IANNONE_finalonline:Layout 6
ANNALS OF GEOPHYSICS, 57, 5, 2014, A0546; doi:10.4401/ag-6487
A0546
A new method for the validation of the GOMOS high resolution
temperature profiles products
Rosario Q. Iannone1,*, Stefano Casadio1,2, Bojan Bojkov2
1 SERCO S.p.A., Frascati, Italy
2 ESA/ESRIN, Frascati, Italy
ABSTRACT
This article proposes a new validation method for GOMOS HRTP at-
mospheric temperature and density profiles, with the aim of detecting
and removing 0.2 to 5 km scale vertical structures in order to minimise the
impact of atmospheric artefacts in the comparison exercises. The pro-
posed approach is based on the use of the “Morlet” Continuous Wavelet
Transformation (CWT), for the characterisation and removal of non-sta-
tionary and localised vertical structures, in order to produce wave-free
profiles of atmospheric temperature and density. Comparison of wave-
free temperature/density profiles and wavy structures profiles with those
estimated from a limited number of collocated SHADOZ soundings for
the years of 2003, 2004 and 2008, is discussed in detail. First results sug-
gest that the proposed approach could lead to a significantly improved
HRTP validation scheme, in terms of reduced uncertainties in the esti-
mated biases. Furthermore, this method may be adopted for the study of
the vertical component of gravity waves from high spatial/temporal res-
olution data.
1. Introduction
The accurate knowledge of the temporal and spa-
tial structure of atmospheric temperature and neutral
density profiles over a broad vertical range is essential
for the understanding of both climate and weather
mechanisms [Alpers et al. 2004].
Measurements of temperature profiles have been
performed over 60 years, based on a variety of instru-
ments and techniques, such as sondes [Tiefenau and
Gebbeken 1989, Hudson et al. 2004], ground based in-
frared sounders [Knuteson et al. 2004a, 2004b], and li-
dars (Light Detection and Ranging) [Hauchecorne and
Chanin 1980, Thompson et al. 2012]. Developing a reli-
able meteorology and climatology requires frequent
measurements with good spatial coverage and resolu-
tion. Since 1979, observations have been available from
satellites orbiting around the Earth [Spencer et al. 1990],
thus providing data with global coverage, which is often
lacking in other data sets. A limitation of space-borne
passive remote sensing instruments is the relatively low
vertical resolution (of the order of kilometres), while
ground based active instruments and in-situ measure-
ments can have very high vertical resolution (i.e. few
meters), but they are limited to regional studies and the
related datasets can be sparse in time. In particular, bal-
loon-borne experiments provide measurements of tem-
perature profiles from ground up to the maximum
altitude reached by the balloon, which is usually at ~30-
35 km [Durre et al. 2006], with a vertical resolution
varying between 5 and 50 m. On the other hand, space-
borne experiments, such as the Microwave Limb
Sounder (MLS) [Wu and Waters 1996], the Halogen Oc-
cultation Experiment (HALOE) on-board Upper At-
mosphere Research Satellite (UARS) [Borchi et al. 2005],
the Michelson Interferometer for Passive Atmospheric
Sounding (MIPAS) [Ridolfi et al. 2007] on-board EN-
VISAT, the High Resolution Dynamics Limb Sounder
(HIRDLS) on the AURA spacecraft [Dials et al. 1998],
the Sounding of the Atmosphere by Broadband Emis-
sion Radiometry (SABER) on TIMED (Thermosphere
Ionosphere Mesosphere Energetics Dynamics) satellite
[Kumar et al. 2008] and GPS radio occultation technique
[Kursinski et al. 1997, Schreiner et al. 2007] as the Con-
stellation Observing System for Meteorology Iono-
sphere and Climate (COSMIC/FORMOSAT-3) satellite
[Kishore et al. 2009], have been designed to retrieve tem-
perature profiles in a wide altitude range, from tropo-
sphere to mesosphere, but with a vertical resolution
much lower when compared to that of balloon sondes.
An exception is represented by the High Resolution
Temperature Profile (HRTP) of GOMOS (Global
Ozone Monitoring by Occultation of Stars) tempera-
Article history
Received January 10, 2014; accepted September 18, 2014.
Subject classification:
Gomos HRTP, Atmospheric waves, Temperature profiles, Validation, Wavelet transform.
ture and density products [Bertaux et al. 2010], which
have a vertical sampling of few tens of meters and an
estimated vertical resolution of about 250 m (see Sofieva
et al. [2007a, 2007b]).
The aim of the present study is the development
of technique to be applied to GOMOS HRTP and to
high resolution correlative data (e.g. sondes) before
comparing them. In particular, our objective is to re-
move as much as possible the small-scale fluctuations
from the temperature and density profiles and conse-
quently to increase the accuracy on estimates of biases.
The method is based on the hypothesis that verti-
cal fluctuations in both temperature and density pro-
files are due to the presence of atmospheric waves, and
that the time-space lags between satellite and balloon
measurements are the causes for “vertical phase shifts”
of such waves which is, in turn, largely impacting the
validation results by introducing spurious signals.
In this context, we developed an analysis approach,
which is designed to detect and remove the wavy sig-
nals from both the Satellite and correlative instrument
temperature and density profiles prior to compare
them. This method has been tested using the GOMOS
HRTP and the SHADOZ measurements.
2. Gravity waves observed in temperature profiles:
implication for validation
Data comparison between space observations and
in-situ measurements, such as airborne instrument, bal-
loons and lidars, is a critical part of satellite validation
and of verification of theoretical models [Hendrick et
al. 2011]. The necessity to exchange and compare data
between Earth Observation sensors and ground meas-
urements communities has led to coordinated efforts
in Calibration and Validation (Cal/Val) methodologies.
Validation entails comparison of references with ‘known’
or expected values, determined with long-term and
continuous calibration measurements. Two validation
approaches are usually followed. The first is based on
the use of data provided by ground-based networks,
test sites, and instruments intercomparison systems,
which run independently of a specific satellite mission.
A second approach is based on field campaigns de-
signed for specific validation needs. Cal/Val campaigns
provide a unique set of high quality observations that
are used for the validation of retrievals from the satel-
lites. However dedicated airborne and balloon instru-
ments usually only provide snap-shot observations,
providing more detailed regional information. In con-
trast, satellite-based remote measurements are com-
plementary as they have regional to global coverage.
The effects due to increase of the time/space sepa-
ration between temperature/density profile pairs, in
terms of accuracy of comparison results, is dominated
by geophysical variations. Small-scale vertical structures
present in the vertical temperature profiles, significantly
impact the effectiveness of the validation studies if not
properly treated. In fact, these structures are usually
highly non-stationary, complicating the validation stud-
ies with the introduction of a variability that cannot be at-
tributed to instrumental/algorithmic deficiencies [Sofieva
et al. 2008]. These relatively small-scale structures in at-
mospheric temperature and density profiles are often in-
terpreted as due to gravity waves [Sofieva et al. 2008].
The main sources for gravity waves in the lower
and middle atmospheres are topography, orography,
convection and jet/front systems [Fritts and Alexander
2003]. Moreover, gravity waves are perturbations re-
sulting from the coupling mechanism between lower,
middle, and upper atmospheric region. Vertically prop-
agating gravity waves, generated in the troposphere,
carry fluxes of heat and momentum into the strato-
sphere [Holton and Mass 1976]. When these waves are
damped, the fluxes diverge, and sources of heat and
momentum are created, thus providing the accelera-
tion of the wind in the upper atmosphere and well
above in the stratosphere and mesosphere. The net ef-
fect of the wave breaking is the acceleration of move-
ment of air masses towards the poles, and an ascending
motion in the tropical tropopause. Gravity wave dissi-
pation in the stratosphere contributes to driving large
scale circulations like the Brewer-Dobson circulation
[Holton and Alexander 2000].
Numerous studies have been published, describing
techniques using temperature profiles as tracers to un-
derstand internal gravity waves, using radiosonde [Zink
and Vincent 2001], balloon data [Zhang et al. 2006],
lidar data [Rauthe et al. 2008], and satellite data [Fetzer
and Gille 1994]. A review of the studies on gravity-wave
effects in stratosphere, recent observations, analysis
methods, and results of very-high-resolution model
studies have recently been reported by Alexander et al.
[2010]. In the context of space-borne techniques,
Preusse et al. [2009] demonstrated that observations
from an infrared limb imager (ILI) may provide 3-D im-
ages of gravity waves temperature structures, thanks
to recent advances in detector technology.
McDonald et al. [2010] used vertical temperature
measurements from radio occultation (RO) satellites in
the FORMOSAT 3/COSMIC constellation, and from
Rayleigh lidar observations, to study the variation of
stratospheric temperature as a function of spatial and
temporal separation.
Alexander et al. [2008] described a global analysis of
the High Resolution Dynamics Limb Sounder (HIRDLS)
temperature profile data to derive properties of gravity
IANNONE ET AL.
2
3
waves. Later in 2011, an inter comparison of HIRDLS,
COSMIC and SABER was carried out by Wright et al.
[2011], with the aim of detecting stratospheric gravity
waves from collocated temperature profiles. In the par-
ticular case of Alexander et al. [2008] and Wright et al.
[2011], a Stockwell Transform (S-Transform) based
method was employed for the detection of gravity waves
to allow the detection of multiple overlapping waves.
The S-transform combines the Short Time Fourier
Transform (STFT) and wavelet transforms. In particu-
lar, the S-transform is expressed as a Continuous Wavelet
Transformation (CWT) with a specific mother wavelet
multiplied by a phase factor, in order to achieve infor-
mation related not only to the spectral properties of the
signal but also information related to the spatial varia-
tions in those spectral properties. A detailed description
of the S-Transform method can be found in the publi-
cation of Stockwell et al. [1996].
Finally, Geller et al. [2013] used five datasets from
HIRDLS instrument on the Aura satellite, SABER in-
strument on the TIMED satellite, VORCORE super-pres-
sure balloon, and high resolution radiosonde sounding
of horizontal wind and temperature. The aim of their
work was to estimate the gravity wave momentum
fluxes from the above mentioned observations and from
those derived from five different models. The use of
these measurements allowed testing theoretical models,
and in particular to make these models able to correctly
describe gravity wave sources.
Analysing the GOMOS scintillation spectra, Sofieva
et al. [2007a, 2007b] demonstrated the existence of a di-
rect relationship between the stellar scintillations and
small-scale internal gravity waves and turbulence. This
approach is based on the fact that stellar scintillations ob-
served through the Earth’s atmosphere are caused by
air density irregularities and thus they contain infor-
mation about small-scale processes in the atmosphere
such as gravity waves and turbulence. Reconstruction
of gravity waves could be achieved by fitting modelled
scintillation spectra to the GOMOS measured spectra
[Sofieva et al. 2007a, 2010].
Validation work relevant to GOMOS HRTP has
been reported in literature by Sofieva et al. [2009]. The
GOMOS HRTP products, output of the scientific proces-
sor, were validated with collocated SHADOZ data by
comparing vertical wavenumber spectra of tempera-
ture fluctuations [Sofieva et al. 2009].
The approach proposed in this work is based on a
wavelet transform of the air density and temperature
profiles directly, for both GOMOS and SHADOZ sound-
ings, demonstrating that this “wave-cleaning” technique
improves the profiles validation schemes by reducing the
impact of “out of phase” wavy structure in the estimates
of biases. In the stratosphere, the temperature perturba-
tion amplitudes can be of the order of 5-10 K. As a con-
sequence, two waves out of phase by half wavelength
will produce a difference in temperature profiles of the
order of 10-20 K. Assuming a temperature profile to con-
sist of a background temperature profile and fluctuating
components, the idea is therefore to validate collocated
background temperature profiles, after eliminating the
perturbation profiles.
3. Data description
3.1. SHADOZ radiosonde
The Southern Hemisphere Additional Ozoneson-
des network (SHADOZ) (http://croc.gsfc.nasa.gov/
shadoz/; Thompson et al. [2003a, 2003b]) was initiated
by NASA in 1998, aiming at the provision of continuous
and accurate balloon measurements taken at 14 tropical
selected locations, with the main purpose to measure the
profile of ozone from sea level to about 30 km altitude
from 40S to 40N latitude. Besides ozone, temperature,
pressure, and relative humidity are retrieved. The ozone
measurements are performed with electrochemical con-
centration cells, while temperatures and pressures are
recorded by standard Vaisala instrumentation [Thomp-
son et al. 2004, 2007]. Ozonesondes are launched from
SHADOZ stations on a weekly basis, during both day
time and night time [Thompson et al. 2003a].
The SHADOZ data are usually sampled at 0.5 Hz
intervals resulting in a vertical resolution of about 10 m.
For the sonde types used in the tropics, systematic errors
in temperature data are ±0.3 K, with a precision of 0.2-
0.4 K [Thompson et al. 2003a, WMO 2008]. The retrieval
of atmospheric temperature with balloon-borne instru-
ments is affected by a combination of errors [Christy and
Norris 2009]. Sensor limitation is not the only source of
uncertainties, as the representativeness error plays an im-
portant role [Kitchen 1989]. In fact, balloon sounding
consists of point measurements along a path through the
atmosphere and, on average, a balloon needs more than
60 min to reach 15 km height [Moradi et al. 2010]. Thus,
during its ascent, a balloon would drift because of the
horizontal wind, therefore providing profiles that cannot
be considered rigorously vertical [Lanzante et al. 2003].
For this study, SHADOZ stations have been se-
lected according to the criteria of the highest number
of collocations and the maximum altitude reached by
the balloons, usually ranging between 30 and 35 km.
The data sets analysed are from the years 2003, 2004,
and 2008. The selected four near-equatorial stations are
Java, Kuala, Ascension Island, and Hilo. Details of the
available data sets used in this work for the four stations
are given in Table 1.
A NEW VALIDATION METHOD FOR GOMOS HRTP
3.2. GOMOS
GOMOS was an instrument on-board the EN-
VISAT (ENVIronmental SATellite) satellite, success-
fully operated by ESA (European Space Agency) from
March 2002 to April 2012. GOMOS used the Star Oc-
cultation technique in the ultraviolet–visible–near-
infrared (UV-VIS-NIR) spectral range to retrieve vertical
profiles of atmospheric parameters. In particular,
GOMOS was designed to monitor vertical distribution
of O3, NO2, NO3, O2, H2O, atmospheric density and
aerosols, and HRTP [Bertaux et al. 2004, Kyrölä et al.
2004, Kyrölä et al. 2006]. The HRTP is retrieved from
the scintillation observed by two GOMOS fast-pho-
tometer measurements, operating at 1 kHz sampling
frequency in the blue (470-520 nm) and in the red (650-
700 nm) spectral regions [Bertaux et al. 2010]. The bi-
chromatic scintillations recorded by the photometers
allow the determination of refractive angles, which are
related to the time delays between the photometer sig-
nals. The high resolution density and temperature pro-
files can be derived from these data in the 18-35 km
altitude range, following the method described in
Dalaudier et al. [2006]. The vertical sampling of these
products is of the order of tens of meters, with an es-
timated resolution of about 250 m.
For altitudes between 18 and 35 km, the estimated
accuracy of the HRTP is between 1 and 2 K [Sofieva et
al. 2009].
IANNONE ET AL.
4
No.
Shadoz date
(Launch time)
Shadoz stations
(Lat. and Long.)
GOMOS
Lat. and Long. (date)
Star id
(mv ; tv [K])
Dh (km)
Dt (h)
1
20030108
(09:38)
Java (7°5’ S, 112°6’ E)
6°1’ S, 112°8’ E
(20030108 22:32)
78
(2.3; 28000)
119
13
2
20031224
(02:17)
Java (7°5’ S, 112°6’ E)
8°3’ S, 105°4’ E
(20031223 23:03)
95
(2.5; 26000)
783
3.14
3
20040121
(02:42)
Java (7°5’ S, 112°6’ E)
4°5’ S, 107°5’ E
(20040121 22:53)
109
(2.7; 26000)
648
20
4
20040219
(02:50)
Java (7°5’ S, 112°6’ E)
9°8’ S, 111°5’ E
(20040219 22:40)
80
(2.8; 30000)
254
20
5
20040929
(02:41)
Java (7°5’ S, 112°6’ E)
8°03’ S, 113°3’ E
(20040929 22:32)
1
(-1.4; 11000)
150
20
6
20080228
(05:27)
Java (7°5’ S, 112°6’ E)
9°3’ S, 111°3’ E
(20080228 22:40)
25
(1.62; 28000)
248
17.13
7
20080828
(05:34)
Java (7°5’ S, 112°6’ E)
4°6’ S, 107°4’ E
(20080827 14:52)
2
(-0.74; 7000)
648
14
8
20080828
(05:34)
Java (7°5’ S, 112°6’ E)
4°2’ S, 115°3’ E
(20080828 22:21)
2
(-0.74; 7000)
470
17
9
20080924
(05:27)
Java (7°5’ S, 112°6’ E)
10°1’ S, 105°9’ E
(20080924 23:11)
23
(1.50; 26000)
830
18
10
20030122
(03:40)
Kuala (2°73’ N, 101.7 E)
3°8’ N, 97°6’ E
(20030122 23:35)
54
(2.05; 4500)
446
20
11
20030409
(02:06)
Kuala (2°73’ N, 101.7 E)
4°02’ N, 101°3’ E
(20030409 23:15)
57
(2.07; 26000)
200
21
12
20030401
(20:06)
Hilo (19°4’ N, 155°1’W)
20°1’ N, 150°3’W
(20030331 21:48)
40
(1.86; 7100)
531
22
13
20030410
(21:46)
Hilo (19°4’ N, 155°1’W)
17°5’ N, 154°1’W
(20030409 22:05)
38
(1.84; 11000)
245
24
14
20041011
(13:50)
Ascension Island
(7°98’ S, 14°4’ W)
10°7’ S, 17°6’ W
(20041011 22:17)
65
(2.2; 4400)
408
9
15
20080108
(14:10)
Ascension Island
(7°98’ S, 14°4’ W)
11°5’ S, 14°6’ W
(20080108 22:05)
109
(2.7; 26000)
343
8
16
20080826
(14:00)
Ascension Island
(7°98’ S, 14°4’ W)
5°05’ S, 8°9’ W
(20080825 21:38)
2
(-0.74; 7000)
763
16
Table 1. Overview of the time and geolocation of SHADOZ measurements and GOMOS available for this study. The table reports also the
visual magnitude and effective temperature of stars of which GOMOS products are presented.
5
The GOMOS HRTP data used in this study were
generated with the Instrument Processor Facility (IPF)
version 6.01, and have been publicly available since De-
cember 2012.
The quality of HRTP is nearly independent of the
star properties, like the visual magnitude (mv) and the
temperature (tv). It is also independent of the obliquity
angles (i.e. the angle between the direction of line of
sight motion and the local vertical at the ray perigee
point) but it slightly depends upon illumination condi-
tions. The highest quality HRTP data are acquired in
dark limb, i.e. for nocturnal occultations. On the illu-
minated portion of the orbit, scattered solar light im-
pacts the data quality in the lower stratosphere, so that
only very bright stars provide full stratospheric profiles
in these conditions.
3.3. Collocation criteria
We have restricted all collocations to a maximum
horizontal distance of 800 km and a maximum time
difference of 24 h between measurements. Although
validation protocols require the comparison of meas-
urements of the same air mass, we adopted such re-
laxed spatial and temporal coincidence criteria in order
to obtain a sufficient number of collocations to test our
method in terms of wave detection. The observations
used in the present study include 16 collocated vertical
profiles, among which were six profiles for 2003, four for
2004 and finally six collocated vertical profiles for 2008.
Besides the geolocation of paired GOMOS and
SHADOZ profile, Table 1 reports the star parameters
(mv and tv) and the spatial/temporal distance for each
collocation.
In order to effectively compare satellite and bal-
loon data, we adopted a common vertical grid of 100 m
by applying a linear interpolation scheme to both
GOMOS and SHADOZ data, and excluding from the
wavelet analysis any fluctuation with vertical wavenum-
ber > 0.01 m-1.
It is stressed here, that this work is not intended to
provide conclusive validation results, but to propose a
validation method. Thus, a limited dataset should be
sufficient to prove the effectiveness of the proposed ap-
proach. The analysis of the complete GOMOS mission
dataset will be carried out in the next future.
4. Method description
In order to remove the small-scale fluctuations
from the SHADOZ and GOMOS temperature profiles,
both profiles were analysed by using the Coherence
Wavelet Method (CWM) software developed by Tor-
rence and Compo (Torrence and Compo [1998]; http://
paos.colorado.edu/research/wavelets/). The compo-
nents and method of this wavelet tool are not described
here; readers are referred to Torrence and Compo
[1998] for a more detailed explanation of the wavelet
analysis. However, we include here some overall infor-
mation about the wavelet transformation.
In general, the continuous wavelet transform
analysis is a time/space-dependent spectral analysis that
decomposes a data series in time/space-frequency do-
main. In this, the scaled wavelet progressively moves
along the time (or space)-varying signal, detecting lo-
calized structures in the signal. The most commonly
adopted method for the spectral analysis of wavy sig-
nals is the Fast Fourier Transform (FFT). The FFT, how-
ever, is suitable for the retrieval of spectral information
for stationary signals only, which are quite rare phe-
nomena in the real atmosphere. The ability to detect
and characterise time and space localised phenomena is
fundamental for gravity wave analysis, and this can be
achieved by using the wavelet transformation.
Time windowing and Fourier analysis techniques
require a priori understanding of the signal and, con-
sequently, it is necessary to make assumptions about
the nature of the phenomenon under study. In addi-
tion, applying time/space Fourier technique requires
an averaging time long enough to obtain significant
statistical parameters on a selected window short
enough that a slowly varying signal appears to be sta-
tionary. Wavelet techniques represent valid alternatives
to the time windowing method with the advantage of
needing minimum knowledge of the analytical prop-
erties of the signal.
By definition, the wavelet function W is con-
structed so that it has zero mean and is localized both
in time/space and in frequency. The wavelet type used
in this work for the spectral decomposition is the
Mother Wavelet Function (MWF). The MWF is shifted
forward and backward in the time/space domain, and
this process is repeated for different frequency wavelets
by stretching and compressing the MWF. Different
MWF have been developed and the choice of a func-
tion depends on both the desired analysis and the na-
ture of the time/space series analysed.
In this study, the Morlet MWF was selected be-
cause it provides information about both amplitude and
phase at the highest vertical resolution, and is better
suited for data with oscillatory behaviour. The Morlet
MWF is defined as a sinusoidal function multiplied by
a Gaussian function [Torrence and Compo 1998]:
(1)
where ~0 is the non-dimensional frequency, x is the in-
dependent variable, x0 and v0 are the mean value and
-x 2
x x
i x4
1
2
0 0
0
~ v
-
e erW =^
^
h
h
A NEW VALIDATION METHOD FOR GOMOS HRTP
the width of the Gaussian function, respectively.
Usually, the wavelet transform is complex and is
characterized in terms of its power and phase. The
square modulus of the wavelet transform is called the
scalogram. In the wavelet analysis, the mean power
spectrum for each series investigated is processed first,
and in case a peak in the wavelet power spectrum is sig-
nificantly above a background power threshold, then it
is considered to be a significant feature. Torrence and
Compo [1998] proposed the calculation of a Cone Of In-
fluence (COI), which determines the region of the spec-
trum where edge effects significantly impact the wavelet
results. The COI represents therefore the space/fre-
quency region where the wavelet power spectra values
can be considered unbiased by edge effects. Figure 1a and
b shows the wavelet scalogram of the GOMOS and
SHADOZ temperature profiles respectively, shown in
Figure 2. The two panels of Figure 1 show the logarith-
mic energy of spectral components as a function of ver-
tical coordinate (abscissa) and of the oscillation period
(ordinates); the COI is indicated with a solid white line.
The values in the 2-D wavelet power spectrum that are
above the COI (i.e. for period shorter than that indicated
by the COI) can be assumed to be unaffected by edge ef-
fects. Each peak in the 2-D fields corresponds to a lo-
calised wavy structure. In this example, the wavelet
analyses of GOMOS and SHADOZ temperature varia-
tions show dominant wave periods between 0.7 and 4
km around the height region from 22 to 32 km. In fact,
in both panels of Figure 1, short scale fluctuations of 1
km are seen in the 23-26 km height region, and vertical
wavelength of 2.5 km is found in the 27-31 km height re-
gion. This spectral analysis of the profiles shows that the
peaks of temperature fluctuations are comparable, even
for profiles separated significantly in space and in time
(hundreds of kilometres and several hours).
The inverse wavelet transform is, then, used to re-
construct the temperature fluctuations present in the
observed temperature profiles, considering only wavelet
components that are significantly within the COI. The
reconstructed temperature fluctuations are subtracted
from the original temperature profiles, thus providing
“wave-free” profiles.
5. Results and discussion
Figure 2a shows an example of the interpolated
temperature profiles acquired on October 11, 2004, by
GOMOS and SHADOZ Radiosonde (Ascension station
14°42' W longitude and 7°98' S latitude, 15:00 Local
Time). In the figure, the continuous black line repre-
sents the GOMOS HRTP, whereas the grey line is the
SHADOZ data. HRTP was measured on the same day
at 22:17 Local Time (23:17 UTC) over a close location
(17°6' W Longitude and 10°7' S latitude). The star for
this occultation is Lam Vel, which is considered cold
(tv= 4400 K) and of medium brightness (mv= 2.2).
The temperature values of HRTP span from 200
to 250 K, while the full range of SHADOZ temperature
measurements is between 195 K and 245 K. The tem-
perature difference as a function of the altitude is given
in Figure 2b, which shows the difference between
GOMOS and SHADOZ temperature profiles, defined
as DT = TGOMOS − TSHADOZ.
Between 20 and 25 km altitude, the temperature
difference distribution has a mean value
of +1.30
and a standard deviation of ± 3.49 K, whereas between
25 and 30 km altitude, is +0.52 with a standard
deviation of ±4.02 K. Finally, between 30 and ~35 km
IANNONE ET AL.
6
Figure 2. (a) original temperature profiles for GOMOS HRTP
(black line) acquired on October 11, 2004, 22:17 LT (10°7’ S, 17°6’
W), for SHADOZ (gray line) measured on the same day at 13:50
LT, above Ascension Island (7°98’ S, 14°4’ W); (b) absolute tem-
perature difference between GOMOS and SHADOZ temperature
profiles: DT = TGOMOS − TSHADOZ.
Figure 1. Wavelet power spectrum using Morlet mother wavelet
for (a) GOMOS HRTP and (b) Radiosonde SHADOZ temperature
profile illustrated in Figure 2. The black lines in both graphs con-
tours the areas where the power is considered to exceed the 95%
confidence level, whereas the white line contours the area defined
by the Cone Of Influence (COI).
7
altitude, the is −0.01 with a standard deviation of
±2.04 K. The observed standard deviation of DT, esti-
mated between 18 and 35 km is ±3.20 K. Differences
between GOMOS and SHADOZ profiles are due to
several factors, such as data sampling, observation time
and distance between profiles. Large differences, espe-
cially in the altitude range between 20 and 30 km, are
due to the fluctuating structures present in the GOMOS
and SHADOZ temperature profiles, clearly visible in
Figure 2, with amplitudes as large as ±5 K.
Figure 3a shows the wave-free profile after apply-
ing the wave screening technique, and Figure 3b shows
the profile of residuals. After removing the wavy features
present in the temperature profiles of Figure 1a, the
agreement between wave-free GOMOS and SHADOZ
temperature profiles is very good. Differently from the
case shown in Figure 2b, where the DT was continu-
ously changing sign with height, in Figure 3b it is clear
that GOMOS shows a deviation relative to SHADOZ
of ~1K in the stratosphere up to 30 km. In comparison
to SHADOZ data, the highest altitudes show a small
underestimation of the temperature by GOMOS.
In Table 2, values of mean of the temperature dif-
ference distribution and related standard devi-
ation are reported for each altitude range. For the
wave-free profiles, is +1.12 ± 0.60 K for 20-25 km
altitude range, +0.80 ± 0.22 K between 25 and 30 km,
and −0.48 ± 1.22 K between 30 and ~35 km, respectively.
For the full range of altitude, is +0.53 ± 0.98K.
By applying the proposed method to the original
temperature profiles shown in Figure 2, the standard
deviation of the differences between the wave-free
GOMOS and SHADOZ profile, for this particular case,
decreases by a factor of ~8 in the altitude range from 20
up to 30 km, then by a factor of almost 2 between 30
and ~35 km. Finally the overall standard deviation is
decreased by a factor of about 3. Thus, the difference
between the two profiles can be estimated with higher
accuracy, even for profiles not perfectly collocated and
in presence of significant wavy structures. It should be
noted that the mean difference values are not severely
impacted by the wave removal.
We define perturbation as the small-scale vertical
structures, determined with proposed wavelet analysis.
Assuming that fluctuations in temperature profiles are
generated by an ensemble of gravity waves, we can ex-
pect similar spectral properties of the temperature field
at locations not far from each other (<800 km) during
a time period of a few hours, as has been demonstrated
previously in another related study [Sofieva et al. 2008].
In Figure 4, the perturbation profiles for GOMOS (black
line) and SHADOZ (grey line) (relative to the profiles
shown in Figure 2) are shown.
GOMOS and SHADOZ perturbations are domi-
nated by periodicities with vertical wavelengths of a
few km as observed previously in Figure 1.
In Figure 4, the difference in phase between
GOMOS and SHADOZ wavy structure profiles is clearly
visible. In this particular case, where the wave signals are
very similar, it could be argued that the significant phase
difference between the two profiles could be due to the
time and distance separation between the measure-
ments. As stated before, in the example reported in Fig-
ure 2, the peak-to-peak amplitude of the wavy structures
is the order of ±5 K. The spatial distance between the
two profiles is around 400 km, whilst the temporal dif-
ference is of ~9 h. Although these profiles are not lo-
cated at such large spatial and temporal distance from
each other, the natural variability can contribute signifi-
cantly to the temperature difference. In order to observe
very similar small-scale structure without significant
phase differences, the temperature profiles should be al-
most exactly collocated in time and in space. Sofieva et
A NEW VALIDATION METHOD FOR GOMOS HRTP
Figure 3. Same as Figure 2, but after removal of wavy structures.
Altitude
range
(km)
±1v (K)
before
wavelet analysis
±1v (K)
after
wavelet analysis
20 - 25 +1.30 ± 3.49 +1.12 ± 0.60
25 - 30 +0.52 ± 4.02 +0.80 ± 0.22
30 - 35 -0.01 ± 2.04 -0.48 ± 1.22
18 -35 +0.69 ± 3.20 +0.53 ± 0.98
Table 2. Comparison of the temperature difference distribution
computed as the mean value and standard deviation of over
each altitude range before and after applying the wave screening
technique to the temperature profiles measured by GOMOS and
SHADOZ over Ascension for October 11, 2004, illustrated in Fig-
ure 2 and Figure 3.
al. [2008] found that the small-scale structures in tem-
perature profiles become different when the horizontal
separation of measurements exceeds 20-30 km.
As for the temperature, wavelet analysis has been
applied also to the GOMOS HRTP air density profiles.
In Figure 5, the GOMOS temperature (black line) and
the air density (grey line) perturbation profiles (expressed
in percentages) are displayed. The fluctuations are present
in the density profile too, and, as expected, the GOMOS
temperature and density fluctuations (expressed in % for
both quantities) are perfectly anti-correlated. This is con-
sistent with the fact that the temperature profile is de-
rived from the air density profile through the gas law and
the assumption of hydrostatic equilibrium [Hauchecorne
and Chanin 1980], and shows that the proposed method
is not altering the physical relationships between ther-
modynamic variables.
We repeated the analysis for a set of collocated pro-
files, and the summary results are shown in Figure 6,
for which a 300 m vertical grid has been selected. The
averaging on a 300 m vertical grid was performed for
sake of readability of the plot. Figure 6a shows the
number of samples for a given altitude bin; Figure 6b
shows the average difference profile of temperature:
the black squares represent the original data, whereas
the grey circles correspond to the “wave-free” data. Fi-
nally, the horizontal lines represent ±1 standard devia-
tion (v) calculated from the difference profiles of all
coincident pairs within each altitude bin.
Between 19 km to 32 km altitudes, the bias distri-
bution for original temperature profiles is (0.20 ±
0.90)K, while after the removal of wavy structure the
bias distribution becomes (0.38 ± 0.47)K. Below 20 km
and above 31 km the differences seem to be larger for
both original and processed profiles, but this is proba-
bly due to the limited number of available measure-
ments at low and high altitudes. Finally, Figure 6c
shows the profiles of standard deviation of mean tem-
perature difference of Figure 6b at each altitude level
for the original (black) and the wave-free (grey) data set.
Over the entire altitude range, the ratio between
the mean of the wave-free standard deviation and the
mean of the original standard deviation of the temper-
ature differences, defined as /,
assumes a value of 0.71, indicating an overall improve-
ment of ~30% in the accuracy of the estimates of the
biases. This result indicates that the accuracy of the val-
idation results depends not only on the measurement
precision, but also on the natural variability of the at-
mospheric temperature field.
The improvement of the accuracy of validation
results is important to evaluate the quality of the at-
mospheric parameters of the satellite measurements.
Therefore the natural variability has to be taken into ac-
count. The temperature profiles might be more or less
affected by geophysical variability due to the presence of
the gravity waves and the magnitude of uncertainty of
the bias is based also on the different conditions in the val-
idation exercises, such as location and season. The out-
IANNONE ET AL.
8
Figure 5. GOMOS HRTP temperature (black line) and neutral den-
sity (grey line) percentage perturbation profiles, obtained from the
temperature profiles illustrated in Figure 2.
Figure 4. Wavy structure profiles: GOMOS (black line) and
SHADOZ (grey line). Note that in this example the GOMOS and
the SHADOZ perturbation profiles are obtained from the temper-
ature profiles illustrated in Figure 2.
9
come of the applied method is thus very useful to esti-
mate the contribution due to the presence of small-scale
fluctuations from the temperature and density profiles.
6. Conclusions
In this work, new method for the comparisons of
temperature and density profile data from high vertical
resolution measurements is described. The main pur-
pose of the method is the detection and removal of
wavy structures in order to improve instrument valida-
tion results, by decreasing the statistical uncertainties
on mean differences.
This method has been applied to GOMOS HRTP
and SHADOZ temperature profiles, in the common al-
titude range between 18 and 35 km, using wavelet
transforms.
The continuous wavelet transform possesses the
ability to construct a space-frequency representation of
a signal that offers very good space and frequency local-
ization, so wavelet transforms can analyse localized non
stationary structures of potentially great interest in the
temperature signals. The wavelet approach should not be
considered as a smoothing technique, as the CWT allows
the characterisation and tracing of the localised features
presented in a signal. The wavelet analysis of profiles is
performed with a Morlet wavelet transformation.
The preliminary results presented in this work
demonstrate that such a method can effectively be ap-
plied to stratospheric temperature data, improving the
accuracy of GOMOS HRTP validation, when com-
pared with SHADOZ soundings, by significantly re-
ducing the uncertainty on bias estimates.
The temperature measurements considered in this
work are characterised by a small common altitude
range, due to the peculiarities of each technique. The
possible use of Numerical Weather Prediction (NWP)
temperature profiles would allow an artificial extension
of the vertical range and, as a result, structures with ver-
tical wavelengths higher than 5 km might be detected.
Furthermore, the extensive validation of GOMOS
HRTP products with sounding and lidars, will be the
focus for our future research. We finally conclude say-
ing that the GOMOS data set represents a very valuable
source of information for atmospheric science studies.
Particularly, the GOMOS HRTP measurements could
be used to yield information about the vertical wavenum-
bers of the atmospheric waves and provide constraints
for the parameterisation of gravity waves in climate-
prediction models. In particular, gravity wave scales,
amplitudes, fluxes, vertical propagation, and variations
with altitude can be addressed with these space-based
observations.
Acknowledgements. The authors would like to express their
gratitude to Lidia Saavedra de Miguel, Gareth Davies, Marta De
Laurentis, Gabriele Brizzi, Angelika Dehn, and Thorsten Fehr for
their support and collaboration. The author would also like to thank
the principal investigators of the SHADOZ sondes. Finally, we
thank Victoria Sofieva for helpful comments on the manuscript.
A NEW VALIDATION METHOD FOR GOMOS HRTP
Figure 6. Comparison of the 16 GOMOS temperature profiles. (a) Number of collocated pairs; (b) mean differences between GOMOS and
SHADOZ Temperature before (solid black squared dots) and after (solid blue round dots) applying the wavelet analysis. The spread of the
average values at each height level, as represented by the standard deviation, is shown by continuous lines. (c) Comparison of the standard
deviation of the mean temperature difference at each altitude level for the original (black line) and processed data (blue line).
References
Alexander, M.J., J. Gille, C. Cavanaugh, M. Coffey, C.
Craig, T. Eden, G. Francis, C. Halvorson, J. Hanni-
gan, R. Khosravi, D. Kinnison, H. Lee, S. Massie, B.
Nardi, J. Barnett, C. Hepplewhite, A. Lambert and
V. Dean (2008). Global estimates of gravity wave mo-
mentum flux from High Resolution Dynamics Limb
Sounder observations, J. Geophys. Res., 113, D15S18.
Alexander, M.J., M. Geller, C. McLandress, S. Polavarapu,
P. Preusse, F. Sassi, K. Sato, S. Eckermann, M. Ern,
A. Hertzog, Y. Kawatani, M. Pulido, T.A. Shaw, M.
Sigmond, R. Vincent and S. Watanabe (2010). Recent
developments in gravity-wave effects in climate mod-
els and the global distribution of gravity-wave mo-
mentum flux from observations and models, Q. J.
Roy. Meteor. Soc., 136, 1103-1124.
Alpers, M., R. Eixmann, C. Fricke-Begemann, M. Gerd-
ing and J. Hoffner (2004). Temperature lidar meas-
urements from 1 to 105km altitude using resonance,
Rayleigh, and Rotational Raman scattering, Atmos.
Chem. Phys., 4, 793-800.
Bertaux, J.L., A. Hauchecorne, F. Dalaudier, C. Cot, E.
Kyrölä, D. Fussen, J. Tamminen, G.W. Leppelmeier,
V. Sofieva, S. Hassinen, O. Fanton d’Andon, G. Bar-
rot, A. Mangin, B. Théodore, M. Guirlet, O. Ko-
rablev, P. Snoeij, R. Koopman and R. Fraisse (2004).
First results on GOMOS/ENVISAT, Adv. Space
Res., 33, 1029-1035.
Bertaux, J.L., E. Kyrölä, D. Fussen, A. Hauchecorne,
F. Dalaudier, V. Sofieva, J. Tamminen, F. Vanhelle-
mont, O. Fanton d’Andon, G. Barrot, A. Mangin, L.
Blanot, J.C. Lebrun, K. Pérot, T. Fehr, L. Saavedra,
G.W. Leppelmeier and R. Fraisse (2010). Global
ozone monitoring by occultation of stars: an overview
of GOMOS measurements on ENVISAT, Atmos.
Chem. Phys., 10, 12091-12148.
Borchi, F., J.P. Pommereau, A. Garnier and M. Pin-
haranda (2005). Evaluation of SHADOZ sondes,
HALOE and SAGE II ozone profiles at the tropics
from SAOZ UV-Vis remote measurements onboard
long duration balloons, Atmos. Chem. Phys., 5,
1381-1397.
Christy, J.R., and W.B. Norris (2009). Discontinuity is-
sues with Radiosonde and satellite temperatures in
the Australian region 1979-2006, J. Atmos. Oceanic
Technol., 26, 508-522.
Dalaudier, F., V. Sofieva, A. Hauchecorne, E. Kyrölä, L.
Blanot, M. Guirlet, C. Retscher and C. Zehner (2006).
High-resolution density and temperature profiling
in the stratosphere using bi-chromatic scintillation
measurements by GOMOS, Proceedings of the First
Atmospheric Science Conference, European Space
Agency, ISBN92-9092-939-1-ISSN1609-042X.
Dials, M.A., J.C. Gille, J.J. Barnett and J.G. Whitney
(1998). Description of the high resolution dynamics
limb sounder (HIRDLS) instrument, In: Proceed-
ings of SPIE, 3437, 84-91.
Durre, I., R.S. Vose and D.B. Wuertz (2006). Overview
of the Integrated Global Radiosonde Archive, J. Cli-
mate, 19, 53-68.
Fetzer, E.J., and J.C. Gille (1994). Gravity wave variance
in LIMS temperatures. Part I: Variability and com-
parison with background winds, J. Atmos. Sci., 51,
2461-2483.
Fritts, D.C., and J. Alexander (2003). Gravity wave dy-
namics and effects in the middle atmosphere, Rev.
Geophys., 41 (1), 1003; doi:10.1029/2001RG000106.
Geller, M.A., M.J. Alexander, P.T. Love, J. Bacmeister,
M. Ern, A. Hertzog, E. Manzini, P. Preusse, K. Sato,
A. Scaife and T. Zhou (2013). A comparison between
gravity wave momentum fluxes in observations and
climate models, J. Climate, 26, 6383-6405.
Hauchecorne, A., and M.L. Chanin (1980). Density and
temperature profiles obtained by lidar between 35
and 70 km, Geophys. Res. Lett., 8, 565-569.
Hendrick, F., J.P. Pommereau, F. Goutail, R.D. Evans,
D. Ionov, A. Pazmino, E. Kyrö, G. Held, P. Eriksen,
V. Dorokhov, M. Gil and M. Van Roozendael (2011).
NDACC/SAOZ UV-visible total ozone measure-
ments: improved retrieval and comparison with cor-
relative ground-based and satellite observations,
Atmos. Chem. Phys., 11, 5975-5995.
Holton, J.R., and C. Mass (1976). Stratospheric vacilla-
tion cycles, J. Atmos. Sci., 33, 2218-2225.
Holton, J.R., and M.J. Alexander (2000). The role of
waves in the transport circulation of the middle at-
mosphere, Geophys M., 123, 21-35.
Hudson, S.R., M.S. Town, V.P. Walden and S.G. War-
ren (2004). Temperature, humidity, and pressure re-
sponse of radiosondes at low temperatures, J. Atmos.
Oceanic Technol., 21, 825-836.
Kishore, P., S.P. Namboothiri, J.H. Jiang, V. Sivakumar
and K. Igarashi (2009). Global temperature esti-
mates in the troposphere and stratosphere: a vali-
dation study of COSMIC/FORMOSAT-3 measure-
ments, Atmos. Chem. Phys., 9, 897-908.
Kitchen, M. (1989). Representativeness errors for ra-
diosonde observations, Q. J. Roy. Meteor. Soc., 115,
673-700.
Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C.
Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Elling-
ton, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L. Smith,
J.F. Short and D.C. Tobin (2004a). Atmospheric Emit-
ted Radiance Interferometer. Part I: Instrument de-
sign, J. Atmos. Oceanic Technol., 21, 1763-1776.
Knuteson, R.O., H.E. Revercomb, F.A. Best, N.C.
IANNONE ET AL.
10
11
Ciganovich, R.G. Dedecker, T.P. Dirkx, S.C. Elling-
ton, W.F. Feltz, R.K. Garcia, H.B. Howell, W.L.
Smith, J.F. Short and D.C. Tobin (2004b). Atmos-
pheric Emitted Radiance Interferometer. Part II: In-
strument performance, J. Atmos. Oceanic Technol.,
21, 1777-1789.
Kumar, G.K., M.V. Ratnam, A.K. Patra, S.V. B. Rao and
J. Russel (2008). Mean thermal structure of the low-
latitude middle atmosphere studied using Gadanki
Rayleigh lidar, Rocket, and SABER/TIMED obser-
vations, J. Geophys. Res. Atmos., 113, D23; doi:10.
1029/2008JD010511.
Kursinski, E.R., G.A. Hajj, J.T. Schofield, R.P. Linfield
and K.R. Hardy (1997). Observing Earth’s Atmos-
phere with Radio Occultation Measurements Using
the Global Positioning System, J. Geophys. Res.,
102, 23429-23465.
Kyrölä, E., J. Tamminen, G.W. Leppelmeier, V. Sofieva, S.
Hassinen, J.L. Bertaux, A. Hauchecorne, F. Dalaudier,
C. Cot, O. Korablev, O. Fanton d’Andon, G. Barrot,
A. Mangin, B. Théodore, M. Guirlet, F. Etanchaud.
P. Snoeij, R. Koopman, L. Saavedra, R. Fraisse, D.
Fussen and F. Vanhellemont (2004). GOMOS on En-
visat: An overview, Adv. Space Res., 33, 1020-1028.
Kyrölä, E., J. Tamminen, G.W. Leppelmeier, V. Sofieva,
S. Hassinen, A. Seppälä, P.T. Verronen, J.-L. Bertaux,
A. Hauchecorne, F. Dalaudier, D. Fussen, F. Van-
hellemont, O. Fanton d’Andon, G. Barrot, A. Man-
gin, B. Theodore, M. Guirlet, R. Koopman, L.S. de
Miguel, P. Snoeij, T. Fehr, Y. Meijer and R. Fraisse
(2006). Night time ozone profiles in the stratosphere
and mesosphere by the Global Ozone Monitoring
by Occultation of Stars on Envisat, J. Geophys. Res.,
111, D24306.
Lanzante, J., S. Klein and D.J. Seidel (2003). Temporal
homogenization of monthly radiosonde tempera-
ture data. Part I: Methodology, J. Climate, 16, 224-
240.
McDonald, A.J., B. Tan and X. Chu (2010). Role of grav-
ity waves in the spatial and temporal variability of
stratospheric temperature measured by COSMIC/
FORMOSAT 3 and Rayleigh lidar observations, J.
Geophys. Res., 115, D19118.
Moradi, I., S.A. Buehler, V.O. John and S. Eliasson (2010).
Comparing upper tropospheric humidity data from
microwave satellite instruments and tropical ra-
diosondes, J. Geophys. Res., 115, D24310.
Preusse, P., S. Schroeder, L. Hoffmann, M. Ern, F. Friedl-
Vallon, H. Oelhaf, H. Fischer and M. Riese (2009).
New perspectives on gravity wave remote sensing
by spaceborne infrared limb imaging, Atmos. Meas.
Tech. Discuss., 2, 825-856.
Rauthe, M., M. Gerding and F.J. Lubken (2008). Sea-
sonal changes in gravity wave activity measured by
lidars at mid-latitudes, Atmos. Chem. Phys., 8, 6775-
6787.
Ridolfi, M., U. Blum, B. Carli, V. Catoire, S. Ceccherini,
H. Claude, C. De Clercq, K.H. Fricke, F. Friedl-Val-
lon, M. Iarlori, P. Keckhut, B. Kerridge, J.C. Lam-
bert, Y.J. Meijer, L. Mona, H. Oelhaf, G. Pappalardo,
M. Pirre, V. Rizi, C. Robert, D. Swart, T. von Clar-
mann, A. Waterfall and G. Wetzel (2007). Geophys-
ical validation of temperature retrieved by the ESA
processor from MIPAS/ENVISAT atmospheric
limb-emission measurements, Atmos. Chem. Phys.,
7, 4459-4487.
Schreiner, W., C. Rocken, S. Sokolovskiy, S. Synder-
gaard and D. Hunt (2007). Estimates of the preci-
sion of GPS radio occultations from the COSMIC/
FORMOSAT-3 mission, Geophys. Res. Lett., 34,
L04808.
Sofieva, V.F., A.S. Gurvich, F. Dalaudier and V. Kan
(2007a). Reconstruction of internal gravity wave
and turbulence parameters in the stratosphere using
GOMOS scintillation measurements, J. Geophys.
Res., 112, D12113.
Sofieva, V.F., E. Kyrölä, S. Hassinen, L. Backman, J. Tam-
minen, A. Seppälä, L. Thölix, A.S. Gurvich, V. Kan,
F. Dalaudier, A. Hauchecorne, J.-L. Bertaux, D.
Fussen, F. Vanhellemont, O. Fanton d’Andon, G.
Barrot, A. Mangin, M. Guirlet, T. Fehr, P. Snoeij, L.
Saavedra, R. Koopman and R. Fraisse (2007b).
Global analysis of scintillation variance). Indication
of gravity wave breaking in the polar winter upper
stratosphere, Geophys. Res. Lett., 34, L03812.
Sofieva, V.F., F. Dalaudier, R. Kivi and E. Kyröla (2008).
On the variability of temperature profiles in the
stratosphere: Implication for validation, Geophys.
Res. Lett., 35, L23808.
Sofieva, V.F., J. Vira, F. Dalaudier, A. Hauchecorne and
GOMOS team (2009). Validation of GOMOS/En-
visat High-Resolution Temperature Profiles (HRTP)
Using Spectral Analysis, New Horizons in Occulta-
tion Research, 97-107.
Sofieva, V.F., A.S. Gurvich and F. Dalaudier (2010). Map-
ping gravity waves and turbulence in the strato-
sphere using satellite measurements of stellar
scintillation, Physica Scripta, vol. 2010, T142.
Spencer, R.W., J.R., Christy and N.C. Grody (1990).
Global atmospheric temperature monitoring with
satellite microwave measurements: Method and re-
sults 1979-84, J. Climate, 3, 1111-1128.
Stockwell, R.G., L. Mansinha and R.P. Lowe (1996). Lo-
calization of the Complex Spectrum: The S Trans-
form, IEEE T. Signal Proc., 44, 998-1001.
Thompson, A.M., J.C. Witte, R.D. McPeters, S.J. Olt-
A NEW VALIDATION METHOD FOR GOMOS HRTP
mans, F.J. Schmidlin, J.A. Logan, M. Fujiwara,
V.W.J.H. Kirchhoff, F. Posny, G.J.R. Coetzee, B.
Hoegger, S. Kawakami, T. Ogawa, B.J. Johnson, H.
Vömel and G. Labow (2003a). Southern Hemisphere
Additional Ozonesondes (SHADOZ) 1998-2000
tropical ozone climatology 1. Comparison with Total
Ozone Mapping Spectrometer (TOMS) and ground-
based measurements, J. Geophys. Res., 108, 8238;
doi:10.1029/2001JD000967.
Thompson, A.M., J.C. Witte, S.J. Oltmans, F.J. Schmidlin,
J.A. Logan, M. Fujiwara, V.W.J.H. Kirchhoff, F.
Posny, G.J.R. Coetzee, B. Hoegger, S. Kawakami, T.
Ogawa, J.P.F. Fortuin and H.M. Kelder (2003b).
Southern Hemisphere Additional Ozonesondes
(SHADOZ) 1998-2000 tropical ozone climatology 2.
Tropospheric variability and the zonal wave-one, J.
Geophys. Res., 108, 8241; doi:10.1029/2002JD002241.
Thompson, A.M., J.C. Witte, S.J. Oltmans and F.J.
Schmidlin (2004). Shadoz - A Tropical Ozonesonde-
Radiosonde Network For The Atmospheric Com-
munity, B. Am. Meteorol. Soc., 1549; doi:10.1175/
BAMS-85-10-1549.
Thompson, A.M., J.C. Witte, H.G.J. Smit, S.J. Oltmans,
B.J. Johnson, V.W.J.H. Kirchhoff and F.J. Schmidlin
(2007). Southern Hemisphere Additional Ozoneson-
des (SHADOZ) 1998-2004 tropical ozone climatol-
ogy: 3. Instrumentation, station-to-station variability,
and evaluation with simulated flight profiles, J. Geo-
phys. Res., 112, D03304; doi:10.1029/2005JD007042.
Thompson, D.W.J., D.J. Seidel, W.J. Randel, C. Zhi Zou,
A.H. Butler, C. Mears, A. Osso, C. Long and R. Lin
(2012). The mystery of recent stratospheric tem-
perature trends, Nature, 491, 692-697.
Tiefenau, H.K.E., and A. Gebbeken (1989). Influence
of Meteorological Balloons on Temperature Meas-
urements with Radiosondes: Nighttime Cooling
and Daylight Heating, J. Atmos. Oceanic Technol.,
6, 36-42.
Torrence, C., and G.P. Compo (1998). A Practical Guide
to Wavelet Analysis, B. Am. Metereol. Soc., 79, 61-78.
WMO, World Meteorological Organization (2008).
Guide to Meteorological Instruments and Methods
of Observation, 7th ed. WMO 8, Geneva.
Wright, C.J., M.B. Rivas and J.C. Gille (2011). Inter-
comparisons of HIRDLS, COSMIC and SABER for
the detection of stratospheric gravity waves, Atmos.
Meas. Tech., 4, 1581-159.
Wu, D.L., and J.W. Waters (1996). Gravity wave scale
temperature fluctuations seen by the UARS MLS,
Geophys. Res. Lett., 23, 3289-3292.
Zhang, S.D., C. Huang and F. Yi (2006). Radiosonde ob-
servations of vertical wave number spectra for grav-
ity waves in the lower atmosphere over Central
China, Annales Geophysicae, 24, 3257-3265.
Zink, F., and R.A. Vincent (2001). Wavelet analysis of
stratospheric gravity wave packets over Macquarie
Island: 2. Intermittency and mean-flow accelera-
tions, J. Geophys. Res., 106, D10.
*Corresponding author:
Rosario Q. Iannone, SERCO S.p.A., Frascati, Italy;
email: rosarioquirino.iannone@serco.com.
© 2014 by the Istituto Nazionale di Geofisica e Vulcanologia. All
rights reserved.
IANNONE ET AL.
12
<<
/ASCII85EncodePages false
/AllowTransparency false
/AutoPositionEPSFiles false
/AutoRotatePages /None
/Binding /Left
/CalGrayProfile (Dot Gain 20%)
/CalRGBProfile (sRGB IEC61966-2.1)
/CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
/sRGBProfile (sRGB IEC61966-2.1)
/CannotEmbedFontPolicy /Warning
/CompatibilityLevel 1.3
/CompressObjects /Tags
/CompressPages true
/ConvertImagesToIndexed true
/PassThroughJPEGImages true
/CreateJobTicket false
/DefaultRenderingIntent /Default
/DetectBlends true
/DetectCurves 0.1000
/ColorConversionStrategy /LeaveColorUnchanged
/DoThumbnails false
/EmbedAllFonts true
/EmbedOpenType false
/ParseICCProfilesInComments true
/EmbedJobOptions true
/DSCReportingLevel 0
/EmitDSCWarnings false
/EndPage -1
/ImageMemory 1048576
/LockDistillerParams true
/MaxSubsetPct 100
/Optimize false
/OPM 1
/ParseDSCComments true
/ParseDSCCommentsForDocInfo true
/PreserveCopyPage true
/PreserveDICMYKValues true
/PreserveEPSInfo true
/PreserveFlatness true
/PreserveHalftoneInfo false
/PreserveOPIComments false
/PreserveOverprintSettings true
/StartPage 1
/SubsetFonts true
/TransferFunctionInfo /Apply
/UCRandBGInfo /Preserve
/UsePrologue false
/ColorSettingsFile (None)
/AlwaysEmbed [ true
/AndaleMono
/Apple-Chancery
/Arial-Black
/Arial-BoldItalicMT
/Arial-BoldMT
/Arial-ItalicMT
/ArialMT
/CapitalsRegular
/Charcoal
/Chicago
/ComicSansMS
/ComicSansMS-Bold
/Courier
/Courier-Bold
/CourierNewPS-BoldItalicMT
/CourierNewPS-BoldMT
/CourierNewPS-ItalicMT
/CourierNewPSMT
/GadgetRegular
/Geneva
/Georgia
/Georgia-Bold
/Georgia-BoldItalic
/Georgia-Italic
/Helvetica
/Helvetica-Bold
/HelveticaInserat-Roman
/HoeflerText-Black
/HoeflerText-BlackItalic
/HoeflerText-Italic
/HoeflerText-Ornaments
/HoeflerText-Regular
/Impact
/Monaco
/NewYork
/Palatino-Bold
/Palatino-BoldItalic
/Palatino-Italic
/Palatino-Roman
/SandRegular
/Skia-Regular
/Symbol
/TechnoRegular
/TextileRegular
/Times-Bold
/Times-BoldItalic
/Times-Italic
/Times-Roman
/TimesNewRomanPS-BoldItalicMT
/TimesNewRomanPS-BoldMT
/TimesNewRomanPS-ItalicMT
/TimesNewRomanPSMT
/Trebuchet-BoldItalic
/TrebuchetMS
/TrebuchetMS-Bold
/TrebuchetMS-Italic
/Verdana
/Verdana-Bold
/Verdana-BoldItalic
/Verdana-Italic
/Webdings
]
/NeverEmbed [ true
]
/AntiAliasColorImages false
/CropColorImages true
/ColorImageMinResolution 150
/ColorImageMinResolutionPolicy /OK
/DownsampleColorImages true
/ColorImageDownsampleType /Bicubic
/ColorImageResolution 300
/ColorImageDepth -1
/ColorImageMinDownsampleDepth 1
/ColorImageDownsampleThreshold 1.10000
/EncodeColorImages true
/ColorImageFilter /DCTEncode
/AutoFilterColorImages true
/ColorImageAutoFilterStrategy /JPEG
/ColorACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/ColorImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000ColorACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000ColorImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasGrayImages false
/CropGrayImages true
/GrayImageMinResolution 150
/GrayImageMinResolutionPolicy /OK
/DownsampleGrayImages true
/GrayImageDownsampleType /Bicubic
/GrayImageResolution 300
/GrayImageDepth -1
/GrayImageMinDownsampleDepth 2
/GrayImageDownsampleThreshold 1.10000
/EncodeGrayImages true
/GrayImageFilter /DCTEncode
/AutoFilterGrayImages true
/GrayImageAutoFilterStrategy /JPEG
/GrayACSImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/GrayImageDict <<
/QFactor 0.15
/HSamples [1 1 1 1] /VSamples [1 1 1 1]
>>
/JPEG2000GrayACSImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/JPEG2000GrayImageDict <<
/TileWidth 256
/TileHeight 256
/Quality 30
>>
/AntiAliasMonoImages false
/CropMonoImages true
/MonoImageMinResolution 1200
/MonoImageMinResolutionPolicy /OK
/DownsampleMonoImages true
/MonoImageDownsampleType /Bicubic
/MonoImageResolution 1200
/MonoImageDepth -1
/MonoImageDownsampleThreshold 1.08250
/EncodeMonoImages true
/MonoImageFilter /CCITTFaxEncode
/MonoImageDict <<
/K -1
>>
/AllowPSXObjects false
/CheckCompliance [
/None
]
/PDFX1aCheck false
/PDFX3Check false
/PDFXCompliantPDFOnly false
/PDFXNoTrimBoxError true
/PDFXTrimBoxToMediaBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXSetBleedBoxToMediaBox true
/PDFXBleedBoxToTrimBoxOffset [
0.00000
0.00000
0.00000
0.00000
]
/PDFXOutputIntentProfile (None)
/PDFXOutputConditionIdentifier ()
/PDFXOutputCondition ()
/PDFXRegistryName (http://www.color.org)
/PDFXTrapped /Unknown
/CreateJDFFile false
/SyntheticBoldness 1.000000
/Description <<
/ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
/JPN
/FRA
/DEU
/PTB
/DAN
/NLD
/ESP
/SUO
/NOR
/SVE
/KOR
/CHS
/CHT
/ITA
>>
>> setdistillerparams
<<
/HWResolution [2400 2400]
/PageSize [595.000 842.000]
>> setpagedevice