AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ A G-7564 1 The marine environment: hazards, resources and the application of geoethics principles ROBERTO A. VIOLAN TE Servicio d e H id rogr afía N aval, División Geología y Geofísica Marin a, Bu en os Aires, Argen tin a GEVAS Red Argen tin a Asociación Civ il IAPG – In tern ation al Association for Prom otin g Geoeth ics, Argen tin a violan te@h id r o.gov.ar GRAZIELLA BOZZAN O Servicio d e H id rogr afía N aval, División Geología y Geofísica Marin a, Bu en os Aires, Argen tin a Con sejo N acion al d e In vestigacion es Cien tíficas y Técn icas (CON ICET), Bu en os Aires, Argen tin a gbozzan o@h id ro.gov.ar ELIZABETH I. ROVERE Servicio Geológico Min ero Argen tin o (SEGEMAR), In stitu to d e Geología y Recu rsos Min er ales, Dir. Geología Am bien tal y Ap licad a, Bu en os Aires, Argen tin a GEVAS Red Argen tin a Asociación Civ il IAPG – In tern ation al Association for Prom otin g Geoeth ics, Argen tin a elizabeth .r overe@segem ar.gov.ar Abstract Oceans cover three quarters of the Earth surface and represent a fundamental component of the global climate system. Life on Earth is closely tied to the climate system and thus to the oceans. M arine regions are subjected to numerous submarine natural hazards such as earthquakes, volcanic eruptions and landslides, in many cases producing tsunamis that threaten coastal areas and many onshore and offshore man-made facilities. On the other hand, as society and technological needs progressively in- crease, the impact of human activities on coastal and deep waters become more severe, with consequences that include global warming and sea-level rise, coastal erosion, pollution, ocean acidification, damage to marine resources and ecosystem degrada- tion. N evertheless, humankind seems not to be adequately conscious about the different kind of hazards threatening the marine environment. The challenge for marine geoscientists is to be conscious of the geoethical compromise in order to alert society, industries and policy makers about the needs to minimize the risks of natural and human impacts in the ocean system. 1. IN TROD UCTION cean s cover 71% of th e Ear th su rface an d accou n t for 96.4% of th e total w a- ter volu m e, p rovid in g th e largest liv- in g sp ace on th e en tire p lan et an d p r od u cin g abou t h alf of th e global biosp h eric n et p rim ary p rod u ction (Gregg et al., 2003). Ocean s are p art of th e com p lex ocean -atm osp h ere cou p lin g th at regu lates global clim ate, as th ey store m ost of th e su n ’s en ergy, d istribu te h eat arou n d th e p lan et an d beh ave as a CO 2 reservoir (Bigg et O AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ AG-7564 2 al., 2003). Th erefore, life on Earth basically d e- p en d s on ocean s. As a fragile en viron m en t, u n d er a d elicate bal- an ce betw een clim ate an d m arin e p h ysical- ch em ical p rocesses, ocean s are esp ecially vu l- n erable to both n atu ral an d m an -in d u ced h az- ard s. N atu ral h azard s in clu d e su bm arin e earth qu akes an d volcan ic eru p tion s, lan d slid es an d oth er u n d erw ater gravity -d riven p rocess- es, tsu n am is an d extrem e ocean ograp h ic an d clim atic even ts like storm s, h u rrican es an d w a- tersp ou ts, am on g oth ers. Man -in d u ced th reat- en in g factors, resp on d in g e ith er to m isu se or n egligen ce, en com p ass: a) coastal m a n agem en t an d h an d lin g of offsh ore stru ctu res, su ch as in d u strial an d tou ristic h arbou r op eration , p ort-access ch an n els d red gin g, coastal p rotec- tion , d ep loym en t of oil rigs, su bm arin e d u cts an d cables, an d im p lem en tation of off-sh ore ren ew able m arin e en ergy farm s; b) over - exp loitation of liv in g an d n on -livin g resou rces, w ith in ten se bottom traw lin g fish in g activities an d oil sp ills as th e m ost d an gerou s; an d c) ocean p ollu tion , iron fertilization an d ch em ical an d solid w aste d u m p in g. Oth er h a zard s su ch as green h ou se gas em ission s, global w arm in g, sea-level rise an d coastal erosion m ay h ave both n atu ral an d an th rop ic cau ses. Ocean s r e- sp on d to h u m an im p acts at d ifferen t rates. For exam p le, sh ort/ m ed iu m -term resp on ses in - clu d e m od ification of littoral p r ocesses, coastal erosion , coastal flood in g, alteration of h igh ly bio-p rod u ctive n earsh ore areas (d eltas, estu a r- ies, w etlan d s) an d th reats to m arin e life. Lon g- term resp on ses in clu d e sea -level rise, ocean acid ification an d alteration of seaw ater p rop e r- ties (tem p eratu re, salin ity, oxygen ) (Pörtn er et al., 2014). In gen eral, h azard s at coasts an d sea are n ot ad equ ately con sid ered by th e scien tific co m - m u n ity u n d er a social p ersp ective, an d et h ical p rin cip les are far from bein g ap p lied in m ost of th e cases. Th u s, m arin e geoscien ces p rovid e a vast field for in tegratin g scien tific kn ow led ge an d eth ical p rin cip les, w ith th e objective of d e- velop in g a scien ce-based , resp on sible an d su s- tain able m an agem en t strategies for su ch a large an d fu n d am en tal en viron m en t. Th e p u rp ose of th e p resen t con tribu tion is to syn th esize som e of th e m u ltip le issu es related to n atu ral an d an th rop ic h azard s at sea, as w ell as u n d erlin in g th e n eed for a geoeth ical a p - p roach for ad equ ately ev alu atin g en viron m e n - tal an d social im p acts on ocean s. Th ese are crit- ical n eed s, con sid erin g th at t h e u se of th e m a- rin e sp ace, resou rces, an d en ergy w ill be esse n - tial for fu tu re gen eration s (UN CLOSS, 1982). 2. GEOETHICS, RISK, HAZARD AN D VULN ERABILITY AT SEA Geoeth ical p rin cip les p oin t to m ake geoscie n - tists m ore aw are of th eir resp on sibilities in an y situ ation w h ere scien tists in teract w ith society (e.g.: Pep p olon i an d Di Cap u a, 2015; 2017). Am on g th e fu n d am en tal v alu es of geoeth ics listed in Th e Cap e Tow n Statem en t on Geoet h - ics (Di Cap u a et al., 2017), th ree are of sp ecific in terest for m arin e geoscien ce: (1) resp ectin g n atu ral p rocesses an d p h en om en a, w h ere p o s- sible, w h en p lan n in g an d im p lem en tin g in te r- ven tion s in th e m arin e en viron m en t; (2) en su r- in g su stain ability of econ om ic an d social activ i- ties in ord er to assu re fu tu re gen eration s’ su p - p ly of en ergy an d oth er n atu ral resou rces, an d (3) p rom otin g geo-ed u cation an d ou treach for all, to fu rth er su stain able econ om ic d evelo p - m en t, geoh azard p reven tion an d m itigation , en viron m en tal p rotection an d in creased socie- tal resilien ce an d w ell-bein g. Th e ap p lication s of geoeth ical p rin cip les on th e ocean en viron m en t h ave been alread y d is- cu ssed by several au th ors (e.g.: Safin a, 2003, Dallm eyer, 2005, Zach arias an d Gregr, 2005, Au ster et al., 2008, Pau ly an d Stergiou , 2014, Maron e et al., 2015). Zach arias an d Gregr (2005) stated th at all m arin e featu res (biotic an d abiotic) h ave been form ed an d evolved w ith in a certain ran ge of en viron m en tal con d ition s, an d th erefore th ey are sen sitive to d iverse d e- grees of stress accord in g to th e in teraction am on g h azard , vu ln erability an d exp osu re, term s alread y d efin ed by Tau ben böck et al. (2008) an d Di Cap u a an d Pep p olon i (2014). Con sid erin g th at th e con cep t of risk d ep en d s u p on th e d egree to w h ich th e h azard s th reaten vu ln erable an d exp osed h u m an facilities or r e- sou rces, for m arin e en viron m en ts it seem s ob- viou s th at th e h igh est risks are closest to in h a b- ited coasts (E.g.: Dafforn et al., 2015). H ow ever, risk can also be h igh in d eep -sea en viron m en ts, p articu larly w h ere fragile ocean ecosystem s AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ A G-7564 3 TERMS CAUSES PROCESSES R is k H a z a rd N atural Earth qu akes Volcan ic eru p tion s Gravity-d riven p rocesses-lan d slid es Ocean ograp h ic ch an ges Large w aves (in clu d in g tsu n am is) N atural and/or anthropic Clim ate ch an ge Sea level rise Coastal erosion Coastal flood s Sea-w ater p rop erties Iron fertilization Ocean acid ification Meth an e em ission s Anthropic Coastal m an agem en t Urban an d tou ristic facilities In sh ore an d offsh ore m an -m ad e stru ctu res Dred gin g Facilities for m arin e ren ew able en ergies Livin g an d n on -livin g resou rces exp loitation Min in g Fish in g p ractices im p actin g sea -floor Pollu tion (w aste, p lastic, oil d isp osal) V u ln e r a b il it y + e x p o s u re Physical, social, economic, eco- logical Geograp h y an d top ograp h y Location Pop u lation Social stru ctu re Prod u ctive activities Cu ltu ral h eritage En gin eerin g stru ctu res an d in frastru ctu res En viron m en t Livin g an d n on -livin g resou rces an d livin g resou rces h ave to coexist w ith off- sh ore in frastru ctu res an d oth er m an -in d u ced im p acts (for exam p le p ollu tion an d bottom - traw lin g fish ery). 3. MARIN E N ATURAL AN D AN THROPIC HAZARD S Ocean s are so vast th at in p rin cip le it w ou ld seem u n likely th at a locally gen erated h azard in a coastal area cou ld affect far d eep -sea loca- tion s. H ow ever, th e ocean circu lation system tran sp orts w ater th rou gh all th e ocean basin s by both su rface an d d eep -sea cu rren ts, so th at d isp ersal of an y com p on en t existin g in th e w a- ter m ass (ch em icals, p ollu tan ts) far aw ay from th e sou rce can occu r. On th e oth er h an d , th e en ergy gen erated by d eep -sea geological p r o- cesses (e.g. su bm arin e earth qu akes, volcan ic eru p tion s or u n d erw ater slid es an d slop es in - stabilities) can be tran sferred to su rface w aves, w h ich can p oten tially be tran sform ed in tsu - n am is th at rap id ly p rop agate across th e seas. So, th e m arin e en viron m en t can be co n sid ered as a system of com m u n icatin g vessels tran s- p ortin g m aterials an d en ergy all arou n d th e w orld . Som e of th e n atu ral an d an th rop ic p rocesse s th at m ay p oten tially rep r esen t a risk to ocean s are listed in Tab. 1. Am on g th em , earth qu akes, Table 1: General framework conceptualizing risk, hazard and vulnerability in the marine environment (modified after Taubenböck et al., 2008) AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ AG-7564 4 volcan ic eru p tion s an d grav ity -d riven p rocess- es are n atu ral h azard s th at can n ot be p reven t- ed , bu t th eir im p acts on society can be m in i- m ized if geoeth ical p rin cip les are ap p lied at d ifferen t stages of th e risk m an agem en t, like in th e early w arn in g, p reven tion an d m itig ation . After th ese p rocesses, several h u m an -in d u ced h azard s are d iscu ssed , an d h ow th ese can be avoid ed if societies w ill reach th e aw aren ess of th e d am age th ey m ean . 3.1 Submarine earthquakes Th ey are som e of th e m ost d an gerou s n atu ral p rocesses at sea, becau se th ey are p oten tial gen erators, am on g oth er im p acts, of large w aves in d u cin g tsu n am is. As th e m ost strikin g exam p le, th e 9.1 m agn itu d e su bm arin e earth - qu ake of Su m atra (2004) gen erated a com p lex series of tsu n am i w aves th at p rop agated at a sp eed of 640 km / h p rod u cin g a sign ifican t loss of lives, th ou san d s of d isp laced or m issin g p eop le an d severe d am ages to th e in frastru c- tu res, affectin g th e coasts of 12 n ation s arou n d th e In d ian Ocean . Waves also travelled ou tsid e th e In d ian Ocean reach in g areas very far aw ay in th e Atlan tic an d Pacific Ocean s (e.g.: Titov et al., 2005). In 2011, th e 9.0 m agn itu d e eart h - qu ake in n orth eastern Jap an also in d u ced a tsu n am i w ave th at h it an d d ram atically affect- ed th e region , in clu d in g th e d estru ction of th e Fu ku sh im a Pow er Plan t. Th e earth qu akes of Ch ile of 2010 an d 2015 also origin ated big tsu - n am is w ith w aves as h igh as 11 m h ittin g n ot on ly th e local sh ores bu t also th e coasts of Sou th Am erica, Californ ia, N ew Zealan d , H a- w aii, Jap an an d m an y Pacific islan d s, w ith h u n d red s of d eath s an d th ou san d s of d e- stroyed h ou ses. Th ese exam p les sh ow h ow th e geoeth ic p rin cip les ap p lied to th e m arin e en v i- ron m en t are im p ortan t, esp ecially w h en geo- h azard s affect rem ote coastal areas an d islan d s w h ere em ergen cies requ ire sp ecific action s, w h ich in clu d e social an d p olitical aw aren ess of th e p re- an d p ost-crisis m an agem en t stages. 3.2 Volcanism Abou t 80% of th e volcan ic eru p tion s on Earth take p lace u n d erw ater, p articu larly in volcan ic arcs associated w ith su bd u ction zon es an d ot h - er typ es of su bm arin e volcan oes. H ow ever, volcan oes located in coastal region s an d in h a b- ited volcan ic islan d s are also very im p ortan t as th ey affect coastal com m u n ities. Volcan ic eru p - tion s close to th e sh ore are able to trigger ts u - n am is (Egorov, 2007) th rou gh d ifferen t m ech a- n ism s th at in clu d e su bm arin e lah ars, cald era collap ses, p h reatom agm atic p rocesses, am on g oth ers. In th is w ay, th e volcan ic h azard ch an g- es in to a tsu n am i h azard , w ith th e p oten tial to im p act region s far from th e volcan ic sou rce. For exam p le, th e exp losive eru p tion of Krak a- toa in 1883 su p p lied several cu bic kilom eters of m aterial th at en tered th e sea d isp lacin g an equ ally h u ge volu m e of seaw at er, an d p rod u c- in g a 45 m h igh tsu n am i w ave th at rea ch ed th e coasts of Sou th Africa (Egorov, 2007). Th e su bm erged volcan o Protector Sh oal in Sou th Sh etlan d Islan d s (1962) gen erated a su bm arin e lah ar th at d isp laced 620x10 6 m 3 of tep h ras in - d u cin g a big tsu n am i w av e (Violan te et al., 2014), w ith n o ad verse effects as it reach ed th e u n in h abited sh ores of An tarctica. Th e su bm a- rin e eru p tion at El H ierro Islan d (Can arian A r- ch ip elago, Sp ain , 2011), occu rred w h en th e op en in g of a su bm arin e ven t an d th e on set of a fissu re eru p tion at 900 m w ater d ep th an d 5 km offsh ore th e tow n of La Restin ga, gave p lace to th e ejection of volcan ic bom bs, ash an d p yr o- clasts. In th at occasion , th e civil p rotection p r o- ceed ed to a m assive evacu ation of th e coastal p op u lation s th at afterw ard resu lted u n n eces- sary w ith a n egative im p act on local econ om y (Carraced o et al., 2012). Th is is an exam p le th at sh ow s th e n eed of ad equ ate early w arn in gs an d solid scien ce-based recom m en d ation s for a p rop er crisis m an agem en t. For exp losive eru p - tion s, th e Volcan ic Exp losivity In d ex (N ew h all et al., 2018) sh ou ld be establish ed by volcan o l- ogists in ord er to evalu ate th e m agn itu d e of th e eru p tion s, foresee th e p ossible im p acts, an d ad vice au th orities on th e m ost reason able r e- sp on ses an d action s to im p lem en t. 3.3 Gravity-driven mass transport Un d erw ater tu rbid itic flu xes, slid es an d m ass - tran sp ort p rocesses on steep slop es an d in su bm arin e can yon s n orm ally resu lt from slop e in stabilities an d collap ses, alth ou gh th ey can also be triggered by earth qu akes an d v olcan ic AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ A G-7564 5 eru p tion s in m an y cases. Th ese p rocesses can d am age u n d erw ater m an -m ad e stru ctu res, su ch as oil rigs, d u cts an d cables. In fact, tu r- bid ity cu rren ts w ere d iscovered after an eart h - qu ake offsh ore th e coast of Terran ova, Can ad a (1929) broke telegrap h ic cables in th e ocean . An old er w ell-kn ow n su bm arin e slid e is th at of Storegga, in th e N orw egian Sea, w h ich o c- cu rred at 8,200 years BP as a con sequ en ce of a h u ge earth qu ake. Th is slid e in d u ced a series of tsu n am is w aves affectin g n u m erou s coastal a r- eas in th e N orth Sea, record in g a m axim u m w ave h eigh t of 20-30 m in th e Sh etlan d Islan d s (Bon d evik et al., 2003). Like Storegga, m an y su bm arin e slid es an d th eir associated tsu n am is w aves are ackn ow led ged as im p ortan t sou rces of geoh azard w ith a v ast im p act on th e safety both of p eop les livin g on th e coastal areas an d of th e offsh ore an d on sh ore in frastru ctu res (Masson et al., 2006). 3.4 Sea-level rise and coastal retreat Presen t-d ay sea-level rise an d coastal retreat m ay h ave both n atu ral an d h u m an -in d u ced cau ses. Th ey are a con cern as th ey stron gly a f- fect m ost p op u lated coastal region s th reaten in g both th e littoral en viron m en t an d h u m an facili- ties. Observed m ean sea level h as risen b e- tw een 17 an d 21 cm sin ce 1901 (Ch u rch et al., 2013) d u e to global w arm in g, ocean th erm al exp an sion an d glaciers m elt. Th ese valu es re p - resen t an average an n u al in crease of 1.7 m m , alth ou gh estim ation s for th e last 25 years are m u ch h igh er (3.2 m m / year). Accord in g to N ich olls et al. (2007), lon g -term global sh or e- lin e ch an ge rates are 50 to 200 tim es h igh er th an sea-level rise, w h ich m ean s th at 10 cm of sea-level in crease w ou ld im p ly 5 to 20 m of coastal retreat. Of cou rse, n ot on ly sea -level rise bu t also clim ate (e.g. th rou gh th e en ergy of storm s su rges), u rban ization , an d h u m an - in d u ced m isu se of th e sh ores p rom ote coastal erosion , by alterin g th e n atu ral alon g -sh ore sed im en t tran sp ort an d th e equ ilibriu m in th e beach con d ition s. Th erefore, th e su stain able u se of th e littoral sp ace is on e of th e im p ortan t issu es w h ere geoeth ical p rin cip les sh ou ld be ap p lied , m ain ly th rou gh an ad equ ate social aw aren ess of its vu ln erability an d th e im p le- m en tation of sh ore p rotection m an agem en t, w h ich sh ou ld be su stain ed by lon g -term p oli- cies aim ed at to p reven t or at least m in im ize th e d ram atic im p act of clim ate ch an ge an d m an -m ad e in frastru ctu res u p on coastal erosion an d recession . 3.5 Pollution Ocean p ollu tion is an oth er seriou s con cern th at h u m an kin d is facin g tod ay. Th e largest am ou n t of p ollu tan ts at sea com es from activities on lan d , p articu larly d u m p in g trash an d litter, oil sp ills, ch em icals an d fertilizers. Prod u cts r e- leased from sh ip s also con tribu te sign ifican tly. Accord in g to th e in form ation p rovid ed by N OAA (h ttp :/ / w w w .n oaa.gov/ resou rce - collection s/ ocean -p ollu tion ), 1.4 billion p ou n d s of trash p er year en ter in to th e ocean . Plastic d ebris accu m u lates alon g an d off th e coasts in garbage p atch es as a resu lt of ocean cu rren ts an d local ed d ies, an d m icrop lastics h ave been fou n d in d eep -sea sed im en ts (Wod d al et al., 2014). Its p ervasive p resen ce in a ll ocean s is a big issu e as th e im p act on m arin e ecosystem s - an d u ltim ately u p on h u m an h ealth - h as n ot been yet fu lly establish ed . Th e tim e h as com e to better m on itor th e p ollu tan ts d isp ersal an d d isp osal in th e m arin e en viron m en t an d d eep - sed im en ts, to red u ce lan d -based m arin e p ollu - tion by im p rovin g sew age an d w astew ater treatm en t, to ed u cate you th an d in crease th e p u blic aw aren ess th rou gh th e m ed ia, an d to in flu en ce th e d ecision -m akin g p rocesses. Th rou gh th ese action s, ou r u n su stain able co n - su m p tion an d p rod u ction p attern s m ay even - tu ally ch an ge in th e fu tu re (UN ESCO, 2012). 3.6 Ocean fertilization, acidification and eu- trophication Ocean fertilization (n atu ral or m an -in d u ced ) gen erally refers to su p p lyin g iron to th e sea w ith sign ifican t im p act on livin g resou rces (Wallace et al., 2010). Artificial fertilization u sed to in crease p h ytop lan kton to su p p ort fish eries, as w ell as fertilization tech n iqu es u sed to d raw -d ow n atm osp h eric CO 2 (Jin et al., 2008) are clear exam p les of h ow eth ical p rin ci- p les sh ou ld be ap p lied to p reven t certain sp e- cies from bein g h arm ed w h en oth ers are in - ten d ed to be ben efited . N atu ral fertilization AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ AG-7564 6 w ith iron sou rced in rivers an d airborn e vo l- can ic ash is an im p ortan t feed er of ocean ic su r- face w aters (Du ggen et al., 2010). Th is is a com m on p rocess in th e Sou th w estern Atlan tic, w h ere large am ou n ts of iron -rich volcan ic ash - es from th e An d ean volcan oes are tran sp orted eastw ard s by stron g w esterly w in d s, p rod u cin g abn orm al p h ytop lan kton an d algal bloom s (Si- gn orin i et al., 2009) th at in som e cases m igh t be h arm fu l to m arin e fau n as. An oth er p roblem is ocean acid ification , w h ich is th e red u ction of seaw ater p H d u e to in creased atm osp h eric CO 2. Ocean s absorb m ore th an 26 % of th e CO 2 released to th e atm osp h ere by green h ou se em ission , an d accord in g to UN ESCO (2012) ocean s cou ld becom e 150 % m ore acid ic th an tod ay by 2100, w h ich w ou ld cau se d ram atic acceleration in loss of biod iversity an d irr e- versible ecological tran sform ation s. Eu trop h i- cation is th e en rich m en t of seaw ater w ith e x- cessive d issolved n u trien ts, w h ich p rod u ces algal an d p h ytop lan kton bloom s th at m ay d e- p lete an d con su m e oxygen , w ith con sequ en t d am age to m arin e life (An sari et al., 2011). A c- cord in g to Zach arias an d Gregr (2005), ocean s h ave su ffered from a lack of qu an titative m et h - od s aim ed at d elin eatin g areas w ith d ifferen t d egrees of vu ln erability. Th u s, geoscien tists sh ou ld id en tify th e region s w h ere fragile eco- system s are esp ecially u n d er th reat, m on itor th e occu rren ce of h arm fu l bloom s th at m igh t alter th e m arin e fau n a an d im p ly a risk for h u m an -h ealth an d foster th e p rotection of th e ocean an d its livin g resou rces. 3.7 N on-living resources exploitation As h yd rocarbon exp loration is exp an d in g to p reviou sly in accessible d eep w aters, p oten tial w ater p ollu tion an d d am age to ecosystem s d u e to offsh ore exp loration an d d rillin g n eed s to be evalu ated . Deep -sea seism ic exp loration u su a l- ly em p loys airgu n s as a sou rce of en ergy th at p rod u ces p ressu re w aves th rou gh th e w ater colu m n , w h ich p oten tially d istu rbs m arin e fau n as. Oth er, less-kn ow n bu t con tin u ou s con - tam in ation effects of offsh ore d rillin g op er a- tion s con sist in th e d isp osal of d rillin g m u d , brin e w astes, d eck ru n off w ater an d flow lin e an d p ip elin e leaks. Catastrop h ic sp ills rep r e- sen t a seriou s th reat for m arin e ecosystem s. Alth ou gh m ore care an d resp on sibility cou ld lim it th e frequ en cy of m ajor accid en ts affectin g offsh ore rigs, p ip elin es an d oil storage, sh i p - p in g rou tin es an d n atu ral d isasters p u t oil an d gas exp loitation s at u n p red ictable risk. An oth er p oten tial h azard is d eep -sea m in in g, w h ich con sists of u sin g m assive m ach in es to d red ge an d grin d th ou san d s of ton s of rock at th e sea floor to extract p reciou s m in erals (gold , cop p er, zin c, cobalt, m an gan ese, titan iu m ) from ore, h yd roth erm al an d p olym etallic n od u le d ep o s- its. It rep resen ts an extrem ely exp en sive u n d er- takin g d u e to th e tech n ical ch allen ges in volved in retrievin g large am ou n ts of m aterials from great w ater d ep th s. From a geoeth ical p ersp e c- tive, th e balan ce betw een econ om ic ben efits an d en viron m en tal an d social im p acts sh ou ld be accu rately estim ated in ord er to avoid vast an d irrem ed iable d am ages to fr agile an d u n iqu e d eep -sea life. Ocean scien tists, w ater exp erts an d local com - m u n ities sh ou ld coop erate w ith govern m en t, p rivate sector an d p olicy m akers to d evelop p lan s for su st ain able en viron m en tal m an ag e- m en t as w ell as to p r om ote th e gen eration of legal an d p olicy fram ew orks regu latin g th e a c- cess to d eep seabed r esou rces (UN ESCO, 2012). For th e fu tu re, an in creasin g d em an d for n on - en ergy m in erals is exp ected to su p p ort even th e ren ew able green en ergies. Th e p oin t is w h eth er a resp on sible d eep -sea m in in g is p ossible or n ot. Local ben th ic co m - m u n ities, w h ich are often extrem ely sp ecia l- ized , cou ld p erm an en tly be d am aged , an d p lu m es of sed im en t d riven by th e d red gin g m ach in es m igh t p oten tially im p act th e w h ole w ater colu m n by in trod u cin g ch em ical, n oise an d ligh t p ollu tion far aw ay from th e m in in g site. Moreover, d eep -sea m in in g in clu d es ad d ed d if- ficu lties w h en com p ared to lan d -based extrac- tion : restoration of sea-bottom after m in in g can be slow er th an lan d soil recovery, in th e case th at th ere is an y ch an ce to restore sea -bottom to th e p reviou s u n d istu rbed con d ition s; th e h igh costs to op erate at great d ep th s m ake com p a- n y’s good p ractice m ore exp en sive an d th u s less p robable; fin ally, d eep -sea ecosystem s as- sociated to h yd roth erm al ven ts are p oorly kn ow n , an d p olicies to p reserve an d restore th ese h abitats are so far in ad equ ate. AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ A G-7564 7 3.8 Living resources exploitation Du rin g th e last 50 years, th e ecosystem s h ave been stron gly m od ified by th e in creased h u - m an d em an d for food an d en ergy. Th is is th e first con clu sion reach ed by “Th e Millen n iu m Ecosystem Assessm en t” (h ttp s:/ / w w w .m illen n iu m assessm en t.org/ en / Syn th esis.h tm l, accessed 1 Ju n e 2018) th at p ro- vid es a state-of-th e-art abou t th e p resen t -d ay con d ition s an d d eterioration of ecosystem s w orld w id e. Th e in d u strial exp loitation of th e ocean ’s livin g resou rces is carried m ain ly by bottom traw lin g, w h ich is a n on -selective com m ercial fish in g tech n iqu e by w h ich h eavy n ets an d gear are p u lled alon g th e sea-floor w ith d irect n egative im p acts n ot on ly on fish p op u lation s an d ben th ic com m u n ities, bu t also on th e sea-floor, as th is p ractice affects an d som etim es d estroys th e su bstratu m w h ere be n - th ic an d d em ersal sp ecies liv e an d feed (Pu ig et al., 2012). Bottom traw lin g is a global, regu lar an d h arm fu l rou tin e an d th u s th e n eed s for a p - p lyin g eth ical p rin cip les to m in im ize its im p act an d d am age u p on th e en viron m en t are u rgen t. Th ese m igh t in clu d e: red u ction of fish ery effort by lim itin g th e fleet m otor p ow er an d p rom ot- in g a m ore trad ition al w ay of fish in g (tra m - m els, little lon g lin es an d tra p s); ed u cation ad - d ressed to th e society for a m ore r esp on sible an d su stain able con su m e of th e livin g re- sou rces; resp ect of th e n atu ral p rocesses (co n - su m e of season al sp ecies); im p lem en tation of p olicies th at p rom ote th e p rotection of th e m a- rin e en viron m en t in gen eral an d of sp ecific vu ln erable areas in p articu lar (e.g. creatin g m a- rin e p rotected areas for fish in g); an d fin ally, lau n ch of co-m an agem en t p rocesses, w h ere fish erm en , scien tists an d ad m in istration coo p - erate to m ain tain an h ealth y statu s of th e stock. 3.9 Marine energies En ergy con tain ed in w aves, tid es, cu rren ts an d offsh ore w in d s, as w ell as th at com in g from h igh grad ien ts of w ater p rop erties (th erm al an d osm otic en ergy) can be feasibly con verted in to electricity. Th eir facilities in clu d e floatin g d evices or an ch ored bu oys th at catch th e en e r- gy of th e w aves, tid al tu rbin es associated to d am s or barrages bu ilt at estu aries or at th e p assages betw een islan d s a n d arch ip elagos, an d w in d farm s w ith tu rbin e tow ers an ch ored to th e ocean floor. Alth ou gh m an y cou n tries are in vestin g tod ay in ren ew able tech n ologies (UN ESCO, 2017; Yan g an d Cop p in g, 2017) th e offsh ore stru ctu res th at th ese tech n ologies n eed are con sid erably exp en sive. In ad d ition , th ey often sign ifican tly im p act th e local en viro n - m en t. For exam p le, w in d m ills m ay alter bird s m igratory corrid ors, tid al tu rbin es m ay h ave a n egative effect on m arin e fau n as, an d large w ave en ergy stru ctu res m ay lim it th e m ixin g of th e u p p er layers of sea-w aters w h ich cou ld ad - versely im p act m arin e life an d fish eries, lead - in g to th e d isp lacem en t an d alteration of eco- system s. On th e oth er h an d , id eal sp ots for th eir in stallation are n ot as n u m erou s as on e can exp ect, for exam p le m ost m arin e region s can n ot be exp loited becau se th ey are too far rem ote an d th e costs of con stru ction an d ca- blin g th e p ow er to th e grid w ou ld be p roh ib i- tive. Alth ou gh ocean ic ren ew able en ergy is t o- d ay a feasible tech n ology, en viron m en tal im - p act assessm en ts, facilities lifetim e p red iction , stru ctu res ru p tu re an d costs-ben efits evalu a- tion s n eed to be estim ated u n d er a geoeth ical p ersp ective to d evelop a su stain able p oten tial for th eir im p lem en tation . 4. CON CLUSION S Th e ap p lication of geoeth ical p rin cip les at s ea in th e con text of n atu ral an d h u m an -in d u ced h azard s is a n ovel con cep t. Th ese p rin cip les h ave been trad ition ally ap p lied to lan d -based p roblem s, p erh ap s becau se con tin en ts are w h ere p eop le live an d w h ere w ell-kn ow n geo- h azard s (earth qu akes, volcan ic eru p tion s, flood in gs, d rou gh ts, etc.) m ost com m on ly a f- fect every-d ay life of th ou san d s of p eop le. On th e oth er h an d , th ere is a gen eral p ercep tion abou t th e ocean s as a “w aterw orld ” con tain in g n oth in g bu t w ater, or at m ost en d less fish eries, w ith n o evid en t h azard s. Both coastal an d d eep w aters are su bjected to in creasin g p ressu re from h u m an in frastru ctu res an d activities w ith ou t a clear aw aren ess of th e p oten tial risks. Tsu n am is m ay be th e best -kn ow n n atu ral h a z- ard related to th e sea, bu t oth er sou rces of p o- ten tial d am ages com e from su bm arin e eart h - qu akes, volcan ic eru p tion s an d gravity - AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ AG-7564 8 in d u ced sed im en tary p rocesses, w h ich can a f- fect n ot on ly th e coastal region s bu t also m an y offsh ore h u m an facilities like oil rigs, d u cts an d su bm arin e cables. Man -in d u ced p ollu tion an d overexp loitation of livin g an d n on -livin g re- sou rces are oth er h azard s th at th reaten th e fragile ocean ic ecosystem . Marin e cu rren ts are effective agen ts th at tran sp ort sed im en ts, p ollu - tan ts an d en ergy across th e ocean basin s. With th e search in g of n ew resou rces an d tech n olo- gies, th e sea is con sid ered as th e m ain su p p lier of food an d en ergy for th e n ear fu tu re. Th e com p reh en sion of th e m arin e en viron m en t is essen tial for p rotectin g h u m an s from ocean - sou rced h azard s, an d geoeth ical p rin cip les can be su itable ap p lied on a w id e ran ge of cases. In ord er to p reven t th e im p act of m an -m ad e facili- ties an d in frastru ctu res on th e m arin e en v i- ron m en t, h u m an in terven tion s sh ou ld be d on e w ith in th e resp ect of th e n atu ral p rocesses an d p h en om en a of th e ocean ; to p reven t th e m arin e en viron m en t d eterioration , an d for th e fu tu re gen eration s’ ben efit, en ergy an d n atu ral r e- sou rces of th e ocean s sh ou ld be u sed in a su s- tain able w ay, avoid in g p ollu tion an d overe x- p loitation ; to m in im ize th e risks an d to save lives, geoh azard p reven tion an d m itigation , en viron m en tal p rotection an d in creased socie- tal resilien ce an d w ell-bein g cou ld be ach ieved th rou gh a correct early w arn in g m ech an ism s an d a geo-ed u cation ad d ressed to society an d p olicy m akers, so as to ap p ly th e m ost reason a- ble resp on ses an d action s w h en a geoh azard is ap p roach in g. ACKN OWLEDGEMEN TS Au th ors th an k Giu sep p e Di Cap u a an d Silvia Pep p olon i for in vitin g an d en cou ragin g u s to w rite th is con tribu tion . We are in d ebted to th ree an on ym ou s review ers for th eir valu able correction s, com m en ts, su ggestion s an d rec- om m en d ation s th at h elp ed u s to su bstan tially im p rove th e qu ality of th e p ap er. An n a Bozz a- n o con tribu ted to th e section “Livin g resou rces exp loitation ”. REFEREN CES An sari A.A., Gill S.S., Lan za G.R. an d Rast W. (2011). Eu trop h ication : Cau ses, Con se- qu en ces an d Con trol. Sp rin ger Sci- en ce+Bu sin ess Med ia B.V.: 394 p p , d oi 10.1007/ 978-90-481-9625-8. Au ster P.J., Fu jita R., Kellert S.R., Avise J., Cam - p agna C., Cu ker B., Dayton P., H enem an B., Kenchington R., Stone G., N otarbartolo Di Sciara G. and Glynn P. (2008). Develop ing an Ocean Ethic: Science, Utility, Aesthetics, Self- Interest, and Different Ways of Know ing. Conservation Biology 23 (1): 233–235. Bigg G.R., Jickells T.D., Liss P.S. and Osborn T.J. (2003). The role of the oceans in clim ate. Inter- national Jou rnal of Clim atology 23: 1127–1159. d oi: 10.1002/ joc.926 Bond evik S., Mangeru d J., Daw son S., Daw son A. and Lohne Ø . (2003). Record -breaking height for 8000-year old tsu nam i in the N orth Atlan- tic. EOS 84, 289–293. Carraced o J.C., Pérez Torrad o F., Rod rígu ez Gon- zález A., Soler V., Fernánd ez Tu riel J.L., Troll V.R. and Wiesm aier S. (2012). The 2011 su b- m arine volcanic eru p tion in El H ierro (Canary Island s). Geology Tod ay. The Geologists’ A s- sociation & The Geological Society of Lond on, Blackw ell Pu blishing Ltd . 28 (2): 53-58. Chu rch J.A., Clark P.U., Cazenave A., Gregory J.M., Jevrejeva S., Leverm ann A., Merrifield M.A., Milne G.A., N erem R.S., N u nn P.D., Payne A.J., Pfeffer W.T., Stam m er D. and Un- nikrishnan A.S. (2013). Sea Level Change. In: Clim ate Change 2013: The Physical Science Basis. Working Grou p I Contribu tion to the Fifth Assessm ent Rep ort of the Intergover n- m ental Panel on Clim ate Change, Cam brid ge University Press, 1137-1216. Dafforn K.A., Mayer-Pinto M., Morris R.L. and Waltham N .J. (2015). Ap plication of m anage- m ent tools to integrate ecological principles w ith the d esign of m arine infrastru ctu re. Jou rnal of Environm ental Managem ent 158: 61-73. Dallm eyer D.G. (2005). Tow ard a sea ethic. In: N orse E.A. and Crow d er L.B. (Ed s.). Marine Conservation Biology: The Science of Main- taining the Sea's Biod iversity, Island Press, Washington, 410-421. Di Capu a G. and Pep p oloni S. (2014). Geoethical Aspects in the N atu ral H azard s Managem ent. In: Lollino G., et al. (Ed s.). Engineering Geolo- gy for Society and Territory Sp ringer Intern a- tional Pu blishing Sw itzerland , 59-62., d oi: 10.1007/ 978-3-319-09303-1-11. AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ A G-7564 9 Di Capu a G., Pepp oloni S. and Bobrow sky P.T. (2017). The Cape Tow n Statem ent on Geoeth- ics. Annals of Geophysics, Vol. 60, Fast Track 7, d oi: 10.4401/ ag-7553. Du ggen, S., Olgu n, N ., Croot, P., H offm ann, L., Dietze, H ., Delm elle, P. and Teschner, C. (2010). The role of airborne volcanic ash for the su rface ocean biogeochem ical iron -cycle: a review . Biogeosciences 7: 827–844. Egorov Y. (2007). Tsu nam i w ave generation by the eru ption of u nd erw ater volcan. N at. H a z- ard s Earth Syst. Sci. 7: 65–69. Gregg W.W., Conkright M.E., Ginou x P., O’Reilly J.E. and Casey N .W. (2003). Ocean p rim ary p rod u ction and clim ate: Global d ecad al changes. Geoph ysical Research Letters 30 (15): 1809. d oi:10.1029/ 2003GL016889. Jin X., Gru ber N ., Frenzel H ., Doney S.C. and McWilliam s J.C. (2008). The im p act on atm os- pheric CO2 of iron fertilization ind u ced changes in the ocean’s biological pu m p. Bio- geosciences 5, 385–406 Marone E., Cam argo R. and Salced o-Castro J. (2015). Com m u nicating natu ral hazard s: m a- rine extrem e events and the im p ortance of variability and forecast errors. In: Pep poloni S. and Di Capu a G. (Ed s.). Geoethics: the Role and Responsibility of Geoscientists Geological Society, Lond on, Sp ecial Pu blication 419, 125- 131. Masson D.G., H arbitz C.B., Wynn R.B., Ped ersen G. and Løvholt F. (2006). Philos Trans A Math Phys Eng Sci. 364(1845), 2009-2039. DOI: 10.1098/ rsta.2006.1810 N ew hall C., Self S., and Robock A. (2018). Antici- p ating fu tu re Volcanic Exp losivity Ind ex (VEI) 7 eru ptions and their chilling im p acts. Geo- sphere 14 (2): 572–603. d oi: http s:/ / d oi.org/ 10.1130/ GES01513.1. N icholls R.J., Wong P.P., Bu rkett V.R., Cod ignotto J.O., H ay J.E., McLean R.F., Ragoonad en S., and Wood roffe C.D. (2007). Coastal system s and low -lying areas. In: Parry M.L., et al. (Ed s.). Clim ate Change 2007: Im p acts, Ad ap- tation and Vu lnerability. Contribu tion of Working Grou p II to the Fou rth Assessm ent Rep ort of the Intergovernm ental Panel on Clim ate Change Cam brid ge University Press, 315-356. Pau ly D. and Stergiou K.I. (2014). The ethics of hu m an im p acts and the fu tu re of the earth’s ecosystem s: Introd u ction. Ethics in Science and Environm ental Politics 14: 1-5. Pep p oloni S. and Di Cap u a G. (2015). The Mean- ing of Geoethics. In: Wyss M. and Pep p oloni S. (Ed s.). Geoethics: Ethical challenges and case stu d ies in earth science. Elsevier, Massa- chu setts, 3-14. d oi 10.1016/ B978-0-12-799935- 7.00001-0. Pep p oloni S. and Di Capu a G. (2017). Geoethics: ethical, social and cu ltu ral im plications in ge- osciences. In: Pep p oloni S., Di Capu a G., Bobrow sky P.T., Cronin V. (Ed s.). Geoethics: at the heart of all geosciences. Annals of Geo- physics, 2017, Vol 60, Fast Track 7, d oi: 10.4401/ ag-7473. Pörtner H .-O., Karl D.M., Boyd P.W., Cheu ng W.W.L., Llu ch-Cota S.E., N ojiri Y., Schm id t D.N ., and Zavialov P.O. (2014). Ocean sy s- tem s. In: Clim ate Change 2014: Im pacts, Ad - aptation, and Vu lnerability. Part A: Global and Sectoral Aspects. Contribu tion of Wor k- ing Grou p II to the Fifth Assessm ent Rep ort of the Intergovernm ental Panel on Clim ate Change, Cam brid ge University Press, 411-484. Pu ig P., Canals M., Com p any J.B., Martín J., Am - blas D., Lastras G., Palanqu es A., and Calafat A.M. (2012). Plou ghing the d eep sea floor. N a- tu re 489: 286-290. Safina C. (2003). Lau nching a Sea Ethic. Wild Earth. Winter 2002-2003: 2-5. Signorini S.R., García V.M.T., Piola A.R., Evange- lista H ., McClain C.R., García C.A.E., and M a- ta M.M. (2009). Fu rther stu d ies on the p hysical and biogeochem ical cau ses for large interan- nu al changes in the Patagonian shelf sp ring- su m m er phytop lankton bloom biom ass. N ASA/ TM–2009–214176. Tau benböck H ., Post J., Roth A., Zossed er K., Stru nz G., and Dech S. (2008). A conceptu al vu lnerability and risk fram ew ork as ou tline to id entify cap abilities of rem ote sensing. N atu - ral H azard s and Earth System s Sciences 8 (3): 409-420. Titov V., Rabinovich A., Mofjeld H ., Thom son R., and González F. (2005). The global reach of the 26 Decem ber 2004 Su m atra tsu nam i. Sci- ence, 309:2045-2048. UN CLOSS (1982). United N ations Convention on the Law of the Sea. Division for Ocean Affairs and the Law of the Sea, Office of Legal Affairs, United N ations. Version 2013 AN N ALS OF GEOPH YSICS, 60, FAST TRACK 7, 2017; DOI: 10.4401/ AG-7564 10 http:/ / www.un.org/ depts/ los/ convention_agr eements/ convention_overview_convention.htm. UN ESCO (2012). H ealthy Ocean, H ealthy People. Rio+20 United N ations Conference on Su s- tainable Developm ent. UN ESCO. http:/ / w w w .u nesco.org/ new / en/ rioplu s20. UN ESCO (2017). 2nd . Int. Conference on Ma- rine/ Maritim e Sp acial Planning. Intergov- ernm ental Oceanograp hic Com m ission and Eu ropean Oceanographic Com m ission. DGMARE 2017, Paris, France, IOC Workshop Rep orts Series 279. Violante R.A., Cavallotto J.L., Rovere E.I., Dragani W.C., and Spoltore D.V. (2014). La pro- blem ática d el riesgo am biental en los am bien- tes m arinos d e Argentina. In: Goso C. (Ed .). N u evas m irad as a la p roblem ática d e los am - bientes costeros, Su r d e Brasil, Uru gu ay y Ar- gentina. DIRAC, Montevid eo, 231-256. Wallace D.W.R., Law C.S., Boyd P.W., Collos Y., Croot P., Denm an K., Lam P.J. Riebesell U., Taked a S., and William son P. (2010). Ocean Fertilization. A Scientific Su m m ary for Policy Makers. IOC/ UN ESCO, Paris (IOC/ BRO/ 2010/ 2). Wood all L.C., Sanchez-Vid al A., Canals M., Pat- erson G.L.J., Cop p ock R., Sleight V., Calafat A., Rogers A.D., N arayanasw am y B.E., and Thom p son R.C. (2014). The d eep sea is a m a- jor sink for m icrop lastic d ebris. Royal Soc.Open Science 1:140317, http:/ / d x.d oi.org/ 10.1098/ rsos.140317. Yang Z. and Cop ping A. (2017). Marine Renew a- ble Energies. Sp ringer N atu re, Sw itzerland , 390 p p. d oi: 10.1007.978-3-319-53536-4. Zacharias M. and Gregr E. (2005). Sensitivity and Vu lnerability in Marine Environm ents: an Ap proach to Id entifying Vu lnerable Marine Areas. Conservation Biology 19 (1): 86-97.