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Abstract

In this article, we prove that the group of all increasing homeomor-
phisms on R has exactly five normal subgroups, and the group of all
homeomorphisms on R has exactly four normal subgroups. There are
several results known about the group of homeomorphisms on R and
about the group of increasing homeomorphisms on R ([2], [6], [7] and
[8]), but beyond this there is virtually nothing in the literature concern-
ing the topological structure in the aspects of topological dynamics. In
this paper, we analyze this structure in some detail.
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1. Introduction

There have been several papers discussing about the normal subgroups of
the group of homeomorphisms on various metric spaces ([2], [6], [7] and [8]). It
is natural to ask: Which subsets will arise as normal subgroups of the group
of homeomorphisms on a metric space? We provide a proof in the case of the
group of (increasing) homeomorphisms on R. This paper contains a detailed
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proof that highlights the differences and similarities between our results and
those given in the references.

A dynamical system is simply a pair (X, f) where X is a metric space and
f : X → X is a continuous function. A point x ∈ X is said to be periodic with
period n if fn(x) = x for some n ∈ N, and fm(x) 6= x for 1 ≤ m < n where
fn = f ◦ f ◦ ... ◦ f is the composition of f with itself n times. If f(x) = x then
we say that x is a fixed point of f . We denote the set of all fixed points of f by
Fix(f), and the complement of Fix(f) by Fix(f)c. Two dynamical systems
(X, f) and (Y, g) are said to be conjugate (we simply say f is conjugate to g),
if there exists a homeomorphism h from X to Y such that h ◦ f = g ◦ h.
Being conjugate is an equivalence relation in the class of dynamical systems. A
homeomorphism h from X to X such that h◦f = f ◦h is called a conjugacy of
(X, f) or simply a conjugacy. Let A,B be two subgroups of a group G. Then
A is invariant in B if A ⊂ B and if bAb−1 ⊂ A for every b ∈ B. A subgroup
N of a group G is normal if and only if it is invariant under conjugation, if
and only if it is a union of conjugacy classes of G. Since our group in this
paper is a group of homeomorphisms, the algebraic notion of conjugacy here
coincides with topological conjugacy in the sense of dynamical systems theory.
For preliminaries from topological dynamics and group theory, the reader may
refer [3], [4] and [5].

In this paper, we study the normal subgroups of the group of (increasing)
homeomorphisms of R and analyze the topological structure in the aspects of
topological dynamics in some detail. The proofs are different from those given
in the above references. The classification here is only based on the set of fixed
points of members of the normal subgroups. In articles [2], [6] and [8], the
set of fixed points or the support of the homeomorphisms are used to classify
normal subgroups.

First we discuss the ideas of proof involved in the references [2], [6] and [8]
to convince the reader that our proof is different from the known ones. For
a set X, let π(X) be the group of all permutations (bijections) on X and G
be a subgroup of π(X). For a topological space X, let H(X) be the group of
homeomorphisms on X. Suppose F is a non-empty family of subsets of X. We
define S(F , G) = {g ∈ G : Fix(g) ⊃ F for some F ∈ F}. For S(F , H(X)), we
shall write S(F). We say that the family F is ecliptic relative to G whenever
it satisfies the following two conditions.

(1) If F1, F2 ∈ F , then there exists an F3 ∈ F such that F3 ⊂ F1 ∩ F2,
(2) If F1 ∈ F and g ∈ G, then there exists an F2 ∈ F such that F2 ⊂ g(F1).

An ecliptic family which satisfies the following additional condition will be
called strictly ecliptic.

(3) If F ∈ F and U ⊂ X is open (U 6= ∅), then there exists an h ∈ H(X)
such that h(F c) ⊂ U , where F c is the complement of F in X.

The objective of the reference [8] is to investigate the normal subgroups for
a class of spaces which includes the n-cell Bn and the author proved that some
of these normal subgroups can be defined in terms of the family of fixed point
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sets of their elements. For a family F of subsets of X, define S(F , G) = {g ∈
G : Fix(g) ⊃ F for some F ∈ F}. It is proved that S(F , G) is a subgroup
of G and if F is ecliptic relative to G, then S(F , G) is a normal subgroup of
G. If X is a topological space such that for any non-empty, open set U , there
is an open set V ⊂ U which is homeomorphic to an open ball in a Euclidean
space of positive dimension and supposing there is a strictly ecliptic family
F on X relative to H(X) and if N is a normal subgroup of H(X), then the
author proved that either N ⊃ S(F) or N consists of the identity 1. They also
proved that if N is a normal subgroup of H(Bn) which contains an element
not in H0(Bn) = {h ∈ H(Bn) : Fix(h) ⊃ Sn−1(the boundary of Bn)}, then
N ⊃ H0(Bn).

The objective of the reference [2] is to analyze the algebraic structure of H(I)
in some detail for some interval I. For a subgroup H of π(X), x ∈ X, let Hx :=
isotropy subgroup of H at x. The authors proved that every translation is a
product of two involutions and every element of H(I) is a product of at most
four involutions. They considered a signature theorem, which provides a useful
criteria for the conjugacy in H(I). Using this idea, they enumerate completely
the normal subgroups of H := H(I) ≤ π(I). Let F be the isotropy subgroup
H0 of H(R). The idea of proof is as follows. For an interval I, we denote I0 for
the interior of I. For a map f : I → I, S(f, x) :=sign(f(x) − x). An element
t ∈ F is a translation if it does not have interior points as fixed points and
let T denote the set of all translations. Also T+ := {t ∈ T : S(t, x) > 0} and
T− := {t ∈ T : S(t, x) < 0}. Now, let S be a semi-group which is invariant in
F , Qa = {f ∈ H : f(x) = x for all x in some neighborhood Nf (a)} for a ∈ I
and Q = Q0 ∩ Q1. The authors proved that if S 6⊂ Q0, then S contains an
element with at most one interior fixed point. Also T+ and T− are complete
conjugacy classes in F , T is a complete conjugacy in H and F = TT . Using
these ideas, the authors also proved that if N is an invariant subgroup of F ,
then N ⊂ Q0 or N ⊂ Q1 or N = F . If N is an invariant subgroup of H
then either N = H, N = F or N ⊂ Q. Now the only subgroups of H are
H,F,Q and {1} since Q is simple. If N is normal in Q0 (respectively in Q1),
then either N = {1}, N = Q or N = Q0 (respectively in Q1). Hence the only
normal subgroups of F are F,Q0, Q1, Q and {1}.

The reference [6] is an expository paper, the author provides a relatively
complete but concise account of the classification of H := H(I), in terms of a
suitable topological signature concept. For φ ∈ H, the author first associated
the function s(φ) : R → S = {−1, 0, 1} defined by s(φ)(x) = sign(φ(x) − x).
For s ∈ Σ := {h : R → S : h is continuous}, let Spt(s) = R \ int(s−1(0)),
Ha = {φ ∈ H : Spt(φ) is bounded above}, Hb = {φ ∈ H : Spt(φ) is bounded
below} and Hc = {φ ∈ H : Spt(φ) is bounded}.

The author first observed the following facts:

(1) s(φ−1) = −s(φ)
(2) For φ1, φ2 ∈ H+ (the set of all increasing homeomorphisms) with

s(φ1) ≥ 0 and s(φ2) ≥ 0, it holds s(φ1 ◦ φ2) ≥ max{s(φ1), s(φ2)}.
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These facts provide a one-to-one correspondence between the collection of
normal subgroups N of H (resp. H+) and Σ(N), the family of s-functions
closed under the operation (s(φ), s(ψ)) → s(φ−1 ◦ ψ) and closed under topo-
logical equivalence.

Consider the group H(R) = {f : R → R : f is a homeomorphism} under
composition of functions, and its subgroups IH(R) = {f ∈ H(R) : f is increasing},
Hl = {f ∈ IH(R) : Fix(f)c is bounded above} and Hr = {f ∈ IH(R) :
Fix(f)c is bounded below}.

Our main results prove that:

(1) The group IH(R) has exactly five normal subgroups. They are:
(a) The whole group IH(R)
(b) The trivial group {1}
(c) Hl

(d) Hr

(e) H = Hl ∩Hr.
(2) For H(R) there are exactly four normal subgroups. They are:

(a) The whole group H(R)
(b) The trivial group {1}
(c) H = {f ∈ IH(R) : Fix(f)c is bounded}
(d) IH(R).

2. Main results

Let IH([a, b]) denote the group (under composition of functions) of all in-
creasing homeomorphisms on the closed interval [a, b] and let H([a, b]) denote
the group (under composition of functions) of all homeomorphisms on the
closed interval [a, b]. In fact H(R) and H([a, b]) are topological groups with
respect to compact-open topology. This happens since the homeomorphism
group on a locally connected and locally compact second countable space is a
topological group (see [1]). Consider R∗ = R ∪ {−∞,∞} with order topology.
Any closed interval [a, b] in R is homeomorphic to R∗ = R∪{−∞,∞}, and the
groups IH([a, b]) and IH(R∗) are isomorphic.

We write:

(1) CA([a, b]) = {f : [a, b]→ [a, b] : f is a homeomorphism such that f(t) >
t ∀ t ∈ (a, b)}

(2) CB([a, b]) = {f : [a, b]→ [a, b] : f is a homeomorphism such that f(t) <
t ∀ t ∈ (a, b)}.

(3) H = Hl ∩Hr = {f ∈ IH(R) : Fix(f)c is bounded}
For f ∈ CA([a, b])∪CB([a, b]), we have f(a) = a and f(b) = b. Hence CA([a, b])
and CB([a, b]) are subsets of IH([a, b]). We define CA([a, b]) ◦ CB([a, b]) :=
{f ◦ g : f ∈ CA([a, b]), g ∈ CB([a, b])}. Two continuous maps f, g : R → R are
said to be order conjugate if there exists an increasing homeomorphism h on
R such that h ◦ f = g ◦ h. The maps f, g : R→ R defined by f(x) = x+ 1 and
g(x) = x−1 are conjugate to each other through h(x) = −x+ 1

2 ∈ H(R). But f
and g are not order conjugate. Contrary to assume there is an h ∈ IH(R) such
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that h◦f = g ◦h. Then h(x+1) = h(x)−1. That is, h(x+1)−h(x) = −1 < 0.
Which is a contradiction to the assumption that h ∈ IH(R) and hence the
maps f and g are not order conjugate.

Lemma 2.1.

(1) Assume that f, g ∈ IH(R) are such that Fix(f) = Fix(g)
(a) f is conjugate to g;
(b) If for every t ∈ R it holds (f(t)− t)(g(t)− t) ≥ 0 then f and g are

order conjugate.
(2) Assume that f, g ∈ IH([a, b]) are such that Fix(f) = Fix(g)

(a) f is conjugate to g;
(b) If for every t ∈ [a, b] it holds (f(t)− t)(g(t)− t) ≥ 0 then f and g

are order conjugate.

Proof. (1) Assume that f, g ∈ IH(R) are such that Fix(f) = Fix(g)
(a) Case 1: Fix(f) = Fix(g) = ∅

Assume that f(0) > 0. For n ∈ N, inductively define f−n =
f−n+1 ◦ f−1. Since f is increasing (fn(0)) increases and thus di-
verges to ∞, and (f−n(0)) decreases and diverges to −∞. More-
over, for t ∈ R there exists unique n ∈ Z such that, fn(0) ≤ t <
fn+1(0). Consider this unique n, and define k : (−∞, f(0)) →
(−∞, 1) by k(t) = t

f(0) and h : R → R by h(t) = k(f−n(t)) + n

for t ∈ R. Note that h(f(0)) = 1 and h is a homeomorphism of R.
Then h ◦ f(t) = h(t) + 1 ∀ t ∈ R. This h gives a conjugacy from
f to x+ 1. Similarly we can prove that, f is conjugate to x− 1 if
f(0) < 0. The maps x+ 1 and x− 1 are conjugate to each other.
Hence the proof.
Case 2: Fix(f) = Fix(g) 6= ∅
In this case, define f̃ : R∗ → R∗ by f̃ |R (the restriction map f̃ to

R)= f , f̃(−∞) = −∞ and f̃(∞) =∞. Similarly define g̃ also. Let

Fix(f̃)c = Fix(g̃)c = ∪α(aα, bα) (disjoint union of open intervals).

The restriction maps f̃ |[aα,bα] : [aα, bα] → [aα, bα] and g̃|[aα,bα] :

[aα, bα] → [aα, bα] are increasing with aα = f̃(aα) = g̃(aα) and

bα = f̃(bα) = g̃(bα) and Fix(f̃ |(a,b)) = Fix(g̃|(a,b)) = ∅. Let hα
be a conjugacy from f̃ |[aα,bα] to g̃|[aα,bα] for every α. By Case
1, this conjugacy hα exists for every α. Define h : R∗ → R∗ as

h(x) =

{
hα(x) if x ∈ (aα, bα)
x otherwise

. Then h is a conjugacy from f̃

to g̃. Hence h|R is a conjugacy from f to g.
(b) Suppose (f(t)−t)(g(t)−t) ≥ 0 for all t ∈ R. If Fix(f) = Fix(g) =

∅ then f(0)g(0) > 0. This implies either both f(0) and g(0) are
positive or both f(0) and g(0) are negative. Hence both f and g
are either order conjugate to x+1 or to x−1. If Fix(f) = Fix(g) 6=
∅ then consider the maps f̃ , g̃ as in Case 2 of (1) (a) in the proof

of Lemma 2.1. If Fix(f̃)c = Fix(g̃)c = ∪α(aα, bα) (disjoint union
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of open intervals) then the restriction maps f̃ |[aα,bα] : [aα, bα] →
[aα, bα] and g̃|[aα,bα] : [aα, bα]→ [aα, bα] are increasing with aα =

f̃(aα) = g̃(aα) and bα = f̃(bα) = g̃(bα), and (f̃(t)−t)(g̃(t)−t) > 0

for all t ∈ (aα, bα). If hα is an order conjugacy from f̃ |[aα,bα]

to g̃|[aα,bα] for every α then the map h : R∗ → R∗ defined by

h(x) =

{
hα(x) if x ∈ (aα, bα)
x otherwise

is an order conjugacy from f to

g. Hence the proof follows.
(2) Assume that f, g ∈ IH([a, b]) are such that Fix(f) = Fix(g). Without

loss of generality, we can assume that f, g ∈ IH(R∗). Then f(−∞) =
−∞ and f(∞) =∞. Hence Fix(f |R) = Fix(g|R).
(a) By (1) (a) of Lemma 2.1, f |R is conjugate to g|R and hence f is

conjugate to g;
(b) By (2) (a) of Lemma 2.1, if for every t ∈ R it holds (f(t)−t)(g(t)−

t) ≥ 0 then f |R and g|R are order conjugate and hence f is order
conjugate to g.

�

For a map f : R → R, if t1, t2 ∈ Fix(f) and s /∈ Fix(f) for all s ∈ (t1, t2)
then we say that t1 and t2 are adjacent.

Lemma 2.2. Let f ∈ IH(R) and let {{aα, bα}}α be the pairs of adjacent fixed
points. Define g : R→ R by

g(x) =

{
x+f(x)

2 if aα < x < bα for some α
f(x) otherwise

Then f is order conjugate to g.

Proof. The proof follows from Lemma 2.1. �

Proposition 2.3. CA([a, b]) ◦ CB([a, b]) = IH([a, b]).

Proof. Let h ∈ IH([a, b]). Define hA(x) :=

{
h(x) if h(x) > x
x otherwise

and hB(x) :={
h(x) if h(x) < x
x otherwise

. Then h = hA ◦ hB . But hA /∈ CA([a, b]) and hB /∈

CB([a, b]). Now consider g(x) = x + 1. Then g(x) > x for all x ∈ R. Let
h′A = hA ◦ g and h′B = g−1 ◦ hB . Then h ◦ g(x) > h(x) for all x. Therefore
h ◦ g(x) > x whenever h(x) > x. Hence h′A(x) > x if h(x) > x. If h(x) ≤ x
then h′A(x) = g(x) > x. Hence h′A ∈ CA([a, b]). Similarly we can prove that
h′B(x) ∈ CB([a, b]). Hence the proof follows since h = h′A ◦ h′B . �

Corollary 2.4. If N is a normal subgroup of IH([a, b]) that contains an ele-
ment of either CA([a, b]) or CB([a, b]) then N = IH([a, b]).

Proof. By Lemma 2.1, the sets CA([a, b]) and CB([a, b]) are exactly the con-
jugacy classes of IH([a, b]), and CA([a, b]) = {f−1 : f ∈ CB([a, b])}. So if
subgroup N is normal and intersect either CA([a, b]) or CB([a, b]), then it au-
tomatically contains these sets. Hence N = IH([a, b]) by Proposition 2.3. �
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We introduce the following notation:
For f ∈ IH(R) and t0 ∈ Fix(f), we denote

ft0(x) :=

{
x+f(x)

2 if x ≥ t0
f(x) if x < t0

, f∗t0(x) :=

{
f(x) if x ≥ t0
x if x < t0

, and f∗∗t0 (x) :={
x if x ≥ t0
f(x) if x < t0

.

Lemma 2.5. Let f ∈ IH(R) and let t0 ∈ Fix(f). Then f∗t0 is order conjugate

to f−1t0 ◦ f .

Proof. For f ∈ IH(R), first observe that ft0 |[t0,∞) is x+f(x)
2 and f∗t0 |[t0,∞) is

f(x). Hence by Lemma 2.1, ft0 |[t0,∞) is order conjugate to f∗t0 |[t0,∞). For

t ∈ [t0,∞), first suppose that f(t) − t ≥ 0. Then f(t) ≥ t+f(t)
2 . Which

implies f−1t0 (f(t)) ≥ f−1t0 ( t+f(t)2 ) = t. If f(t) − t ≤ 0 then we can prove that

f−1t0 (f(t)) ≤ t. Hence (f(t) − t)((f−1t0 ◦ f)(t) − t) ≥ 0 for all t ∈ [t0,∞). By

Lemma 2.1, f∗t0 is order conjugate to f−1t0 ◦ f on [t0,∞). Also f−1t0 ◦ f |(−∞,t0)
is the identity function. Hence the proof follows. �

Corollary 2.6. Let N be a normal subgroup of IH(R). Let f ∈ N and let
t0 ∈ Fix(f). Then f∗t0 ∈ N .

Proof. By Lemma 2.1, ft0 is order conjugate to f and by Lemma 2.5, f∗t0 is

order conjugate to f−1t0 ◦ f . Hence the proof follows. �

Proposition 2.7. Let N be a normal subgroup of IH(R). If there exists an
f ∈ N with Fix(f) 6= ∅ is bounded above then Hr ⊂ N .

Proof. Let N be a normal subgroup of IH(R) and let f ∈ N such that Fix(f)
is bounded above and let t0 = SupFix(f), the supremum of Fix(f). If g ∈ N
with g(t0) = t0 and h ∈ IH(R) with h(t0) = t0 then h|[t0,∞)◦g|[t0,∞)◦h−1|[t0,∞)

is the same as h◦g ◦h−1|[t0,∞). Hence N |[t0,∞)= {g|[t0,∞) : g ∈ N, g(t0) = t0}
is a normal subgroup of IH([t0,∞)). Since t0 = Sup Fix(f), either f(t) > t
or f(t) < t on (t0,∞). That is, f |[t0,∞] ∈ CA([t0,∞]) or CB([t0,∞]). Then by
Corollary 2.1, it follows that N |[t0,∞) = IH([t0,∞)). Now let φ ∈ Hr. Choose a
fixed point s0 of φ such that every number less than s0 is also a fixed point of φ.
Consider χ(t) = t0− s0 +φ(t− t0 + s0). If τ(t) = t− t0 + s0 then φ ◦ τ = τ ◦χ.
Hence φ is order conjugate to χ. Observe that χ = χ∗t0 . Hence the order
conjugate χ of φ is the identity outside [t0,∞). Now χ|[t0,∞) ∈ IH([t0,∞)).
Hence there exists χ̃ ∈ N such that χ̃ = χ on [t0,∞). Thus χ̃∗t0 = χ, and hence
χ ∈ N . Then φ ∈ N since N is normal. Hence Hr ⊂ N . �

Remark 2.8. Let N be a normal subgroup of IH(R). If there exists f ∈ N such
that Fix(f) 6= ∅ is bounded below then by considering analogues arguments
involved in the proof of Proposition 2.7, we have Hl ⊂ N .

Remark 2.9. Let N be a subgroup of IH(R∗). If Fix(f) = {−∞,∞} for
all f ∈ N then either f ∈ CA([−∞,∞]) or f ∈ CB([−∞,∞]). Hence by

© AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 2 275



K. Ali Akbar and T. Mubeena

Proposition 2.3, N = IH(R∗). From this it follows that, if N is a subgroup of
IH(R) with Fix(f) = ∅ then N = IH(R).

Remark 2.10. If N be a normal subgroup of IH(R) with f ∈ N and t0 ∈
Fix(f), then analogues to Corollary 2.6, we can prove that f∗∗t0 ∈ N .

Corollary 2.11. Let t1 < t2 be adjacent fixed points of some f ∈ N where

N is a normal subgroup of IH(R). If g(x) =

{
f(x) if t1 < x < t2
x otherwise

then

g ∈ N .

Proof. Observe that g = f∗t1 ◦ f
∗
t2
−1. Hence g ∈ N by Corollary 2.6. �

The following two lemmas are important to prove our main theorem. We
consider these lemmas before considering our main theorem. We first make a
back ground to complete the proof of following lemma. Let f : R→ R ∈ IH(R)
with unique fixed point a. Define g : R → R by g(t) = f(a + t) − a for
t ∈ R. Then g(0) = 0 if and only if f(a) = a, and g is order conjugate to
f by the order conjugacy h(t) = a + t for t ∈ R. By Lemma 2.1, there are
only 3 elements in IH(R) with a unique fixed point upto order conjugacy. Let

f(x) =

{
2x if x ≥ 0
x
2 if x < 0

for x ∈ R and g(x) :=

 2x if x ≥ 1
1
2 (3x+ 1) if − 1 ≤ x ≤ 1
x−1
2 if x ≤ −1

.

Observe that f has a unique fixed point at 0 and g has unique fixed point at
−1. Then the map g◦f has no fixed points. By Corollary 2.6 and Remark 2.10,
it follows that, if N is a non-trivial normal subgroup of IH(R) and contains
an element with a unique fixed point then it contains an element without fixed

points. Next, let f, g : R → R be such that f(x) =

{
x2 + 1 if 0 ≤ x ≤ 1
x+ 1 otherwise

and g(x) = x − 1. Then f and g has no fixed points, and g ◦ f has only two
adjacent fixed points 0 and 1.

Lemma 2.12. The group H is the smallest non-trivial proper normal subgroup
of IH(R).

Proof. Let N be a non-trivial normal subgroup of IH(R). Suppose there exists
f ∈ N with adjacent fixed points t1 < t2. If φ is an element of IH([t1, t2])

such that φ = f |[t1,t2] then by Corollary 2.11, the extension φ̃ : R→ R defined

by φ̃ =

{
φ(x) if t1 < x < t2
x otherwise

is also in N . Let h ∈ H = {f ∈ IH(R) :

Fix(f)c is bounded}. Without loss of generality assume that t1 be the infimum
of Fix(h)c and t2 be the supremum of Fix(h)c. Then t1, t2 ∈ Fix(h). By

Lemma 2.2, there exists an order conjugate ĥ of h such that φ̃◦ ĥ−1 ∈ N . Then

ĥ ∈ N since ĥ ◦ φ̃ ◦ ĥ−1 ∈ N . Which implies h ∈ N . This proves H ⊂ N
whenever there exists f ∈ N with adjacent fixed points. By Lemma 2.1, any
homeomorphisms on R without fixed points is either order conjugate to x+ 1
or to x−1. If N contains an element with a unique fixed point then it contains
an element without fixed points. Therefore it follows that N always contains
an element with atleast two adjacent fixed points. Hence the proof. �
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Lemma 2.13. Let N be a normal subgroup of IH(R). If f ∈ N such that both
Fix(f) and Fix(f)c are not bounded above, then N contains an element such
that its set of all fixed points is bounded above.

Proof. Let f ∈ N and t0 ∈ R be a fixed point of f . By Corollary 2.6, f∗t0 ∈ N .
Let {(aα, aα+1)}α be the collection of all intervals of R such that f∗t0(aα) = aα,
f∗t0(aα+1) = aα+1 and either f∗t0(t) > t or f∗t0(t) < t for all t ∈ (aα, aα+1).
Consider a collection of intervals {(bα, bα+1)}α of R such that bα < aα <
bα+1 < aα+1 for all α and an increasing homeomorphism g on R which is order
conjugate to f∗t0 such that g(bα) = bα, g(bα+1) = bα+1 and either g(t) > t or
g(t) < t for all t ∈ (bα, bα+1). This is possible since IH([a, b]) is isomorphic to
IH([c, d]) for any intervals [a, b] and [c, d]. Without loss of generality we can
assume that f∗t0 and g do not have common fixed points which are greater than
t0. Then f∗t0 ◦ g ∈ N and Fix(f∗t0 ◦ g) is bounded above. Hence the proof. �

Remark 2.14. Let N be a normal subgroup of IH(R).

(1) If there exists f ∈ N such that Fix(f) and Fix(f)c are not bounded
above. Then Hr ⊂ N by Proposition 2.7 and Lemma 2.13.

(2) If there exists f ∈ N with Fix(f) and Fix(f)c are not bounded be-
low then Hl ⊂ N . This follows by considering analogous arguments
involved in the proof of Lemma 2.13 and by Remark 2.8.

Now we are ready to prove our main theorems:

Theorem 2.15. The group IH(R) has exactly five normal subgroups. They
are:

(1) The whole group IH(R)
(2) The trivial group {1}
(3) Hl

(4) Hr

(5) H = Hl ∩Hr.

Proof. Let N be a non-trivial normal subgroup of the group IH(R).
Suppose that the function x+1 is inN . We claim thatN = IH(R). Consider

a function f ∈ IH(R), and let g = (f ∨(x−1))∧(x+1), where ∨, ∧ denote the
maximum, and minimum of functions respectively. Then g ∈ IH(R) and it is
at a distance ≤ 1 from the diagonal. Then Fix(f) = Fix(g), and f(x)−x and
g(x)− x have the same sign between any two adjacent fixed points. Hence g is
order conjugate to f . Now it is enough to prove g ∈ N . As g(x) ≥ x−1, ∀x ∈ R,
we have g(x) + 2 > x ∀x ∈ R and therefore the function g(x) + 2 is order
conjugate to the function φ(x) = x+1, since any two elements of IH(R) whose
graphs are above the diagonal are order conjugate. Then g+ 2 ∈ N and hence
φ−1 ◦ φ−1 ◦ (g + 2) = g ∈ N , where (g + 2)(x) = g(x) + 2 for x ∈ R. But f is
order conjugate to g. Therefore f ∈ N . Thus N = IH(R). Similarly, if x − 1
is in N then also we can prove that N = IH(R). If there is an element f in N
without fixed point then N = IH(R). This is because f is order conjugate to
either x− 1 or x+ 1 by Lemma 2.1.
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Now, let φ ∈ N be such that it has arbitrarily large fixed points and arbitrar-
ily large non-fixed points (that is, Fix(φ) and Fix(φ)c are not bounded above).
Then by Lemma 2.13 and by Remark 2.14, Hr ⊂ N . Analogues to the above
claim, if there exists φ ∈ N such that Fix(φ) and Fix(φ)c are not bounded
below then Hl ⊂ N by Remark 2.14. Now suppose Fix(φ)c is bounded below
for every φ ∈ N . Then N ⊂ Hr. Also if Fix(φ)c is bounded above for every
φ ∈ N then N ⊂ Hl.

Therefore from the following table we conclude that either N ⊂ Hl or Hr ⊂
N .

(1) There exists ψ ∈ N such that Then Hr ⊂ N
Fix(ψ) is bounded above

(2) There exists φ ∈ N such that Then (1) by Lemma 2.13
neither Fix(φ) nor Fix(φ)c is bounded
above

(3) For every φ ∈ N , Fix(φ)c is bounded
above

Then N ⊂ Hl

Similarly by considering the following table analogues to the above table,
we can show that N ⊂ Hr or Hl ⊂ N .

(1) There exists ψ ∈ N such that Then Hl ⊂ N
Fix(ψ) is bounded below

(2) There exists φ ∈ N such that Then (1) by Remark 2.14
neither Fix(φ) nor Fix(φ)c is bounded
below

(3) For every φ ∈ N , Fix(φ)c is bounded be-
low

Then N ⊂ Hr

Now there are only four possibilities for a non-trivial normal subgroup N of
IH(R) :

Case: 1 N ⊂ Hl and N ⊂ Hr

In Case: 1, N ⊂ Hl ∩Hr = H. Therefore N = H.
Case: 2 N = Hl

Case: 3 N = Hr

Case: 4 Hr ⊂ N and Hl ⊂ N
In Case 4, Hr ∪ Hl ⊂ N . Let f(x) :=

{
x if x ≥ 0
1
2x if x < 0

and g(x) := 2x if x ≥ 1
3x+1

2 if − 1 ≤ x ≤ 1
x if x ≤ −1

. Then f ∈ Hl and g ∈ Hr. Hence g ◦ f ∈ N and it

has no fixed points. Therefore x+ 1 ∈ N . Hence N = IH(R).
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By Lemma 2.12, H is the smallest normal subgroup contained in IH(R).
Hence the other two cases Hr ⊂ N ⊂ Hl and Hl ⊂ N ⊂ Hr are not possible.
This completes the proof. �

Remark 2.16. Let N be a non-trivial normal subgroup of the group IH(R)
and suppose that there is an element in N such that it has only two fixed
points. Let φ be in N such that it has only two fixed points namely a and b,
a < b. Consider R∗ = R ∪ {−∞,∞} with order topology. If φ ∈ IH(R∗) fixes
only −∞ and ∞ then φ|R ∈ IH(R) and it has no other fixed points. Let N∗

be a normal subgroup of IH(R∗) containing a map, fixing only −∞ and ∞.
Consider N∗ = {f |R : f ∈ N∗}. Then N∗ is a normal subgroup of IH(R) and
φ|R ∈ N∗. Then φ|R has no fixed points and hence N∗ = IH(R). Therefore
N∗ = IH(R∗). Then N contains an element without fixed points since IH(R),
IH(R∗) and IH([a, b]) are isomorphic. Hence N = IH(R). In this case, note
that Hl ∪Hr ⊂ N , and therefore N becomes IH(R) since there is an element
in N without fixed points.

For a subgroup H of a group G, we denote H ≤ G.

Theorem 2.17. For H(R) there are exactly four normal subgroups. They are:

(1) The whole group H(R).
(2) The trivial group {1}.
(3) H = {f ∈ IH(R) : Fix(f)c is bounded}.
(4) IH(R).

Proof. Let G be a group and K ≤ N ≤ G. If K is normal in G then K is
normal in N also. The subgroups Hl and Hr are not normal in H(R). Hence
by Theorem 2.15, if N = IH(R) and G = H(R), then either K = {1} or
K = H or K = IH(R). Next suppose IH(R) ≤ K ≤ H(R). Then the index
[H(R) : K] ≤ [H(R) : IH(R)] = 2. Therefore either K = H(R) or K = IH(R).
Finally, suppose there is a normal subgroup N of H(R) such that N = A ∪ B
with A is a proper subgroup of IH(R) and ∅ 6= B ⊂ H(R) \ IH(R). Which
implies IH(R)∪B is a normal subgroup of H(R). But there is no such normal
subgroup for H(R) other than H(R) itself. Hence the proof. �
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