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Abstract

In this paper by using the ring of real-valued continuous functions

C(X), we prove a theorem in profinite spaces which states that for a

compact Hausdorff space X, the set of its connected components X/∼
endowed with the quotient topology is a profinite space. Then we apply

this result to give an alternative proof to the fact that the category of
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1. Introduction

A profinite space is a compact Hausdorff and totally disconnected topological
space. In other words, a space X is profinite if there exists an inverse system of
finite discrete spaces for which its inverse limit is homeomorphic to X , consider
[2, Section 3.4]. Recall that a profinite group is a topological group whose
underlying space is a profinite space.

There are interesting examples of profinite spaces and profinite groups which
arise from algebraic geometry, Galois theory and topology. For instance, for

Received April 2012 – Accepted March 2013

http://dx.doi.org/10.4995/agt.2013.1575


A. Tarizadeh

any field K its absolute Galois group Gal(Ks/K) is a profinite group, or more
generally the étale fundamental group π1(X, s) of a connected scheme X on a
geometric point s : Spec(Ω) → X is a profinite group [5, Theorem 5.4.2].

Stone’s duality tells us that any profinite spaceX is of the formX = Spec(B)
for some Boolean algebra B ([2, Theorem 4.1.16]).
There is also another characterization of profinite spaces due to Craven [3],
where he proves that each profinite space is homeomorphic to the space X(F )
for some formally real field F and X(F ) denotes the set of orderings of the field
F endowed with some topology.

In partial of this paper, we give an alternative proof to the fact that the
category of profinite spaces is a reflective subcategory in category of compact
Hausdorff spaces. We prove this by using spectra of the Boolean algebras and
rings of real-valued continuous functions C(X).
Thanks to the Stone-Čech compactification functor, one can prove that the
category of compact Hausdorff spaces is a reflective subcategory in the cate-
gory of Tychonoff spaces. Moreover, the category of Tychonoff spaces itself is
reflective in the category of topological spaces.

Section 2, contains some preliminaries which will be required in Section
3. In Section 3, we will use spectra of the Boolean algebras to compute the
connected components of the spectra of a commutative ring in terms of the its
max-regular ideals (Theorem 3.5). As an application of this result and also by
using some properties of the rings of real-valued continuous functions C(X),
we give an alternative proof to a theorem in profinite spaces which states that
for a compact Hausdorff space X , the set of its connected components X/∼
endowed with the quotient topology is a profinite space (Theorem 3.8). This
theorem leads us to construct a covariant functor from the category of compact
Hausdorff spaces K to the category of profinite spaces P, then we will use this
categorical construction to show that the category P is a reflective subcategory
in the category K (Theorem 3.12). Finally, under some circumstances on
a space X , we compute the connected components of t(X) in terms of the
connected components of X(Theorem 3.17). Consider Section 5.7 of the book
[2] to see another proof of the theorems 3.8 and 3.12. In that book, These
theorems are proven by means of the nearness relation notion.

2. Preliminaries

In this Section, for convenience of the reader and for the sake of complete-
ness we collect some preliminaries which will be required in the next section.
For more details on the spectra of the Boolean algebras we reference the reader
to the book [2, Sections 4.1 and 4.2].

Definition 2.1. A topological space X is said to be a profinite space if it is
compact Hausdorff and totally disconnected. Totally disconnectedness means
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that there is no connected subset in X other than the single point subsets.

Definition 2.2. A Boolean algebra is a structure (B,∨,∧, c, 0, 1) with two bi-
nary operations ∨,∧ : B × B → B, a unary operation c : B → B and two
distinguished elements 0 and 1 in B, such that for all x, y and z in B,
(i) the binary operations ∨ and ∧ are commutative and associative,
(ii) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(iii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z),
(iv) x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x,
(v) x ∨ xc = 1, x ∧ xc = 0.

For the sake of simplicity, the Boolean algebra (B,∨,∧, c, 0, 1) is only de-
noted by B. The relation x ≤ y ⇐⇒ x ∧ y = x ⇐⇒ x ∨ y = y puts a partial
ordering on B.

A morphism between two Boolean algebras B and B′ is a map ϕ : B → B′

which preserves the binary and unary operations.

Definition 2.3. Let B be a Boolean algebra. A filter in B is a subset F ⊆ B
such that,
(i) 1 ∈ F ,
(ii) if x, y ∈ F then x ∧ y ∈ F ,
(iii) if x ∈ F and x ≤ y then y ∈ F .

The filter F is called proper if 0 /∈ F . Each maximal element of the poset of
proper filters ordered by inclusion is called an ultrafilter.

Definition 2.4. For given Boolean algebra B, we denote by Spec(B) the set
of all its ultrafilters. For every filter H on B consider OH = {F ∈ Spec(B)
| H * F}. The subsets OH as open subsets constitute a topology on Spec(B).
This topology is usually called the Stone topology and the space Spec(B) is called
the spectrum of B. Also the collection of all Ob = {F ∈ Spec(B) | b /∈ F} where
b ∈ B, as open subsets constitute a basis for the Stone topology.

Lemma 2.5. The spectrum of a Boolean algebra is a profinite space.

Proof. For the proof see [2, Proposition 4.1.11]. �

All rings that we consider in this paper are commutative with the identity.

Lemma 2.6. For a ring R, then the set of its idempotents I(R) with the
operations e∨ e′ = e+ e′ − ee′, e∧ e′ = ee′ and ec = 1− e constitute a Boolean
algebra.

Proof. For the proof see [2, Proposition 4.2.1]. �
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Remark 2.7. We denote by Sp(R) the spectrum of the Boolean algebra I(R)
which is a profinite space according to the lemma 2.5.

Definition 2.8. In a ring R, an ideal I of R is called a regular ideal if it is
generated by a set of idempotents of R. If moreover I 6= R, then we call it a
proper regular ideal.

Lemma 2.9. For any ideal I of R, then I is a regular ideal if and only if for
any a ∈ I there exists an idempotent e ∈ I such that a = ea.

Proof. See [2, Lemma 4.2.7] for its proof. �

Definition 2.10. For a ring R, Any maximal element of the poset of proper
regular ideals of R ordered by inclusion is called a max-regular ideal of R. We
denote by mr(R) the set of all its max-regular ideals.
The subsets OI = {M ∈ mr(R) | I * M} where I is a regular ideal of R, as
open subsets constitute a topology on mr(R).

Lemma 2.11. For a ring R, then there exists a natural map ϕ : Sp(R) →
mr(R) which is a homeomorphism.

Proof. Consider [2, Corollary 4.2.11] for the proof. �

Remark 2.12. In the above lemma, the explicit description of the map ϕ is as
follows. Each element F ∈ Sp(R) is an ultrafilter of the Boolean algebra I(R),
define ϕ(F ) =M where M = 〈e ∈ I(R) | 1− e ∈ F 〉.
In particular, as a consequence of the above lemma, the subsets Oe = {M ∈
mr(R) | e /∈ M} where e ∈ R is an idempotent, constitute a basis for the
topology of mr(R).

Definition 2.13. For any ring R, set Spec(R) = {p ⊂ R | p is a prime ideal
of R}. Then the subsets OI = {p ∈ Spec(R) | I * p} where I is an ideal
of R, constitute a topology for Spec(R). This topology is called the Zariski
topology. We denote by V (I) the complement of OI . Also, the subsets D(f) =
{p ∈ Spec(R) | f /∈ p} where f ∈ R, as open subsets constitute a basis for the
topology.

For given topological space X , denote by Clop(X) the set of all subsets of
X which are both open and closed in X . Each element of Clop(X) is called a
clopen of X .

Throughout this paper, for any topological space X , we denote by X/∼ the
set of all its connected components. In the next section, the set X/∼ will be
equipped with some topology T which is coarser than the quotient topology
and so the canonical projection π : X → (X/∼,T ) will remain continuous
for this new topology. Recall that for each x ∈ X , π(x) is defined to be the
connected component of X which contains x.

For any two covariant functors F : C → D and G : D → C , the covariant
functor HomD(F (−),−) : C op×D → Set is called the left hom-set adjunction
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of F . In the similar way, the covariant functor HomC (−, G(−)) : C op × D →
Set is called the right hom-set adjunction of G.

Definition 2.14. Let F : C → D and G : D → C are two covariant functors.
The functor F is called a left adjoint to the functor G (or G is called a right
adjoint to F ) If there exists a natural isomorphism Φ : HomD(F (−),−) ⇒
HomC (−, G(−)) between the left and right hom-set adjunctions of F and G
respectively. Sometimes, this relationship is indicated by Φ : F ⊣ G.

Definition 2.15. Let C be a subcategory of the category D . Then C is called
a reflective subcategory of D , if there exists a covariant functor F : D → C

which is a left adjoint to the inclusion functor i : C → D , i.e., F ⊣ i. In this
situation, the functor F is called a reflector.

3. Main Results

Although the following result is probably known, we have provided a proof
for the sake of completeness.

Proposition 3.1. For any ring R, consider the space X = Spec(R) with the
Zariski topology. Then there exists a one-one correspondence between I(R) and
Clop(X).

Proof. Define the map η : I(R) → Clop(X) by η(e) = D(e) for any e ∈ I(R).
Since D(e) = V (1 − e), hence D(e) is a clopen and so η is well-defined. We
shall show that it is bijective. For the injectivity, let that η(e) = η(e′) for some

e, e′ ∈ I(R), then V (1 − e) = V (1 − e′). Hence,
√

〈1− e〉 =
√

〈1− e′〉, so
1 − e = (1 − e)n ∈ 〈1 − e′〉 for some n ≥ 1. Thus 1 − e = r′(1 − e′) for some
r′ ∈ R, if we multiply this equation to e′ we get e′ = ee′. By the similar way
we also get e = ee′ thus e = e′.
Now we show that η is surjective. Let that U be a clopen of X . Since U is

closed it is quasi-compact and similarly its complement. Write U =
n
⋃

i=1

D(fi) as

a finite union of standard opens. Similarly, write Spec(R) \U =
m
⋃

j=1

D(gj) as a

finite union of standard opens. ButD(figj) = D(fi)∩D(gj) = ∅, and so each of
figj is nilpotent, thus if we set I = 〈f1, ..., fn〉 , J = 〈g1, ..., gm〉 then (IJ)N = 0
for some sufficiently large integer N ≥ 1. Also Spec(R) = V (IN )

∐

V (JN )

because V (IN ) = V (I) =
m
⋃

j=1

D(gj) and similarly V (JN ) = V (J) =
n
⋃

i=1

D(fi)

so we have R = IN + JN . Write 1 = x + y with x ∈ IN and y ∈ JN . Then
we have x = x2 because x − x2 = x(1 − x) = xy = 0 for the last equality
note that xy ∈ INJN = (IJ)N = 0. So x is an idempotent and we have

η(x) = D(x) =
n
⋃

i=1

D(fi) = U . �
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For a ring R, the elements 0 and 1 are called the trivial idempotents.

Corollary 3.2. For any ring R, set X = Spec(R) with the Zariski topology.
Then the space X is connected if and only if the idempotents of R are only 0
and 1.

Proof. This is a direct consequence of the above Proposition. �

Proposition 3.3. Let M be a regular ideal of R. Then M is a max-regular
ideal if and only if the idempotents of R/M are trivial.

Proof. If the set of idempotents of R/M is trivial then it is easy to see that M
is a max-regular ideal of R.
Conversely, suppose that M be a max-regular ideal of R. Let x = x +M be
an arbitrary idempotent of R/M where x ∈ R, this implies that x − x2 ∈ M .
By Lemma 2.9, there exists an idempotent e ∈M so that (x− x2) = e(x− x2)
thus we get (1− e)(x− x2) = 0. This implies that (1− e)x is an idempotent of
R. Write x = (1− e)x+ ex which belongs to the regular ideal M + 〈(1− e)x〉.
Also

(3.1) M ⊆M + 〈(1 − e)x〉 ⊆M + 〈x〉.
We have M + 〈x〉 = R or M + 〈x〉 6= R.
If M + 〈x〉 = R, then write 1 = rx + r1e1 + ... + rnen where r, ri ∈ R and
ei ∈M , if we multiply this equation to 1− x then we get 1− x = r(x − x2) +
(r1e1 + ... + rnen)(1 − x) which belongs to M and so x = 1, which is a trivial
idempotent.
If M + 〈x〉 6= R, then since M is a max-regular ideal and M + 〈(1 − e)x〉
is a regular ideal so from (3.1) we get M = M + 〈(1 − e)x〉 but since x ∈
M+〈(1−e)x〉 =M so x = 0, therefore in this case also x is a trivial idempotent.
Therefore the idempotents of R/M are only trivial. �

Corollary 3.4. Let that M be a max-regular ideal of R. Then V (M) is a
connected subset of X = Spec(R).

Proof. By the Proposition 3.3, the idempotents of R/M are trivial and so by
the Corollary 3.2, the space Spec(R/M) is connected. In other hand, V (M) is
naturally homeomorphic to the Spec(R/M), so it is also connected. �

Theorem 3.5. Let R be a ring and set X = Spec(R) with the Zariski topology.
Then C ⊆ X is a connected component if and only if C is of the form V (M)
for some max-regular ideal M of R.

Proof. In order to prove the assertion, first we define a map
f : X → mr(R) by f(p) = 〈e | e ∈ p ∩ I(R)〉. It is easy to check that for any
prime p, f(p) is a max-regular ideal of R and so the map is well defined. Also
f is continuous, because for any basis open Oe of mr(R) where e ∈ I(R), we
have f−1(Oe) = D(e).
Now let that C is a connected component of X then f(C) is connected subset of
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Sp(R), because f is continuous. But by the Lemma 2.11, mr(R) is a profinite
space and so f(C) = {M} for a max-regular ideal M of R. But we have
C ⊆ f−1({M}) = V (M). Also by the Corollary 3.4, V (M) is a connected
subset of X so the inclusion C ⊆ V (M) implies the equality, because C is a
connected component.
Conversely, assume thatM be a max-regular ideal of R. Again by the Corollary
3.4, V (M) is a connected subset of X , thus it is contained in a connected
component C of X . By the above paragraph, C = V (N) for some max-regular

ideal N of R. So V (M) ⊆ V (N) this implies that N ⊆
√
N ⊆

√
M . But for

each element e of a set of idempotent generators of N , we have e = en ∈M for
some n ≥ 1. Hence, N ⊆M . Since N is a max-regular ideal, so N =M . �

Corollary 3.6. For a ring R, set X = Spec(R) with the Zariski topology.
Then the set X/∼ with the quotient topology is profinite.

Proof. In the light of the Theorem 3.5, we have X/∼ = {V (M) | M ∈ mr(R)}.
Hence the map Φ : X/∼ → mr(R) given by V (M)  M is well-defined and
bijective. Furthermore, by the Remark 2.12, there exists a basis for mr(R) in
which any element of this basis is of the form Oe = {M ∈ mr(R) | e /∈M} where
e ∈ I(R). So the map Φ induces a topology T on X/∼ with the basis {Φ−1(Oe)
| e ∈ I(R)}. Therefore with this topology, Φ is a homeomorphism. Also the
topology T is coarser than the quotient topology, because π−1(Φ−1(Oe)) =
D(e) where π : X → X/∼ is the canonical projection. By Lemma 2.11, the
space mr(R) is profinite, hence the space (X/∼,T ) is also profinite. �

For a given ring R, denote by M(R) the set of all maximal ideals of R and
consider it as a topological subspace of Spec(R).

Theorem 3.7. Let X be a topological space and set R = C(X) the ring of
real-valued continuous functions on X. Then the set M(R)/∼ with the quotient
topology is profinite.

Proof. First we show that the map Ψ : Spec(R)/∼ → M(R)/∼ given by
V (M) V (M) ∩M(R) is well-defined and bijective.
In order to prove the claim we act as follows, according to [4, Theorem 2.11 ],
every prime ideal p of R is contained in a unique maximal ideal mp. Hence,
we obtain a map ψ : Spec(R) → M(R) given by ψ(p) = mp. This map is con-
tinuous according to [1, Corollary 1.6.2.1]. Therefore, ψ maps any connected
component V (M) of Spec(R) to a connected subset ψ(V (M)) = V (M)∩M(R)
of M(R). In fact, we show that V (M) ∩ M(R) is a connected component of
M(R). For, choose m ∈ V (M) ∩M(R) and let C is a connected component of
M(R) containing m, since the inclusion map M(R) →֒ Spec(R) is continuous
then C is a connected subset of Spec(R), so C is contained in a connected
component of Spec(R) which is exactly V (M), because m ∈ V (M). Thus, we
have C ⊆ V (M)∩M(R), but by the connectedness of V (M)∩M(R) we obtain
C = V (M) ∩M(R).
Therefore, the map Ψ : Spec(R)/∼ → M(R)/∼ is well-defined (note that the
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map Ψ is in fact induced by ψ). Surjectivity of Ψ is clear from the preceding
argument. For its injectivity, suppose that V (M)∩M(R) = V (N)∩M(R) for
some max-regular ideals M and N of R. If M 6= N then we can choose an
idempotent e ∈M \N . Let m be a maximal ideal of R containing M , then m

also contains N and so the regular ideal N + 〈e〉 is contained in m, but since
N is a max-regular ideal we get N = N + 〈e〉 which is a contradiction.
Finally, by using the Corollary 3.6, the bijective map Ψ : Spec(R)/∼ →
M(R)/∼ induces a topology {Ψ(V ) | V ∈ T } ( we denote it also by T )
on M(R)/∼, one can prove that this topology is nothing but the quotient topo-
logy, and with this topology the map Ψ becomes a homeomorphism and so the
space (M(R)/∼,T ) is profinite. �

Theorem 3.8. If X is a compact Hausdorff space, then the set X/∼ endowed
with the quotient topology is a profinite space.

Proof. For a compact Hausdorff space X , according to [4, 4.9.(a)], the map
µ : X → M(R) given by µ(x) = mx = {f ∈ R | f(x) = 0} is a homeomorphism
where R = C(X). Finally, the result implies from the preceding theorem. �

Remark 3.9. Let g : X → Y be a continuous map whereX is compact Hausdorff
and Y is Hausdorff. Then g is a closed map, because each closed subset F of
X is compact and so g(F ) is a compact subset in Y , but Hausdorffness of Y
implies that g(F ) is closed.

Remark 3.10. For given topological space X , set R = C(X) the ring of real-
valued continuous functions. Then one can easily check that the set of idem-
potents I(R) of R is exactly equal to the set {χ

U
: U ∈ Clop(X)} where χ

U
is

the characteristic function of U . In the sequel we need to this characterization
of the idempotents. Also this characterization of idempotents implies that X
is connected if and only if the space Spec(R) is connected.

The above Theorem 3.8, leads us to a covariant functor F : K → P from
the category of compact Hausdorff spaces K to the category of profinite spaces
P and this categorical construction implies that the category of profinite spaces
is a reflective subcategory of the category of compact Hausdorff spaces and the
reflector is the foregoing functor. Hence in what follows, we plan to describe
this functor explicitly and then show that this functor actually is a reflector.

Remark 3.11. For any compact Hausdorff space X , set R = C(X) the ring of
real-valued continuous functions on X , also set mx = {f ∈ R | f(x) = 0} the
maximal ideal of R corresponding to each x ∈ X . Then by the Theorem 3.8,
each connected component of X is of the form CM = {x ∈ X |M ⊆ mx} where
M ∈ mr(R).

Therefore, X/∼ = {CM | M ∈ mr(R)} and the subsets OU = {CM |
χ

U
/∈ M} where χ

U
is the characteristic function of U ∈ Clop(X), as open
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subsets constitute a basis for the topology T as given in the Theorem 3.8.

Finally, define the functor F : K → P, for each compact Hausdorff space
X , by F (X) = (X/∼,T ) where T is the quotient topology. Moreover, for any
continuous function f : X → Y between the compact Hausdorff spaces, then
Ff : (X/∼,T ) → (Y/∼,T

′) is defined for each CM ∈ X/∼, by (Ff)(CM ) =
CN where CN ∈ Y/∼ and f(CM ) ⊆ CN . Consider the following commutative
diagram

X
f

//

πX

��

Y

πY

��

(X/∼,T )
Ff

// (Y/∼,T
′)

where the vertical arrows are the canonical projections.

Theorem 3.12. The category of profinite spaces is a reflective subcategory in
the category of compact Hausdorff spaces.

Proof. We prove that the functor F : K → P as defined in the Remark 3.11,
is a left adjoint to the inclusion functor i : P → K . For this purpose, we show
that there exists a natural isomorphism µ between the left and right hom-set
adjunctions of F and i respectively,
µ : Hom(F (−),−) ⇒ Hom(−, i(−)) .
For each object (X,P ) ∈ K op × P we define the natural transformation
µ

X,P
: Hom((X/∼,T ), P ) → Hom(X,P ) by µ

X,P
(g) = g ◦ πX where g ∈

Hom((X/∼,T ), P ) and πX : X → X/∼ is the canonical projection. The map
µ

X,P
is injective because πX is surjective.

For the surjectivity of µ
X,P

, suppose that f ∈ Hom(X,P ). Put g = π−1
P ◦ Ff :

(X/∼,T ) → P (note that if P is already profinite then the natural projection
πP : P → (P/∼,T

′) by the Remark 3.9, is a homeomorphism). Finally, the
commutativity of the following diagram

X
f

//

πX

��

P

πP

��

(X/∼,T )
Ff

// (P/∼,T
′)

implies that µ
X,P

(g) = g ◦ πX = f . �

On the connected components of t(X). Denote by Top the category of
topological spaces with continuous maps as morphisms. In what follows, first
we recall the definition of the classical covariant functor t : Top → Top and
then we obtain our main result concerning to this subsection, i.e. Theorem 3.17.
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Definition 3.13. The functor t : Top → Top is defined for a topological space
X, by t(X) = {Z ⊆ X | Z is a closed and irreducible subset of X}.
The subsets t(Y ) where Y is a closed subset of X, as closed subsets constitute
a topology for t(X).

Moreover, for any continuous map f : X → X
′

, then the map tf : t(X) →
t(X

′

) is defined for each Z ∈ t(X) by (tf)(Z) = f(Z) which is a continuous
map.

We will need the following easy fact.

Lemma 3.14. Let X be any topological space and let C be a connected com-
ponent of it, then t(C) is a connected subset of t(X).

Proof. Suppose that t(C) = (U ∩ t(C)) ∪ (V ∩ t(C)) be a disjoint separation
for t(C) where U and V are open subsets of t(X). Set U = t(X) \ t(E) and
V = t(X) \ t(F ) where E and F are closed subsets of X . Also Set U = X \ E
and V = X \F , then C = (U ∩C)∪(V ∩C) is a disjoint separation by the open
subsets of C. But by the connectedness of C we get C = U ∩C or C = V ∩C.
Thus we get t(C) = U ∩ t(C) or t(C) = V ∩ t(C). �

Remark 3.15. Note that in the above lemma the assertion is also true for any
connected subset of X . More precisely, for any connected subset C of X then
the set {Z ∈ t(X) | Z ⊆ C} is a connected subset of t(X). The proof is similar
to the proof of the above lemma.

Remark 3.16. The structure of the connected components of t(X) in the general
case is as follows. Each topological space X can be written as a disjoint union
of its connected components, i.e., X =

∐

i∈I

Ci where each Ci is a connected

component of X . From this fact we easily get t(X) =
∐

i∈I

t(Ci). Hence, each

connected component C of t(X), is of the form C =
∐

j∈J

t(Cj) for some J ⊆ I,

because by Lemma 3.14, each of the t(Ci) is connected.
Now if J is a finite set then it is just a single point subset. Namely, C = t(Cj)
where J = {j}, because in the finite case each of the t(Cj) is a disjoint open
subset of C .
However, in the general case the set J is not necessarily finite.
The following theorem says us that the set J is finite whenever the space X/∼
is totally disconnected with some topology T .

Theorem 3.17. Let X be a topological space so that (X/∼,T ) is totally dis-
connected with some topology T which is coarser than the quotient topology.
Then C ⊆ t(X) is a connected component of t(X) if and only if C is of the
form t(C) where C is a connected component of X.

Proof. First we should note that any closed and irreducible subset Z of X is
also a connected subset of X . We denote by Γ(Z) the connected component of
X which contains Z. So this defines a map Γ : t(X) → (X/∼,T ). The map
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Γ is continuous. In order to prove this, for any closed subset E of X/∼, we
will show that Γ−1(E ) = t(E) where E = π−1(E ) and π : X → X/∼ is the
canonical projection.
First let that Z ∈ t(E), since Z is a nonempty connected subset thus Z ⊆
π(z0) = Γ(Z) for some point z0 ∈ Z, but π(z0) ∈ E because Z ⊆ E therefore
Γ(Z) ∈ E this shows that t(E) ⊆ Γ−1(E ). For the inverse inclusion, suppose
that Z ∈ Γ−1(E ) then Γ(Z) ∈ E , but Z is connected, so for any point z ∈ Z
we have π(z) = Γ(Z) ∈ E this shows that z ∈ E = π−1(E ) thus Z ⊆ E this
means that Z ∈ t(E).
Now for proving the assertion, let that C be any connected component of t(X).
Since the map Γ is continuous and the space (X/∼,T ) is totally disconnected,
then we have Γ(C ) = {C} for some single point subset {C} of X/∼ where C is
a connected component of X . But C ⊆ t(C), because for any point Z ∈ C we
have Γ(Z) = C, thus this means that Z ∈ t(C). But by the Lemma 3.14, t(C)
is a connected subset of t(X), also C is a connected component of t(X), thus
we get C = t(C).
Conversely, assume that C is a connected component ofX . By the Lemma 3.14,
t(C) is a connected subset of t(X), thus t(C) is contained in some connected

component C of t(X). But we have {C} = Γ(t(C)) ⊆ Γ(C ) = {C ′} for some

C
′ ∈ X/∼. Thus we get C = C

′

and t(C) = C , so t(C) is a connected
component. �
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