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Epimorphisms and maximal covers in categories

of compact spaces

B. BANASCHEWSKI AND A. W. HAGER

ABSTRACT

The category C is "projective complete” if each object has a projective
cover (which is then a maximal cover). This property inherits from C to
an epireflective full subcategory R provided the epimorphisms in R are
also epi in C. When this condition fails, there still may be some maximal
covers in R. The main point of this paper is illustration of this in
compact Hausdorff spaces with a class of examples, each providing quite
strange epimorphisms and maximal covers. These examples are then
dualized to a category of algebras providing likewise strange monics
and maximal essential extensions.
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1. INTRODUCTION

In a category, an essential extension of an object A is a monomorphism

A% B for which km monic implies k& monic. In recent work [3], the au-
thors have considered the inheritance from a category C to a monocoreflecive
subcategory V of the property that each object has a unique maximal essential
extension. The hypothesis ”each monic in V is also monic in C” was crucial.
(The property was deployed to similar ends in [9].) This paper is largely di-
rected at exhibiting in a concrete setting some pathology which can occur in
the absence of these hypotheses.

But we shall operate ”in dual”, as we now describe briefly, and sketch a
return to essential extensions in the final §5.



42 B. Banaschewski and A. W. Hager

In a category, a cover of the object X is an epimorphism Y < X for which
gf epi implies that f is epi. (This definition is dual to ”essential extension”).
Any projective cover is also a unique maximal cover (2.3). But there are cat-
egories with no projectives, and still every object has a unique maximal cover
(3], in dual.)

In compact Hausdorff spaces, Comp, epis are onto and every object has a
projective cover (the Gleason cover). For an epireflective subcategory R of
Comp, R has a non-void projective if and only if epis in R are onto (3.5) and
then the projective covers from Comp are projective covers in R (3.2).

We begin with a necessary discussion of simple categorical preliminaries,
proceed to Comp and two specific epireflective subcategories, then extract what
little can be said for an epireflective R in general. Penultimately, we consider
a strongly rigid E € Comp and the epireflective subcategory R(E) which E

generates. There are epis not onto, and any nonconstant EF <— {0,1} is a
maximal cover. Finally, we sketch the dualization of this to a category of
algebras, in which any proper C(E) — R2 is a maximal essential extension.

We thank Horst Herrlich and Miroslav Husek for alerting us to strongly rigid
spaces.

2. PRELIMINARIES

The context for 2.1 - 2.7 is a fixed category with no hypotheses at all
before 2.4. In the following, g, h,k,... are assumed to be morphisms. The
terms "morphism” and "map” will be interchangeable.

Definition 2.1.
(a) A morphism g is an epimorphism (epi) if hg = kg implies h = k.
(b) The map g is ”covering” if epi, and g f epi implies f epi. (Such g could
also be called essential epi (or perhaps co-essential epi).) A cover of

object X is a pair (X, g) with YV Lx covering. Covers of X, (Y, g)
and (Y, ¢’) are equivalent if there is an isomorphism h with ¢’h = g.

(c¢) Object Y is cover-complete if, (Z, k) a cover of Y implies k is an isomor-
phism. A maximal cover of X is a cover (Y, g) with Y cover complete.
A unique maximal cover of X is a maximal cover which is equivalent
to any other maximal cover of X.

(d) Object P is projective if whenever X 2 poand XL v isan epi,
then thereis Y L P with gf = h. A projective cover is a cover (P, p)
with P projective.

(e) The category is called projectively complete if every object has a pro-
jective cover, and (weaker) is said to have enough projectives if for each

object X thereis X L P, f epi and P projective.

The following two elementary propositions are, except for 2.2 (d) and per-
haps 2.3 (b), proved (in dual) in [1], 9.14, 9.19, 9.20.
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Proposition 2.2.

(a) An isomorphism is covering.
(b) The composition of two covering maps is covering.
(¢) If g and gf are covering, then f is covering.
(d) If gf is covering and f is epi, then f is covering.
Proof.

(d) Given such gf and f, suppose fh is epi. Note that g is epi (because
gf is). So, g(fh) is epi, and g(fh) = (gf)h shows h is epi, since gf is
covering.

O

Proposition 2.3.

(a) A projective object is cover-complete.

(b) A projective cover is a unique maximal cover.
Proof.

(b) Suppose (P,p) is a projective cover of X. It is a maximal cover by
(a). If (Y, g) is another cover of X, there is k with gk = p (since P is
projective and g is epi). By 2.2 (c), k is covering, thus an isomorphism
if Y is cover-complete.

O

To proceed further, we require assumptions.

Two Hypotheses 2.4. (to be invoked selectively). Let C be a category, and
R a subcategory (always assumed full and isomorphism-closed).
The first condition is on C alone, and is "the other face” of 2.2 (d):

(F°) If gf is covering and f is epi, then g is covering

The second condition is on R C C, and is the (frequently invalid) converse
to the obvious truth ”Any C-epi between R-objects is R-epi”:

(S°) Any R-epi is C-epi.
The point of this paper is, in the presence of (F°), what happens when (S°)
holds (2.7 and §3), and especially what can happen when it fails (§5 , §6).

Proposition 2.5. IfC has enough projectives (in particular if C is projectively
complete), then C satisfies (F°).

Proof.  Consider X<g—Y<f—Z with gf covering and f epi. Since gf is
epi, so is g. Suppose Y<'T has gt epi; we want t epi. Take T<——P

epi with P projective. There is Z<" P with fh = te (since f is epi).Then,
(gf)h = g(fh) = g(te) = (gt)e. The last term is epi, and so also the first term.
Thus h is epi (since gf is covering), and so also fh. Since fh = te, t is epi. O
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Proposition 2.6. Suppose (S°). If X, Y € R, and X<2 Vv s C-covering,
then g is R-covering.

Proof.  Suppose given X<2 VvV as stated, and Y<f—Z with Z € R and
gf R-epi. Then gf is C-epi (by (5°)), so f is C-epi (since g is C-covering), thus
also R-epi (as desired). O

We say (R,r) is epireflective in C if R is a subcategory of C, and for each
Y € C there is 7Y € R (the reflection) and epi rY <——Y (the reflection map)

for which, whenever X<f—Y with X € R, there is f with fry = f. (See
[11] for a full account of the theory of epireflective subcategories).

Proposition 2.7. Suppose that (R,r) is epireflective in C, and satisfies (S°).
(a) If P is projective in C, then rP is projective in R.
(b) Suppose further that C satisfies (F°). If X € R, and (P,p) is a projec-
tive cover in C of X, then (rP,p) is a projective cover in R of X.
(¢c) If C is projectively complete, then so is R (with projective covers as in

(b))-
Proof.
(¢) (from (b)). 2.5 says C satisfies (F°), so (b) applies.

(a) Suppose given R-epi X<2 YV and any X<L7’P. By (5°), g is C-
epi, so there is f1 with gf; = frp (since P is C-projective). Next, there
is fo with farp = f1, and we have frp = gf1 = g(farp) = (9f2)rp.
Since rp is C-epi, [ = gfs.

(b) By (a), rP is R-projective. We need that the p in prp = p is R-
covering. Since rp is epi, (F°) says that p is C-covering, and thus
R-covering by 2.5.

O

Remark 2.8.

(a) [3], 1.2 shows (in dual) that if C has unique maximal covers, so does
epireflective R, assuming the conditions (S°) and (F°). The proofs
above of 2.7 (a) and (b) are simplified versions of those in [3]. For 2.7
(c), the present 2.7 (new here) allows suppression of the hypothesis
(F°).

(b) If in 2.7, R already contains every C-projective, then 2.7 (a) and (b)
simplify in the obvious way. This is the case for C = Comp, with R
having (S5°); see 3.2 below.

3. COMPACT HAUSDORFF SPACES
Comp is the category of compact Hausdorff spaces with continuous functions

as maps. A map X <f—Y in Comp is called irreducible if f(Y) = X, but
when FF C Y (F closed), f(F) # X. The following is mostly due to Gleason
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[6]. ((a) is a folk item. (e) follows from (d) and 2.4; it has a short direct proof,
and is noted in [8], 2.5.)

Proposition 3.1. In Comp:

(a) Epis are onto. (See comment after 3.3 below.)

(b) A map is covering iff it is irreducible.

(¢) A space is projective iff it is extremally disconnected (every open set
has open closure).

(d) Any object X has a projective cover (PX,px); Comp is projectively
complete.

(e) (F*°) holds.

The notation (PX, px) is reserved for the rest of the paper; this will always
denote the projective cover in Comp of X € Comp. Also, for brevity, we shall
let ED stand for the class of extremally disconnected spaces in Comp.

(Considerable literature developed from Gleason’s [6], with various new
proofs, generalizations, and variants of the theory. See [2], [8], [14] and their
bibliographies.)

Now consider a subcategory A of Comp (which can be identified with its
object class). The family of all subobjects (resp., products) of spaces in A is
denoted S A (resp., PA). (Note that subobjects are closed subspaces.) Kenni-
son [13] has shown that R is epireflective in Comp iff R is neither @ nor {&}
and R = SPR. For & # X € Comp, let R(X) = SP{X}; this is the smallest
epireflective subcategory containing X .

Let {0} (resp., {0,1}) denote the space with one (resp. two) points. The
smallest epireflective is R({0}) = {@, {0} }; here, {0}<——@ is epi, so epis are
not onto. We comment further on this shortly. The next largest is R({0, 1}): if
R is epireflective and not R({0}), there is X € R with |X| > 2, thus {0,1} € R,
so R({0,1}) € R. Note that R({0,1}) = Comp,, the class of compact zero-
dimensional spaces [5], and ED C Comp, [7]. Thus, if R is epireflective and
not R({0}), EDC R.

Corollary 3.2. Suppose R is epireflective and R-epis are onto (i.e., R C
Comp satisfies (S°)). Then R is projectively complete. In fact, for any X € R,
the R-(projective cover) is (PX,px).

Proof. Apply 3.1, 2.4, and the discussion above. ]

Proposition 3.3. Comp,-epis are onto. 8.2 applies to Comp,.

Proof. The following takes place in Comp,
The only @<——Y has Y = & and the map is the identity, which is epi, and
technically onto. If X # & then X<——¢ is not epi (since there are different

h
L
{0, 1} D X).
Suppose X # @, and X<2 vis epi. Were g not onto, there would be

p € X —g(Y), and clopen U with p ¢ U 2 g(Y). Then h constantly 1 and k
the characteristic function of U has h # k but hg = kg. O
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(To show Comp-epis are onto, argue similarly using [0, 1] instead of {0, 1},
and using complete regularity of X (i.e. the Tietze-Urysohn Theorem).)

Remark 3.4. We do not know if there is epireflective R different from Comp,
and Comp, for which epis are onto.

The following (closely related to [3], 4.1) shows that, failing ”epis are onto”,
there are no # @ projectives. But there still may be some maximal covers, of
at least two sorts, as the examples in §5 show.

Proposition 3.5. Suppose (only) {0} € R. The following statements in R
are equivalent.

(a) Epis are onto.
(b) {0} is projective.
(c) There is a non-void projective.

Proof. (b) = (c) obviously, and (¢) = (b) because {0} is a retract of any
X # @, and a retract of a projective is projective.
(a) = (b) because {0} is projective in Comp, and if (a) holds, projective in

(b) = (a). If X<2—Y is an epi which is not onto, then there is p €

X —g(Y), and for X<L{O} defined as h(0) = p, there can be no Y<L{O}
with gf = h. 0

Finally, we clarify the situation for @ and for R({0}).
Note the following for any R C Comp with @ € R.

(i) @ is the initial object of R, i.e., for any X € R, there is unique
X<——02 (namely, the empty map).
(ii) @ is projective in R.
(i) If X<=——o is epi in R, then this is a projective cover.

Proposition 3.6. Suppose (only) {0} € R = SR. The following statements
in R are equivalent.

(a) R =R({0})

(b) {0}=——@ is epi (and thus a projective cover).

(¢) For any X € R, X<——0 is epi (and thus a projective cover).

Proof. The parenthetical remarks follow from the comments above.

(a) = (c): ¥=——0 is epi, and {0}=——0 also, since the only map out of
{0} is the identity.

(¢) = (b): since {0} € R.

(b) = (a): If R # R({0}), then there is X € R with |X| > 2, s0 {0,1} € R

h
(since SR = R). Then there are different {0,1} {0} which compose
k

equally with {0}<——@, so the latter is not epi. O
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Corollary 3.7. R({0}) is projectively complete, with epis not onto, and is the
only epireflective subcategory with these two properties.

Proof. 3.6, (a) = (c) yields the first statement. If epireflective R has epis not
onto, then by 3.5, the only projective is @. If R is projectively complete, then
the projective cover must be X<——@. So these are epi, and 3.6 (c) = (a)
says R = R({0}).

4. WHEN EPIS MAY NOT BE ONTO

Consider R C Comp. We localize the condition ”R-epis are onto”. Keep
in mind that R might have no projectives (but any Y € RNED is still Comp-
projective).

Definition 4.1. 7 X has ¢(R)” means X € R, and whenever X<2—. is epi
in R, then g is onto.

Proposition 4.2. Suppose R = SR.

(a) If X € RNComp,, then X has e(R).
(b) If Y € RNED, then'Y is cover-complete in R.

Proof.

(a) Identical to the proof of 3.3.

(b) If (Z,g) is an R-cover of Y, then ¢ is onto by (a), so there is f with
gf = idy, since Y is Comp-projective, and f € R (since Y, Z € R). So
fis an R-section. Also, by 2.2, f is an R-covering map, thus R-epi. So
f is an R-isomorphism, so is g, and therefore g is a Comp-isomorphism,
thus a homeomorphism.

]
(The converse to 4.2 (a) fails, with R = Comp. But see 4.5 below.)
Proposition 4.3. Suppose X has e(R).

(a) IfY € R and X<2—Y is irreducible, then (Y,g) is an R-cover of X.
(b) If also PX € R, and supposing R = SR, then (PX,px) is the unique
mazimal R-cover of X.

Proof. (a) As in the proof of 2.6, mutatis mutandis
(b) By (a), (PX,px) is an R-cover, and PX is cover-complete. If (Y, g) is

another R-cover of X, then g is onto (by e(R)), and there is vy<! px
with gf = px (since PX is Comp-projective). If Y is cover-complete,

f is a homeomorphism.
O

Corollary 4.4. Suppose EDC R = SR. If X € RNComp,, then (PX,px) is
the unique mazximal R-cover of X.

Proof. 4.2 (a) and 4.3 (b). O
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The following is a qualified converse to 4.2 (a).

Corollary 4.5. Suppose that EDC R = SR. ForY € R, the following are
equivalent.

(a) Y is ED.

(b) Y is cover-complete and 'Y € Comps.

(c) Y is cover-complete and Y has e(R).

Proof. (a) = (b): 4.2 (b) and EDCComps,.

(b) = (c): 4.2 (a).

(¢) = (a): By 4.3 (b) (using EDC R now), (PY,py) is the unique maximal
R-cover of Y, so if Y is cover-complete, py is a homeomorphism. O

Here is one (more) triviality valid in (almost) any R.

Proposition 4.6. Suppose {0} € R. For any X € R, with |X| > 1, there are
maps X <——{0} (in R). Such an e is R-epi iff | X| = 1.

Proof. Given such e, there is (the retraction) X ——{0} with re = id{g;, so

e is a section. If | X| = 1, then e is onto, thus R — epi. If e is R-epi, it becomes
an R-isomorphism, thus a homeomorphism, so | X| = 1. O

5. EPIREFLECTIVES WITH EPIS NOT ONTO, AND SOME MAXIMAL COVERS

First, in summary so far of the situation for R epireflective in Comp: If in
R, there are epis not onto, then there are no non-void projectives ( 3.5). That
is the case for R = {@,{0}}, but here we have the projective (thus unique
maximal) covers @<——@ and {0}<——& ( 3.6). If R contains the two-point
space {0,1} then R O Comp, and at least has unique maximal covers for X €
Comp,, namely the (PX,px) ( 4.4).

We now display a large class of such R with some very strange epis, and
non-unique maximal covers. This will be the R(E) = SP{E}, for E as follows.

A space E in Comp will be called strongly rigid if |E| > 2 and the only
continuous F——=F are idg and constants. Cook [4] has several of these,
including a metric one M;.

Note that if E is strongly rigid, then {0,1} C F (since |E| > 2), E is con-
nected (since a clopen U # @, F would yield F ——{0,1}——=F ), |[E| > ¢

(since there are non-constant E ——= [0,1] , using the Tietze-Urysohn Theo-
rem), and [0,1] ¢ E (since [0,1] C FE would yield non-constant
E [0, 1]¢ E , and [0, 1] is not strongly rigid).

From Cook’s examples, Trnkova [15] and Isbell [12] have shown first, that
if n is any cardinal, there is strongly rigid E with |E| > n, and second, that
if there is no measurable cardinal, there is a proper class £ of strongly rigid
spaces for which, whenever E; # Fs in &, the only continuous Fy——=F, are
constants (and thus, for Ey # Es in &, neither of R(E;) and R(E>) contains
the other).
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Now let E be any strongly rigid space. In the following, terms epi, cover,
... refer to R(E).
Of course 4.4 and 4.5 apply here. On the other hand,

Proposition 5.1. Let F be a closed subspace of E. Label the inclusion B F.
(a) ip is epi iff |F| > 1.
(b) If |F| =2, then (F,ir) is a cover of E. If F € Comp, and (F,ir) is a
cover of E, then |F| = 2.

Y

(In the second part of (b), the supposition ” F' €Comp,” cannot be dropped,

id .
because E<——F is a cover.)

Corollary 5.2. Any nonconstant E<—g{07 1} is a maximal cover of E. Any
mazimal cover of E is equivalent to one of these. Two of these, with g and ¢,
are equivalent covers of E iff g({0,1}) = ¢’({0,1}).

In particular, (PE,pg) is not a cover of E, and there are at least |E| > ¢
non-equivalent maximal covers of F;

Proof. (of 5.1)
(a) By 4.6, if |F| =1, then ip is not epi. Now suppose |F'| > 1 . Suppose
f+9 € R(E) have common codomain - which might as well be supposed
of the form E! - and fir = gir, ie., flr = g|r. Then, for any

projection BE'—">E we have ;f|p = mig|F. We want f = g, which
is equivalent to m; f = mg Vi € I.

Let ¢ € I. Then each of ; f and 7, g is idg or constant. If m; f = idg,
then 7; f|F is not constant (since |F| > 2), so m;g|r is not constant,
so mg = idp also. If m; f is constant, say ¢, then 7, f|r = ¢ also. So
mig|F = ¢, and since |F| > 2, m;g = c.

(b) Suppose |F| = 2. By (a), ip is epi. Suppose ip f isepi. Then f is onto F'
(since if not, |range(f)| = 1, since |F| = 2, but then |range(ip f)| =1
and ip f is not epi, by 4.6. So f is epi.

Suppose F' €Comp,.If there are different pg, p1, p2 € F, let

F—1_ {0,1} be f(i) = p;.- Then f is not epi (by 4.2 (a)), but
ip [ is epi by (a) above.
(]
Proof. (of 5.2)

If E<—2-{0,1} is nonconstant, it is a cover because F = {g(0), g(1)}<——{0,1}
is a homeomorphism, and thus a maximal cover because F' is cover-complete
(being ED 4.2).

Suppose E<"V is a maximal cover. Then h is epi, thus nonconstant

( 6.1). So there are pg, p1 € Y with h(po) # h(p1). Define Y<—f{0, 1} as
f(@) = pi. So hf is a covering-map (by the preceding paragraph), thus f is a
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covering map ( 2.2 (d)). Since Y is cover-complete, f is a homeomorphism, so
(Y, h) and ({0,1}, hf) are equivalent.

Now suppose E<ﬂ{0, 1} are non-constant. There are two homeomor-
phisms % of {0,1}, the identity and ”interchange 0 and 1”. And, range(g) =
range(g’') iff ¢’ = gh for one of these h. O

Remark 5.3. Cook’s specific strongly rigid M; has these further features:

M has a countable infinity of disjoint subcontinua; if K is any proper sub-
continuum of Mj, the only maps M;<——K are inclusion and constants. (See
[4]). Then in the category R(My), in 5.1 and 5.2, E = M; may be replaced
by any proper subcontinuum K of M; (as the proofs there show).

6. AN APPLICATION TO LATTICE-ORDERED GROUPS

We now convert the situations of maximal covers in R CComp to situations
of maximal essential extensions in subcategories of a category of algebras. We
use terminology categorically dual to the items in 2.1 (a) - (e), respectively,
namely (a) monic, (b) essential extension, (c) essentially complete, maximal
essential extension (or, essential completion), (d) injective, injective hull, (e)
injectively complete.

The category of algebras is W*, the category of archimedean lattice-ordered
groups with distinguished strong order unit, and ¢-group homomorphisms car-
rying unit to unit. W* has monics one-to-one, and is injectively complete; see
[3]. Consequently, the dual of 2.7 applies to W*.

For X €Comp, the continuous real-valued functions C'(X), with unit the

constant function 1, is a W*-object, and we have the functor W*<LComp:

for X<*—Z in Comp, C(X)—2~C(Z) is Ct(f) = for. This has a

left adjoint, the Yosida functor: For each G € W¥*, there is YG € Comp

and G—=C(Y'G) monic in W*; for each G——=H in W*, there is unique

YG<Y—¢YH in Comp ”realizing ¢” as ¢(g) = goY ¢. Note that YC'(X) ~ X,
and that ¢ is one-to-one iff Y is onto. (See [10]).

Basic features of (Y, C), and some diagram-chasing, convert the situations
in Comp discussed in previous sections to ”dual” situations in W*, as follows.
(We omit the calculations).

Suppose R is epireflective in Comp, and {0,1} € R (so Comp, € R). For
brevity, set *R = {G € W*|YG € R}.

Proposition 6.1. (a) *R is monocoreflective in W*.

(b) C(X)L>H is monic in *R iff X<2vH is epi in R.

(¢) *R has an injective other than {0} iff monics in *R are one-to-one
iff R-epis are onto. When this occurs, *R is injective-complete, with
injective hulls G——=C(YG)——=C(P(YG)).

(d) If X is ED, then C(X) is essentially complete in *R.
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(e) If X € Comp,, then C(D)&C(PX) is the unique mazximal essen-

tial extension of C(X) in *R.

Now consider, as in §5, strongly rigid £ € Comp and its generated epireflec-
tive R(E). By 5.1 and 6.1 (b), *R(E) has monics which are not one-to-one,
and thus no # {0} injectives. 6.1 (d) and (e) hold in *R(FE).

Note that {0,1} € Comp has C({0,1}) = R? € W*, the self-homeomorphisms
of {0, 1} are the identity and ”interchange points”, and these correspond to the
only self-isomorphisms of R?, which are the identity, and H(z,y) = (y,z).

From

5.2 we obtain

Corollary 6.2. In *R(E), the mazimal essential extensions of C(E) are ex-

actly the W* -surjections C(E)LHR? Two of these, ¢ and ¢’ , are equivalent
iff either o = ¢, or ¢’ = pH.

[1]
2]

=
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