T h e r e c i p r o c i t y t h e o r e m f o r p o r o u s a n i s o t r o p i c m e d i a E . B O S C H I ( * ) Received oil .July 17tli, 1972 SUMMARY. •— In this p a p e r we give a reciprocity t h e o r e m for aniso- tropic porous media in t h e q u a s i - s t a t i o n a r y case. T h e d i s t r i b u t i o n of t h e pores is assumed s t a t i s t i c a l l y h o m o g e n e o u s . RIASSUNTO. - Viene s t a b i l i t o un t e o r e m a di r e c i p r o c i t à per mezzi porosi a n i s o t r o p i nel caso quasi-stazionario. L a distribuzione dei pori è a s s u n t a s t a t i s t i c a m e n t e omogenea. 1 . - I N T R O D U C T I O N . The theory of deformation of porous materials containing a fluid has been developed by Biot f1-2), for t h e case of an elastic solid. I n the last years various generalizations a n d particular applications have been considered. A porous solid is represented as an elastic skeleton, having com- pressibility a n d shear rigidity, with a statistical distribution of inter- connected pores containing a compressible fluid. I t is understood t h a t t h e term " p o r o s i t y " refers to the effective porosity, namely, t h a t encompassing only the intercommunicating void spaces as opposed to those pores which are sealed off. I n the following, t h e word " p o r e " will refer to t h e effective pores while t h e sealed pores will be consi- dered as a p a r t of t h e solid. (*) I s t i t u t o di Fisica, U n i v e r s i t à di Bologna, I t a l i a . ( ¡ 0 8 E . B O S C H I This s y s t e m of fluid and solid is a general elastic system with conservation properties. The deformation of a u n i t cube is assumed to be completely reversible. By d e f o r m a t i o n is m e a n t , here, t h a t determined by both strain tensors in t h e solid and in the fluid phases. I e f a n ("8) lias established a m e t h o d by means of which he was able to give reciprocity theorems in t h e d y n a m i c t h e o r y of continua, w i t h o u t using Laplace t r a n s f o r m s in the case of nonhomogeneous initial conditions. Moreover, by this m e t h o d , he obtained reciprocity relations which involve only t h e displacement vector a n d t h e known functions. Boschi (;i) has obtained a reciprocity theorem for isotropic porous homogeneous m e d i a in the quasi-stationary case. H e (4) has also been able to give a v a r i a t i o n a l theorem in t h e linear t h e o r y of porous media, a n d in t h e t h e o r y of viscoelastic porous m e d i a (5). This kind of speculations is of great interest because t h e y f o r m t h e basis for t h e solution of problems arising in m a n y diversified fields such as seepage in soil mechanics, ground w a t e r hydrology, petroleum engineering, w a t e r purifications, acoustic engineering a n d so on. 2. - BASIC EQUATIONS. T h r o u g h o u t this p a p e r we employ a rectangular coordinate sys- tem, Oxk (k = 1, 2, 3), and t h e usual indicial n o t a t i o n s . L e t V be a regular (in the sense of Kellog) region of space occupied by a n ani- sotropic porous solid, whose b o u n d a r y is J7. Moreover V is t h e in- terior of V, ni are t h e components of t h e u n i t o u t w a r d n o r m a l to Z. F o r convenience a n d clarity in presentation, all regularity hypo- theses on considered f u n c t i o n s will be omitted. On these basis t h e field equations for anisotropic porous solids, in t h e qnasi-static case, are: — t h e constitutive equations: da = Gijki eici + eia e [ l . a ] [ l . b ] a = an en + fie — t h e equations of equilibrium: ( a = 1 2 jo — at, e (a) = p £ (a) j I t is t r u e t h a t (crij*1 > — cn, e) * c — a « e<2>) * e t , »>. [13] I t is also t r u e t h a t : (ffi1) — an ey(D) * £'2> = e * e<2> (ffi2) — an eti&>) * «(1) = /? e<2) * £(1) a n d , b y a d d i t i o n , we o b t a i n : (cr) * e«1'. [14] A d d i n g t h e relations [13] a n d [14] we g e t : a n a ) * e t / 2 > + o a > * e < 2 > = a n i S ) * e < i a ) + ff'21 * e ( 1 ) - [ 1 5 ] If we i n t r o d u c e t h e n o t a t i o n : = I I * ( f f « ( a ) * + ff(a) * e^) dV-, a, — 1, 2 [16] v f r o m e q u a t i o n [15] we h a v e : Ii2 = /21 [17] <>12 F.. BOSCH I lTsing t h e relations [3], [9], [10] a n d the divergence theorem, we g e t : Iafi = | i * v r ] * ut& dZ + | / * a'a) * I!,'?' n< dZ + V V + I I * o F,(a) * m'P' dV — | / * aH1) * dV — v v - j b„(Ui,a) — u,,a)) * Ut'P' (IV + J q,M) * U,^ (IV, [181 v v a,P = 1 , 2 Finally f r o m equations [17] a n d [18] we can s t a t e the reciprocity theorem for anisotropic porous solids: If a n anisotropic porous solid is s u b j e c t e d to two different systems of elastic loadings [11], t h e n between t h e t w o corresponding configurations [12] there is tlie following reciprocity relation: j I * />,<>> * W(<2> dZ + | I * c' 1 ' fii * r/V2> dZ + + | I g * F,ID * Mi<2) (IV — j Z * cr") * e<2> rfF — F F [6(/ (f.^'1» — M/«1») + d] * r/f(2) f / r = I l * p,<*> * u,<'I dZ + | I * ff'2> ill * {/,»> d r + + J I * Q Ft<2> * Mi») dV — J Z * a<2> * ell) F F - J (?7/(2) — Wi'2») + R/I(21] * E > RFF. [19] W e should w a n t to p u t in evidence t h a t , t h r o u g h o u t this p a p e r , we did not use a n y restrictive assumption. The theorem [19] is valid under very general conditions. T H E R E C I P R O C I T Y T H E O R E M F O R P O R O U S A N I S O T R O P I C M E D I A till I n t h e special case of homogeneous b o u n d a r y conditions, of great interest in t h e applications, t h e relation [19] reduces t o : I * (Q JV1) *Mt *e<2>)— [bt)(Ui^ — uj'1') + * Ut,2> dV = J 11* (q — ff«) *e^) — [btl(U]^ — uii2)) + ?i, 2 )] * E7i(1) | dV. Tlie reciprocity theorem derived in this p a p e r can be used to obtain variational theorems in t h e t h e o r y of porous anisotropic mate- rials. These theorems will be developed in a n o t h e r p a p e r . 0 ) B I O T M. A., 1955. - " J . A p p i . P h y s . " , 26, 182. ( 2 ) B I O T M. A., 1956. - " J . A p p i . P l i y s . " , 27, 210. ( 3 ) B O S C H I E . , 1 9 7 2 . - " L e t t . N u o v o C i m e n t o " , 4 , 9 7 3 . ( 4 ) B O S C H I E . , 1972. - To be p u b l i s h e d . ( 6 ) B O S C H I E . , 1972. - To be p u b l i s h e d . (6) IEÇAN D., 1967. - " R e n d . A c a d . Sc.", P a r i s , 265, 271. (7) IESAN D., 1969. - " I n t . J . E n g n . Sci.", 7, 1213. ( 8 ) I E § A N D., 1970. - " R e v . R o u m . M a t h . P u r e s et A p p i . " , 15, 1181. ( " ) M I K U S I N S K I J . , 1959. - Operational Calculus, P e r g a m o n Press, New Y o r k . R E F E R E N C E S