A c o m p u l a t i o n p r o g r a m f o r n u m e r i c a l f i l t e r i n g M . A T T O L I N I ( * ) - L . D A L L ' O L I O ( * * ) - V . G U E R R I E R I ( * * ) - P . R A N DI ( * ) Ricevuto il 9 Aprile 1968 RIASSUNTO. — Viene descritto u n p r o g r a m m a , scritto in linguaggio F O R T R A N IV, per il filtraggio numerico di serie t e m p o r a l i . Tale pro- g r a m m a è s t a t o p r o v a t o con u n calcolatore del tipo IBM 7094/7040 DCS. L ' o p e r a z i o n e di filtraggio numerico p e r m e t t e di e s t r a r r e o sopprimere, in u n a serie t e m p o r a l e , onde di f r e q u e n z a prefissate i n d i p e n d e n t e m e n t e da variazioni di fase ed ampiezza con cui esse si possono presentare. SUMMARY. — A c o m p u t a t i o n p r o g r a m , w r i t t e n in F O R T R A N IV language, for n u m e r i c a l filtering of time series is described. I t was tested with an I B M 7094/7040 DCS c o m p u t e r . The numerical filtering operation allows to e x t r a c t or suppress in a time series prefixed f r e q u e n c y waves i n d i p e n d e n t l y by t h e change of phases and wideness w i t h which t h e y can a p p e a r . M E T H O D . I t h a s b e e n d e s c r i b e d , i n a p r e v i o u s p a p e r ('), a filtering o p e r a t i o n of t i m e series o n e q u i s p a c e d d a t a , c o r r e s p o n d i n g t o a p r e f i x e d r e s p o n s e . I n t h e f o l l o w i n g p a p e r is d e s c r i b e d a c o m p u t a t i o n p r o g r a m b a s e d o n t h e m e t h o d d e v e l o p e d i n ('). A n u m e r i c a l filtering o p e r a t i o n o n a n e q u i s p a c e d d a t a series ni(i = 1,2, ) is o b t a i n e d b y c o m p u t i n g a n e w s e r i e s : +s n'k = Sj aj nk+i , k^r + 1 , [1] — r (*) I s t i t u t o di Fisica Università di Bologna. Gruppo I t a l i a n o di Fisica Cosmica. Consiglio Nazionale delle Ricerche. (**) Centro di Calcolo di Bologna. Comitato Nazionale per l ' E n e r g i a Nucleare. 2 0 K M . A T T O L I N I - L . D A L I . ' O L I O - V . G U E R R I E R T - P . R A N D I w h e r e t h e (r + s + 1) q u a n t i t i e s a j a r e called coefficients or w e i g h t s of t h e n u m e r i c a l filter, as d e s c r i b e d in ('). T h e series n ' k c o n t a i n s t h e a l l o w e d f r e q u e n c i e s c o m p u t e d b y m e a n s of t h e used filter. F o r o b t a i n i n g a new series n " * w h i c h does n o t c o n t a i n t h e s a m e f r e q u e n c y b a n d s , one m u s t r e v e r s e t h e coefficients sign of t h e filter, e x c e p t t h e c e n t r a l one w h i c h is r e p l a c e d w i t h t h e d i f f e r e n c e b e t w e e n n u m b e r 1 a n d t h e c e n t r a l coefficient, a n d t h e so o b t a i n e d filter m u s t b e u s e d on t h e original d a t a series. T h e t w o o p e r a t i o n s , n u m e r i c a l f i l t e r i n g a n d t h e d i f f e r e n c e f r o m t h e original series, a r e e q u i v a l e n t t o t h e r e s u l t i n g series n " k — v ' k . T h e choice of t h e coefficients of t h e filter is s t r i c l y c o n n e c t e d t o t h e k n o w l e d g e of t h e p h y s i c a l p r o b l e m a n d i t d e p e n d s on t h e r e s t r i c t i o n s i m p o s e d 011 t h e f r e q u e n c y b a n d t o s e a r c h a n d also on t h e i n d e p e n d e n c e of t h e r e s u l t s . D E S C R I P T I O N O F T H E P R O G R A M . T h e p r o g r a m h a s b e e n c a r r i e d o u t a t " C e n t r o di Calcolo del ON E N " in B o l o g n a u s i n g t h e F O R T R A N IV l a n g u a g e , v e r s i o n 13, u n d e r t h e I B S Y S 7094/7040 DCOS m o n i t o r c o n t r o l . T h e d a t a set t h a t c a n b e e l a b o r a t e d is p r a c t i c a l l y u n l i m i t e d ; t h e m a x i m u m allowed set of coefficients of t h e filter is 99. T h i s d a t a set is e x t r e m e l y s u f f i c i e n t f o r m a n y p r o b l e m s b u t i t c a n also b e i n c r e a s e d b y m o d i f y n g t h e a p p r o p r i a t e s t a t e m e n t s . S o m e t i m e s i t m a y b e n e c e s s a r y t o c o m p u t e series of filtering o p e r a t i o n s on t h e s a m e d a t a , a n d , i n t h i s case, i t will b e s u f f i c i e n t t o follows t h e s u g g e s t i o n s d e s c r i b e d a f t e r f o r o b t a i n i n g series of com- p u t a t i o n s a t a l o w e s t t i m e . I t h a s also f o r e s e e n t h e e l a b o r a t i o n of s e v e r a l d a t a series w i t h t h e s a m e coefficients or w i t h d i f f e r e n t coefficients f o r g a i n i n g t h e set- u p t i m e , i n t h e c o m p u t e r , of t h e r u n n i n g p r o g r a m . B e s i d e s , i t h a s b e e n c o n s i d e r e d t h e n e c e s s i t y of g r o u p p i n g t h e i n i t i a l of filtered series d a t a b e f o r e a n u m e r i c a l filtering: i t allows t o r e d u c e t h a t r a n d o m noise t h a t s h o u l d give u o i n f o r m a t i o n a b o u t t h e t e s t i n g series. T h e p r o b l e m t o t r e a t will s u g g e s t , t i m e a f t e r t i m e , t h e r i g h t choice f o r g r o u p p i n g . T h e p r o b l e m c o n s i s t s i n k e e p i n g t h e t i m e p o s i t i o n of t h e o r i g i n a l d a t a , n a t u r a l l y p r o v i d i n g t h a t t h e n u m b e r of t h e coefficients (r -f s + 1) A C O M P U T A T I O N P R O G R A M F O R N U M E R I C A L F I L T E R I N G 21 5 will b e o d d . T h e c o m p u t e d coefficient n'k is set in t h e m i d d l e of t h e i n t e r v a l only if t h e c o n d i t i o n r = s is satisfied. T h e c o n d i t i o n s r = s m u s t b e satisfied in o r d e r t o use t h i s p r o g r a m c o r r e c t l y . A f u r t h e r e x p e d i e n t , t o a v o i d over-excess of figures f o r s u b s e q u e n t e l a b o r a t i o n s a n d w i t h no d a m a g e t o t h e clearness of t h e p r o b l e m a n d to t h e a m o u n t of t h e g a i n a b l e i n f o r m a t i o n , consists i n s e l e c t i n g t h e s i g n i f i c a n t figures, in t h e r e s u l t s of e v e r y o p e r a t i o n s , f o r t h e considered p r o b l e m . B e s i d e s , t h i s e x p e d i e n t allows t o rescale t h e r e s u l t s as desired so as t o b e seen i n a n a p p r o p r i a t e scale. F u r t h e r e x p e d i e n t s h a v e b e e n described below. O R D E R O F D A T A C A R D S D E C K S E T - X J P . All c a r d s m u s t b e i n c l u d e d in t h e o r d e r s h o w n b e l o w . [A] = t i m e series d a t a p a r a m e t e r c a r d . [B] = v a r i a b l e f o r m a t c a r d f o r t i m e series i n p u t d a t a . [C] = t i m e series d a t a . [D] = E N D p u n c h e d in col. 1-3. [E] = c o m m e n t c a r d . [F] = p a r a m e t e r c a r d f o r a filter o p e r a t i o n . [G] = v a r i a b l e f o r m a t c a r d f o r o u t p u t d a t a t o b e p u t on logical t a p e N T P O . [II] = v a r i a b l e f o r m a t c a r d f o r o u t p u t d a t a t o b e p r i n t e d . [I] = filter coefficients. R e p e a t [E] t h r o u g h [I] as desired. [J] = b l a n k c a r d . [K] = b l a n k c a r d . R e p e a t [A] t h r o u g h [K] as desired. [L] = b l a n k c a r d (to n o t i f y t h e p r o g r a m t h a t t h e e n t i r e j o b s is c o m p l e t e d a n d c o n t r o l m u s t b e r e t u r n e d t o t h e M o n i t o r ) . 20K M. ATTOLINI - L. DALI.'OLIO - V. G U E R R I E R T - P . R A N D I E X A M P L E O F D A T A D E C K S E T - U P . 1. R e p e a t e d as desired (see page 3) 2. Repeated as desired (see page 3) C A R D P R E P A R A T I O N . Card columns Corre- s p o n d i n g variable [A] card 1 - 2 N D S 3 - 4 5 - 6 7 - 8 N T P I K E I T D E S C R I P T I O N F O R M A T ( 4 1 2 ) — n u m b e r of t i m e series d a t a c o n t a i n e d i n e a c h i n p u t c a r d . —- l o g i c a l t a p e n u m b e r of i n p u t (5 if i n p u t is f r o m p u n c h e d c a r d s ) . — n u m b e r of d e c i m a l figures if c o n v e r s i o n is u s e d (*) — = 0 if i n p u t c o n v e r s i o n is r e q u i r e d (*) ^ » » » » n o t r e q u i r e d (*). (*) One m u s t use conversion wlien t i m e series i n p u t d a t a are p u n c h e d as integer c o n s t a n t s h a v i n g t h e sign (hole zone) over t h e less significant figure of t h e n u m b e r . I n this case each field of w i d t h w, c o n t a i n i n g t h e n u m b e r , is considered like it were f o r m e d of two sequential fields: t h e 1st of i n t e g e r - t y p e of wliidth w — I, t h e 2nd of a l p h a m e r i c - t y p e of w i d t h 1. i.e.: if n u m b e r 12.125 is p u n c h e d according to t h e f o r m a t specification P 7 . 3 no conversion is required, being a F o r t r a n n u m b e r (in this case IT = 0). The c h a r a c t e r string 12121^, (where N means holes 5 a n d 11, m i n u s sign overpunched) columns of t h e card p u n c h e d in a field of w i d t h w = 5 for having t h e same value as t h e above one, m u s t be read according t o t h e f o r m a t specification (14, A l ) and must be KE = 3 (decimal figures of t h e number) a n d IT ^ 0. A C O M P U T A T I O N P R O G R A M F O R N U M E R I C A L F I L T E R I N G 21 5 C a r d ' c o l u m n s C o r r e - s p o n d i n g D E S C R I P T I O N v a r i a b l e [B] card FORMAT (13A6,A2) 1-80 F R 1 — f o r m a t of t i m e series i n p u t d a t a m u s t b e like (A3, s p e c i f i c a t i o n s f o r i n p u t d a t a ) . C o l u m n s 1-3 c a n n o t b e u s e d . T h i s r e s t r i c t i o n is u s e d t o allow a n i n d e f i n i t e n u m b e r of t i m e series i n p u t d a t a c a r d s , t h e e n d of w h i c h is r e a c h e d w h e n t h e p r o g r a m r e a d s t h e [D] c a r d . [G] card F R 1 f o r m a t (see [B] c a r d ) 4-n E L (n < 80) ( K A , — t i m e series i n p u t d a t a (those d a t a will b e t h e K B ) 1 s t file of a t a p e w h e r e logical n u m b e r is 3. T h i s file is a d d r e s s e d b y m e a n s t h e v a l u e 1 a s s i g n e d t o t h e N F E L v a r i a b l e ) . T h e i n i t i a l t i m e series d a t a a n d successive filtered ones a r e r e c o r d e d on logical t a p e 3 t o f o r m a s e q u e n c e of files. E a c h file c o n t a i n s a s e q u e n c e of r e c o r d e d d a t a . A s d e s i r e d , t o filter d a t a r e c o r d e d i n t o o n e of t h o s e files, one m u s t assign t o t h e N F E L p a r a m e t e r t h e v a l u e of t h e file a d d r e s s (its p h y s i c a l p o s i t i o n on t h e reel) a s s u m e d p u r i n g t h e file r e c o r d i n g . [/)] card FORMAT ( A 3 ) 1 - 3 K E N T ) — t h e w o r d E N D must b e p u n c h e d in t h e cor- r e s p o n d i n g c o l u m n s . T h i s c a r d n o t i f y t h e p r o g r a m t h a t all t h e c a r d s c o n t a i n i n g t i m e series i n p u t d a t a h a v e been r e a d . [£] card FORMAT (13A6,A2) 1-80 F C O M — t h i s is a c o m m e n t c a r d (i.e. i t m a y c o n t a i n s a c o m m e n t a b o u t t h e n u m e r i c a l filter o p e r a t i o n ) . [i1] card FORMAT ( 9 1 2 , E l l . 6 ) 1-2 N F E L — specifies t h e a d d r e s s of t h e file of logical t a p e 3 c o n t a i n i n g t h e i n p u t d a t a f o r t h e filter o p e r a t i o n ( N F E L = 1 a d d r e s s e s i n i t i a l i n p u t d a t a ) (see [C] c a r d ) . 3-4 N — n u m b e r of filter coefficients. 5-0 N D P — n u m b e r of d a t a p e r r e c o r d t o b e p u t on logicel t a p e N T P O . (Must a l w a y s b e N D P > 0). 20K M. A T T O L I N I - L . D A L I . ' O L I O - V . G U E R R I E R T - P . R A N D I C a r d c o l u m n s [jP] car 7 - 8 9 - 1 0 1 1 - 1 2 1 3 - 1 4 1 5 - 1 6 1 7 - 1 8 1 9 - 3 2 C o r r e - s p o n d i n g v a r i a b l e d (cont.) N E N T P O M S T A M P E E I C K A 2 A l D E S C R I P T I O N — n u m b e r of i n p u t d a t a t o b e g r o u p p e d b e f o r e e x e c u t i n g filter o p e r a t i o n . — logical t a p e n u m b e r on w h i c h (if M P E E ^ 0) o u t p u t d a t a a r e p u t (i.e. f o r p u n c h i n g off-line). — 1 t o p r i n t o u t p u t 0 n o t t o p r i n t o u t p u t — 1 t o p u t o u t p u t on logical t a p e N T P O 0 n o t t o p u t o u t p u t on logical t a p e N T P O — 1 if o u t p u t c o n v e r s i o n f o r r e c o r d i n g on logical t a p e N T P O is r e q u i r e d 0 if o u t p u t c o n v e r s i o n is n o t r e q u i r e d . — n u m b e r of figures f o r o u t p u t d a t a . — rescale f a c t o r . T h e rescale f a c t o r ( A l ) allows t h e p r o g r a m t h e rescaling of t h e o b t a i n e d r e s u l t s . K A 2 allows t h e user t o fix t h e n u m b e r of o u t p u t figures of t h e rescaled r e s u l t s . i.e.: if t h e filter o p e r a t i o n h a s given t h e n u m b e r 23456 a n d u s e r desires t o o u t p u t o n l y t h e n u m b e r 34 (2nd a n d 3 r d figures of t h a t r e s u l t ) h e m u s t fix K A 2 = 2 a n d A l = 0.01. [G] card F O R M A T ( 1 3 A 6 , A 2 ) 1 - 8 0 F E 2 — f o r m a t of o u t p u t d a t a t o b e p u t on logical t a p e N T P O (see [ I f ] c a r d ) if t h e s e o u t p u t a r e n o t desired ( M P E E = 0 in [ F ] c a r d ) t h i s c a r d c a n also b e a b l a n k c a r d . if M P E E ^ 0 t h e f o r m a t specified must b e l i k e (13, s p e c i f i c a t i o n s f o r o u t p u t d a t a ) . C o l u m n s 1 - 3 of o u t p u t r e c o r d s t o b e p u t on logical t a p e N T P O c o n t a i n a c a r d s e q u e n c e n u m b e r . « s p e c i f i c a t i o n f o r o u t p u t d a t a » m u s t b e like , I w , AL, w h e r e w = KA2-1 if I C = 1, or like I w w h e r e w = K A 2 if I C = 0 f o r each o u t p u t d a t a . [H] card FORMAT (13A6,A2) — f o r m a t of o u t p u t d a t a t o b e p r i n t e d . If t h i s o u t p u t is n o t desired (MSTA = 0 in [H] c a r d ) t h i s c a r d c a n also b e a b l a n k c a r d . A COMPUTATION PROGRAM FOR NUMERICAL F I L T E R I N G 21 5 D E S C R I P T I O N If M S T A # 0 t h e f o r m a t specified must b e like (15, specifications f o r o u t p u t d a t a ) . T h e 1st 5 c h a r a c t e r s of e a c h p r i n t i n g line a r e t h e line s e q u e n c e n u m b e r . " s p e c i f i c a t i o n s f o r o u t p u t d a t a " m u s t b e like I w , w h e r e w = K A 2 f o r each o u t p u t d a t a . F O R M A T ( 8 X , 1 2 F 6 . 5 ) — filter coefficients. (These m u s t b e p u n c h e d i n t h e following o r d e r : c e n t r a l coefficient a n d t h o s e a t i t s r i g h t ) . [J], [ K ] a n d [L] m u s t b e b l a n k c a r d s . R e p e a t [E] t h r o u g h [I] c a r d s t o do o t h e r n u m e r i c a l filter o p e r a t i o n or using i n i t i a l d a t a ( N F E L = 1) or u s i n g o u t p u t d a t a o b t a i n e d f r o m t h e initial ones (see [C] c a r d ) . C O M M E N T . I n t h e f o l l o w i n g p a g e s it lias b e e n r e p r o d u c e d t h e list of t h e d e s c r i b e d p r o g r a m . A s a n e x a m p l e of u s a g e of t h e r e s u l t s i t h a s b e e n also r e p r o d u c e s a p l o t t e r (see F i g . 1) o b t a i n e d h a n d l i n g t h e 7091/7010 D C S o u t p u t s b y a n a d d i t i o n a l p r o g r a m r u n n i n g on a n I B M 1620 c o m p u t e r . T h e a u t h o r s h a v e m a i n l y c o n t r i b u t e d each in t h e i r a c t i v i t y field. A C K N O W L E D G M E N T S . P r o f . M. Galli g a v e t h e o p p o r t u n i t y of v e r y i n t e r e s t i n g discussion. P r o f . E . C l e m e n t e l , D r . A. Chiarini, D r . C. Lolli m a d e e a s y t h e I B M 7094/7010 D C S c o m p u t e r s u t i l i s a t i o n a t t h e " C e n t r o di Calcolo del C N E N " of B o l o g n a ( S H A R E I n s t a l l a t i o n B I ) . Corre- Card s p o n d i n g colums . . . v a r i a b l e [E] card (cont.) [I] card 9-80 CO E F R E Q U I R E D R O U T I N E S : R F 5 K 0 1 S D A n . 3 0 6 1 a n d R F 5 K 0 3 S D A n . 3057 J A N U A R Y 1 9 6 6 2 3 2 5 2 7 2 9 U.T. F i g u r e 1 - C a p t i o n : A) Original D a t a ; B) F i l t e r e d D a t a ; C) F i l t e r e d D a t a b y r e v e r s e d l>) filter coefficients. A C O M P U T A T I O N P R O G R A M F O R N U M E R I C A L F I L T E R I N G 2 1 5 DIMENSION FCOMl 1U1.FR1 ( 1 U ) . F R 2 ( 1 U I , F R 3 I 1 U ) . E L I 5 0 3 0 ) . F I L I 5 0 0 0 ) , 1 K F IL ( 5 0 0 0 ) , N R E C I 1 0 0 ) , C O E F l 1 0 0 ) DIMENSION K A ( U 0 ) , K 3 i U 0 ) ECUIVALENCE(FIL, REWIND l* MFIL=NFILE-NFEL+2 CALL BAKFILt3.MFIL) C C M1 =N/2 M2=M1•1 READ! 5 , 3 3 7 ) ( C O E F l I ) , I = M2,N) 337 FORMAT» 8 X , 1 2 F 6 . 5 ) DO 50 1=1,Ml M3=N-I•1 EL( I ) = 0 . 50 COEFlI)=COEF(M3) KA2=10»»KA2 2 1 (i M . A T T O L I N I - L . D A L L ' O L I O - V . G U E R R I E R I - P . R A N D I NN=NTOT-NVR+1 DO 8 J = 11 NVR EL(J)=EL(NN) 8 NN=NN+1 I2=NVR C NSP=K3/NDP- GO TO 513 17 NSP» 1 IF(K3« EQ.NDP) GO TO 513 K4=K3+1 DO 514 MM=K4,NDP 514 F IL{MM)=0» 513 DO 15 J 1 = 1 » K3, NDP J2=J1+NDP-1 WRITE141 ( F I L I J ) , J = J 1 , J 2 ) 505 IFI(MSTA+MPER1.LE.0) GO TO 301 DO 16 H J = J 1 , J 2 I FIFILIMJ l . N E . O . ) GO TO 416 KFIL(MJ)=0 GO TO 16 416 KFIL(MJ ) =MOD( I F I X ( F I L « M J ) » M » S I G N ( . 5 , F I L Í H J ) J ) , KA2 ) 16 CONTINUE I F ( M S T A . G T . 0 ) W R I T E ( 6 , F R 3 ) J N P , ( K F I L l J ) , J = J 1 , J 2 ) - IFIMPER.LT.1) GO TO 301 I F( I C . E Q . l ) GO TO 613 WRITE(8.FR2) J N P . I K F I K J ) , J = J 1 , J 2 J GO TO 301 613 DO 300 J = J 1 , J 2 J J = J - J 1 + 1 K A ( J J ) = I A B S ( K F I L ( J ) / 1 0 ) 300 K B ( J J ) = M O D ( K F I L ( J ) , 1 0 ) » K I F T WRITEINTP0.FR2) J N P , ( K A ( J ) , K B < J ) , J = l . J J ) 301 JNP=JNP+1 15 CONTINUE GO TOI 511> 1101,K J 2) J 1 =J2 + 1 509 J2=J2+NDP J l = l J 2 = NDS DO 510 MJ=1,SDP INP=INP +1 WRIT E ( 3 ) I N P » ( F I L I J ) » J = J 1 , J 21 J 1 =J 2+1 510 J2=J2+NDS 508 CONTINUE 507 KM=MODlJNP.NDS) IFIKM.EQ.OÍGO TO 561 J 1 = 1 J2=NDP DO 5 1 2 HJ=1 « KM READ!U)IFILI J ) , J * J 1 , J 2 ) J 1=J 2+1 512 J2=J2+NDP IF{KKK.NE.21K3=N0P NTRA=KM»NDP-NDP+K3 KM=NDS-MODINTRA,NDS) IFIKM.EQ.OJGO TO 5 1 5 DO 516 MJ=1,KM MM=NTRA+MJ 516 FILI MM)=0. 515 KM=NTRA/NDS+1 IF(MODtNTRA.NDS).EQ.O) KM=KM-1 J 1 = 1 J 2 = NDS DO 517 MJ=1,(M INP=INP+1 W R I T E ( 3 ) I N P . ( F I L I J ) . J = J 1 . J 2 ) J 1 =J 2+1 517 J2=J2+NDS 561 NT0T=INP GO TO 501 C c 1530 STOP END T I M I N G : 1) t o t e s t 960 i n p u t d a t a of a t i m e s e r i e s w i t h 2 n u m e r i c a l filtering e a c h of 69 c o e f f i c i e n t s g r o u p p i n g i n i t i a l d a t a 2 b y 2, i t t a - k e s 1 ' 1 2 " ( i n c l u d i n g t h e m o n i t o r t i m e a n d t h e p r o g r a m c o m p i l a t i o n , t h e r e f o r e t h e t i m e of c o m p u t a t i o n is o n l y 2 0 " ) . 2) t o t e s t 3 4 5 6 i n p u t d a t a of a t i m e s e r i e s w i t h 3 n u m e r i c a l filtering of 9, 69, 3 5 c o e f f i c i e n t s r e s p e c t i v e l y g r o u p p i n g 2 b y 2 o n c r o s s i n g f r o m I o t o 2° i t t a k e s 1 ' 4 3 " ( i h c l u d i n g t h e m o n i t o r t i m e a n d t h e p r o g r a m c o m p i l a t i o n : t h e r e f o r e t h e t i m e of c o m p u t a t i o n is o n l y 3 2 " ) . R E F E R E N C E S (*) GALLI M., RANDI P . , On the Design of the Optimum Numerical Filter with a Prefixed Response. " A n n a l i di Geofisica " , X X , 4, (1967).