~ 11 ) \ t.gh (1.:, H) = (l' + (3) Y. k- yz kt tg h (/;1 11 ) _ . y l h) + + I la + ~ + y) ,e -" l ' I ( !l,I, -!le I, t":, I;'e 11 1 1) )' I. tg l (" ) , l-l . ; Iy + ~I' k' Il, I, - le Id [3DJ where: l'n = " J.. R , , I 1 ., ~' 1/ = ,_o For wave Iengths HlllaU NJlnparell to the thiekneHH '2Il, equatioll [391 rmIllceH to: '~+~)~ C lhh-hh)-~h-~N . [(l' -+- fI) y. 1.: 2 - ((1 -I- fl + l') C ~ - (12 ""J It iH OlrViOIlH that we have ilO cOllntel'llart of eqllationfl l39J aJl(1 [.W] ili eIa.~f1ieal rla~ti('ity. IIo\l'cver \l'e may eonrlude that ill a micro- polar rla,<;tie mediulll wc Imve waves of Jjove type, while, in Uw elaH- sieal framework, this is possible onlr in a layel'ell mellillin by illlposing some eOlHLit.ions on thc materiai eonsta.lltS. Let us 1I0W slJedalize Olll' stlUIy to the case of Hntisymmet.ric "ibl'ations. 'l'he pOlllllOncnt rp~ of the miC1'Orotatioll veetor, the com- ponents 11/.11 and 11122 of the {'oujlle Stl'Cfl~ tewwr and the componellt 113 of the stress tellsor are alltisymlllctl'ie with respl'eI- to thc pIane;1', = O. These eOIHIitionfl Icall t o: B=()=}iJ=(}=P=O L = ~ID Ci - ,e P all(l by the p1'Oeedlll'e, aiready employed in the preTiolls caHeH, \l'e get the following lJeriod eqlla.t.ion: l:. BOSCHI tgh (: H) tgll (l'III) I (y + fil (lo. I, - lo, Id lo' ( Il I (a ~ fi ~i y) C' - a lo ' I· I t.gh (lo. Il) . fIl h - y~ ti 19h (k~lI) + l I tgh ("'l II) + . (y ...!.. fi);,:~ H~ f;" , [J" . l (l' lI) :: t.g l " 1 )-1 -. lo, Y' j ['l] For wave lellgths small ('omp~u·e(l with t.he t.hickness ':!.1I, cqu a - hon [H] reaupeH lo equaj.jon [-l-OJ. CO-'"'CL1.:f-no)OO{ \Ye have stwli('(l t.lle I~amb ami I~ove \yavc lll·ollllgation in an infinite homogl'llcolls miel"Opolar ela.st.ip plate wit.h hee houlHlary sm·fa.c·es. "'e havc fOUlla that a diHplacement liel(1 (1/'1, u~, O) alld a miel"Ol"Otation tiel,1 (0, 0, op,,) leads lo waves which can be cOluù,lcrcd of Lamb's kin(l, \\"hile a, (lisplaccmcnt. fida (O, O,n3) an(l a mip.J'Ol'o- t.at.ion fida ((Pl, V'e, O) leads to ,,·aves ,,·hich can bc ('(lllsidel'ed of Love's kina. 'rhcrcforc il- is possihle to have, in mipropohn mc,lia, I~ovc w,òve;; wit.hout. thc comlit.iollS rcquil·ed in t.he framc'\"ork of elaHf;, ETC. (~) EI\"IXG \Y. :\1., .L\lWJ-:TZKY \\'. S., l'rn;~s F., Infi,. - '''lo",li(~ Jran'R in Layern! Jledill. X('W Yorl,. {' I {'I {'I {'I :-:iep, :-:ice, Sce, Ree, E'. g-. , ('1]. e.g., p(]. e.g- .• CI]. p.p:., el]. [(i.121, pa.!!;p 283, [G.151 an,] [(i-17J, [fi.ll], pag-I' 283, [U.211, pag-(' 28fi, or Rd. ,. png-c 283, or Hd. ,. 01 Rel. ,. 01 Hd. ,. (') G-OOOLAJ)ZE \'. (;-., In-1-7. - J)i~jJcr8ìon 01 Nn.yleiqh INn'f~ in a I,ayef. l'ul,1. Tnst. :Okisill. Aead. Sci. [T.R.:'..:"., 119, 27, (lO) Jll~AX n" I!HHJ. ,<,'a/' la 'l'héorif df lo T"'el'll/Oaa.~lirill J/ilTIl/wloiu ('1!!ljilée. "C. Bt'IlI1. Aca,!. :)t:. 1'1Iris", 268, :;8. (") LA~11\ II., UliU. - On Jrlll'es i!l O!l l~IIINlic l'lale. ''l'rot". Bo~·. ~()('. (Loll- 11(11)", A, 93, 11-1-. (12) l'RllSCOl"l" .1., Ifl-1-2. - T~loslie Jral'e,· am! ri/!!"lIlif)!lN Ili 'J"hin .7:od~. "l'h il. :\Iog-."', 33. 703. (1:1) lL\1:Ll':wH, 188!). - Olio III" F/'e1' J"i/i)"{/Iioli~ Ili ali lnlinilr' l'lale oi Ho- lIIoyen"ol!s isolro})il' Eh/Nlie J[III/I'I'. ·']'l'O('. 1,(I[1(lon \Iatl!. :-<01'.",20, 22". (") ~A'T[) l'., Wfi1. !Slw/y Ili !SI(./,Ia('() Jrlln'~ li: J"e/odl!! 01 SIi/'fOCf ]l"lIl"fN /')"f)jiaqllll'f/ "!/)fJn Hla~lh' l'lale,·. '·Bull. Earlh. Hcs. Tnst. (']'ol,:\'())"', 29, 223.