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Supersymmetry and the Hopf fibration

Simon Davis

Abstract

The Serre spectral sequence of the Hopf fibration S
15 S

7

→
S

8 is com-

puted. It is used in a study of supersymmetry and actions based on

this fibration.
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1. Introduction

There are compactifications of eleven-dimensional supergravity with an SU(3)×
SU(2) × U(1) isometry group of the compact space that are known to yield
the particle spectrum of the standard model [1], [2]. The fermion multiplets
can be included in a spinor space represented by a tensor product of division
algebras for each generation. The automorphism group of this product would
be G2 ×SU(2)×U(1) and it may be demonstrated that there are coset spaces

G2×SU(2)×U(1)
SU(3)×U(1)′×U(1)′′ yielding particles and antiparticles with the known quantum

numbers [3].
The dimensions of the normed real alternative division algebras correspond

to the parallelizability of the spheres. The spheres S1, S3 and S7 in the reduc-
tion sequence of the unified field theory represent submanifolds of the higher-
dimensional coset space. The representation of unit elements in the compo-
nents of the spinor space could be related to the fermion bilinears arising in
the set of light-like lines in two larger dimensions, yielding S2, S4 and S8. The
unit fermions can exist in a fibre of a bundle over the space of light-like lines.

Amongst the S7 bundles over S8 is the Hopf fibration S15 S7

→
S8. A classification

of physical states described by the Hopf fibrations is given in §2.
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It has been demonstrated previously that an S7 transformation rule cannot
be constructed for a pure Yang-Mills theory with the connection taking values
only on the four-dimensional base space [4]. Since twistor variables that trans-
form under Sp(4;O) can be combined to transform parameterize S7 [5], the
problem of constructing a model with this invariance may be considered. This
can be done only if the space S8 of lightlike lines of octonionic superparticles
is interpreted in terms of fundamental variables in the theory.

If the fermion field is allowed to take values in a one-point compactification of
the space identified with the division algebra, an equivalence with the bosonic
sector given by the light-like lines can provide a basis for a supersymmetry. This
approach can be compared to an algebraic description of the supersymmetric
Hopf fibration. When the base space super-sphere S2

∗ , a supersymmetric version
of the U(1) theory is found [6]. The spectral sequences of the Hopf fibrations
of the superspheres and the homology groups are found to unaltered by the
introduction of supersymmetry in §3.

The effect of an S7 transformation on fields in the twistor formalism can
be elevated to an invariant action directly because there are anomalous terms
in the commutators. Although various spinor bilinears and combinations of
supertwistors are found to be invariant, there is a associator term with a spinor
field, which must be cancelled for invariance under the composition of these
transformations. A method for eliminating the additional terms through the
commutator of BRST and gauge transformations is suggested in §4.

2. Spectral Sequences and Hopf Fibrations

It may be recalled that the homology group of the total space of a fibre
bundle may be determined from the Serre spectral sequence. For a filtration
X0 ⊂ X1 ⊂ X2 ⊂ ... ⊂ X , let D = ⊕m,nHm(Xn) and E = ⊕m,nHm(Xn, Xn−1)
define an exact couple such that im j = ker k where j : D → E and k :
E → D. Let D′ = i(D) and d = jk : E → E with d2 = 0. Suppose that
E′ = H(E; d), i′ = i|′D and the map j′ : D′ → E′ is defined by j′(x) is the
coset of j(y) in Z(E), where x = i(y) ∈ D′ for y ∈ D. The map k′ completes the
exact sequence and (D′, E′, i′, j′, k′) is an exact couple. Further iterations give
Dn, En; in, jn, kn) such that dn = jnkn : En → En, where En+1 = H(En; dn),
and D = ⊕p,qDp,q and E = ⊕p,qEp,q. Then i(Dp,q) ⊂ Dp+1,q−1, j(Dp,q) ⊂
Ep,q and k(Ep,q) ⊂ Dp−1,q. If Dn

p,q = Dn ∩ Dp,q and En
p,q = H(En−1

p,q ; dn),
i(Dn

p,q) ⊂ Dn
p+1,q−1, jn(D

n
p,q) ⊂ En

p−n+1,q+n−1 and kn(E
n
p,q) ⊂ Dn

p−1,q, while
dn : En

p,q → En
p−n,q+n−1.

For a fibre bundle, E F
→
B, E2

p,q = H(E1
p,q; d1) = Hp(B;Hq(F )) [7]. Consider

the Hopf fibration S7 S3

→
S4.

E2
p,q = Hp(S

4;Hq(S
3)) =

{

Hp(S
4) q = 0, 3

0 otherwise (2.1)

=

{

Z p = 0, 4, q = 0, 3

0 otherwise
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The boundary mapping d4 is injective as there would exist an element y 6= d4x
mapped to zero otherwise, implying that E5

4,0 = H4(E4
4,0; d4) 6= 0. This latter

statement would imply

E5
4,0 ≃ ... ≃ E∞

4,0 6≃ 0 (2.2)

contrary to H4(S7) ≃ 0. Also, d4 is surjective, because E5
0,3 ≃ ... ≃ E∞

0,3 ≃ 0

since H3(S
7) ≃ 0. It follows that d4 is an isomorphism and d4 : E4

4,3 → E4
0,6 is

surjective. Since E5
4,0 ≃ 0, E5

3,0 ≃ d4(E
5
4,0) ≃ 0, removing the (0, 4) and (3, 0)

elements in the sequence for E5
p,q. The remaining non-zero entries in the E5

p,q

sequence may be deduced from exact sequences derived for filtrations of the
total space.

Given that Dp,q = 0 for p < 0 and Ep,q = 0 for p < 0 or q < 0, En
p,q = 0 for

p < 0, q < 0 and p+q < 0. For large n, there are the following exact sequences:

→En
p+n−1,q−n+2

kn
→

Dn
p+n,q−n+2

in
→

Dn
p+n−1,q−n+1

jn
→

En
p,q

kn
→

Dn
p−1,q → ...

i ↓ i ↓ (2.3)

0 → Dn+1
p+n−2,q−n+2

in+1

→
Dn+1

p+n−1,q−n+1

jn+1

→
En+1

p−1,q+1 → ... .

There is a related sequence

0 → Dn+1
p+n−2,q−n+2

in+1

→
Dn+1

p+n−1,q−n+1

jn
→

En+1
p,q → ... (2.4)

which holds if the domain of jn can be chosen such that jn(D
n+1
p+n−1,q−n+1) =

En+1
p,q . Since Dn+1

p,q = i(Dn
p,q) ⊆ Dn

p,q, this is feasible, although jn has not

been defined to have the range En+1
p,q . This could be ensured, however, if

En+1
p,q = En

p,q. From the sequence (2.4), it follows that the exactness of the
sequence

En
p+n,q−n+1

dn
→

En
p,q

dn
→

En
p−n,q+n−1 (2.5)

which is equivalent to

0
dn
→

En
p,q

dn
→

0 (2.6)

for n > p and n > q + 1, implying the constancy of En
p,q for large n.

From the complex of sequences

0 → Dn+1
p+n−2,q−n+2

in+1

→
Dn+1

p+n−1,q−n+1

jn
→

En+1
p,q

kn
→

Dn+1
p−1,q → ...

i ↓ i ↓

0 → Dn+2
p+n−2,q−n+2

in+1

→
Dn+2

p+n−1,q−n+1

jn
→

En+2
p,q

kn+2

→
Dn+2

p−1,q → ... (2.7)

...

0 → D∞
p+n−2,q−n+2

i∞
→

D∞
p+n−1,q−n+1

j∞
→

E∞
p,q

k∞
→

D∞
p−1,q → ...
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the last exact sequence does not end. It implies

0 → D∞
p−1,q+1

i∞
→
D∞

p,q

j1
→
E∞

p,q

k∞
→
D∞

p−1,q → ... (2.8)

when n = 1 is substituted in the final sequence of Eq.(2.7).
For the sequences,

Dn+1
p+n−1,q−n+1

jn+1

→
En+1

p−1,q+1

kn+1

→
Dn+1

p−2,q+1 → ...

i ↓

Dn+2
p+n−1,q−n+1

jn+2

→
En+2

p−2,q+2

kn+2

→
Dn+2

p−3,q+2 → ...

i ↓

... (2.9)

Dn+p−1
p+n−1,q−n+1

jn+p−1

→
En+p−1

1,p+q−1

kn+p−1

→
Dn+p−1

0,p+q−1 → ...

i ↓

Dn+p
p+n−1,q−n+1

jn+p

→
En+p

0,p+q

kn+p

→
Dn+p

−1,p+q ≃ 0

and

0 → Dn+p
p+n−2,q−n+2

in+p

→
Dn+p

p+n−1,q−n+1

jn+p

→
En+p

0,p+q

kn+p

→
0 (2.10)

yielding eventually the sequence

0 → D∞
p+n−2,q−n+2

i∞
→

D∞
p+n−1,q−n+1

j∞
→

E∞
0,p+q

k∞
→

0. (2.11)

With n = 1 in the indices

0 → D∞
p−1,q+1

i∞
→

D∞
p,q

j∞
→

E∞
0,p+q

k∞
→

0 (2.12)

implying E∞
0,p+q ≃ D∞

p,q/i∞(D∞
p−1,q+1). Since Hp+q(Xp−1) = D∞

p−1,q+1 ⊂
Hp+q(Xp) = D∞

p,q, D
∞
p−1,q+1 ⊂ D∞

p,q ⊂ D∞
p+1,q−1 ⊂ ... ⊂ D∞

p+n,q−n ⊂ ....
For n sufficiently large, D∞

p+n,q−n = D∞ ∩ Dp+n,q−n = D∞ ∩ Hp,q(Xp+n) =
D∞∩Hp,q(X) is constant, when the exhaustion of X contains a finite sequence
of proper subspaces.

The sequences
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0 → Dn+p
p+n−2,q−n+2

in+p

→
Dn+p

p+n−1,q−n+1

jn+p

→
En+p

0,p+q

kn+p

→
...0

i ↓ i ↓

0 → Dn+p+1
p+n−2,q−n+2

in+p+1

→
Dn+p

p+n−1,q−n+1

jn+p+1

→
En+p+1

0,p+q

kn+p+1

→
0

i ↓ i ↓

... (2.13)

0 → Dn+n′

p+n−2,q−n+2

in+n′

→
Dn+n′

p+n−1,q−n+1

jn+n′

→
En+n′

0,p+q

kn+n′

→
0

...

0 → D∞
p+n−2,q−n+2

i∞
→

D∞
p+n−1,q−n+1

j∞
→

E∞
0,p+q

k∞
→

0

yield the isomorphisms

En+p
0,p+q ≃ Dn+p

p+n−1,q−n+1/in+p(D
n+p
p++n−2,q−n+2)

...
En+n′

0,p+q ≃ Dn+n′

p+n−1,q−n+1/in+n′(Dn+n′

p+n−2,q−n+2)
...

E∞
0,p+q ≃ D∞

p+n−1,q−n+1/i∞(D∞
p+n−2,q−n+2).

(2.14)

It is apparent that

Dn+n′

p+n−1,q−n+1 ≃ D′∩Dp+n−1,q−n+1 = D′∩Hp+q(Xp+n−1)

Dn+n′

p+n−2,q−n+2 ≃ D′∩Dp+n−2,q−n+2 = D′∩Hp+q(Xp+n−2).
(2.15)

For sufficiently large n, Hp+q(Xp+n−1) ≃ Hp+q(Xp+n−2) ≃ Hp+q(X) and

En+p
0,p+q ≃ [D′∩Hp+q(X)]/in+p(D

′∩Hp+q(X))
...

En+n′

0,p+q ≃ [D′∩Hp+q(X)]/in+n′(D′∩Hp+q(X))
...

E∞
0,p+q ≃ [D′ ∩Hp+q(X)]/i∞(D′ ∩Hp+q(X))

(2.16)

are the quotient groups related to Hp+q(X), and D′ = i(D) = i(⊕p,qDp,q)
= i(⊕p,qHp+q(Xp)).
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Fixing p+ q,

⊕p+q=constantHp+q(Xp) = Hp+q(X0)⊕Hp+q(X1)⊕ ...⊕Hp+q(Xm)⊕ ...

⊕Hp+q(X)

≃ Hp+q(X)

⊕p,qHp+q(Xp) ≃ ⊕∞
p+q=−∞Hp+q(X)

⊕∞
p′+q′=0Hp′+q′(X) ∩Hp+q(X) ≃ Hp+q(X)

(2.17)
and the following isomorphisms hold:

En+p
0,p+q ≃ Hp+q(X)/in+p(Hp+q(X))

...
E∞

0,p+q ≃ Hp+q(X)/i∞(Hp+q(X)).

(2.18)

From the sequences (2.8) and

0 → D∞
p−1,q+1

ι∞
→
D∞

p,q

j2
→
E∞

p−1,q+1

k∞
→
D∞

p−2,q+1 → .. (2.19)

isomorphisms of the form E∞
p−1,q+1 ≃ E∞

p,q ≃ ... may be deduced, and
E∞

p,q ≃ D∞
p,q/i∞(D∞

p−1,q+1). By the exact sequence (2.12), i∞(D∞
p−1,q+1)

= ker j∞(D∞
p,q) consists of the identity element, because j∞ must be an injec-

tive homomorphism as j∞(D∞
p,q) ⊂ E∞

p,q = E∞
0,p+q, and E

∞
p,q = Hp+q(X).

It follows that, for the Hopf fibration S7 S3

→
S4, E∞

p,q ≃ Hp+q(S
7) and

Hr(S
7) ≃

{

Z r = 0, 7

0 otherwise
. (2.20)

For the Hopf fibration S3 S1

→
S2, there exist multi-soliton solutions parameter-

ized by the homotopy group π3(S
2) [8]. Similarly the homotopy group π7(S

4)
could be used to parameterize the Hopf number of soliton solutions to theories
based on the next Hopf fibration, as the one-soliton solutions can be combined
to give N -soliton solutions. From the Hurewicz theorem [9], the kth homology
and homotopy groups of the sphere Sk are isomorphic to Z. By the exact
sequence S3 → S7 → S4, it follows that π7(S

4) = π7(S
7) ⊕ π6(S

3) = Z⊕ Z12

[10] [11], implying that there would be twelve varieties of each N -soliton.

For the Hopf fibration S15 S7

→
S8,

E2
p,q = Hp(S

8;Hq(S
7)) =

{

Z p = 0, 8, q = 0, 7, p+ q = 15

0 otherwise
. (2.21)

Since every element in E8
7,0 is d8x, x ∈ E8

0,8, And E9
7,0 ≃ H7(E

8
7,0; d8) ≃ 0.

Similarly, d8 : E7,0
8 → E0,8

8 . Therefore,

E0,8
9 ≃ H8(E0,8

8 ; d8) ≃ 0 (2.22)
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Therefore, E9
0,8 ≃ 0. Again E9

p,q ≃ ... ≃ E∞
p,q and

E∞
p,q ≃ Hp+q(S

15) ≃

{

Z p = q = 0, p = 8, q = 7, p+ q = 15

0 otherwise
, (2.23)

which is consistent with Hr(S
15) ≃ Z r = 0, 15 and Hr(S

15) ≃ 0 otherwise.
An instanton solution to the Yang-Mills equations related to the last Hopf

fibration has been found with the Euler number equal to N
∫

S8(F ∧ F ∧ F ∧
F ∧ F )dV [12]. However, there is no reference to the gauge instanton in the
Euler number, which is a topological invariant that is entirely characteristic
of the spheres in the fibration. This result has been explained through the
equivalence of this integral with that of the Pfaffian of 1

2π F̂ , where F̂µν is the
field of the spinor connection [13].

The expression for the Euler number is derived from the curvature form.
However, the formula for the curvature form of the spinor connection is given
by Ωµν = eµ∧eν [13], and it would appear that equivalence with a volume form
would follow. The Hopf invariant, given by the integral

∫

S15 α∧ dα, where α is

a volume form on S7, can be projected to
∫

S8 dαs, where αs is a singular form
as a result of the intersections of the seven-spheres, which has integer values.
While the Hopf invariant is equal to the number of links of seven-spheres in
S15, its integrality is similar, therefore, to that of the Euler class, which is a
generator of a homology group isomorphic to Z.

Upon deriving an N -soliton configuration from an N -instanton solution, the
classification would be given by the homotopy group π15(S

8) = π15(S
15) ⊕

π14(S
7) = Z⊕ Z120 [11].

3. Supersymmetric Hopf Fibrations

It has been shown that there is a generalization of the Hopf fibration S3 S1

→
S2

to SU(2)∗
U(1)∗
→

S2
∗ , where each of the spaces is a supersphere [14]. The ana-

logue of an element of SU(2) represented by s(t) = exp (iT aǫa(t)), T
a = σa

2 , is

s∗(t, θ) = exp (iT aηa(t, θ))

ηa(t, θ) = ǫa(t)− 2θiξa(t)
(3.1)

From Eq.(3.1),

s∗(t, θ) = 1 + iT a(ǫa(t)− 2θiξa(t))−
1

2!
T a(ǫa(t)− 2θiξa(t))T

b(ǫb(t)− 2θiξb(t)) + ...

= (1 + θσaξa(t))(1 + iT aǫa(t)−
1

2!
T aT bǫa(t)ǫb(t) + ...) (3.2)

= (1 + θξ)s(t) ξ = σaξa(t)

and
s†∗(t, θ)s∗(t, θ) = s(t)†(1− θξ)(1 + θξ)s(t)

= s(t)†(1− θξ + θξ + θξθξ)s(t)
= s(t)†s(t) = 1

(3.3)
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The action of U(1)∗ on SU(2)∗ is s∗ → s∗e
iσ3α and the projection from

SU(2) to S2, s(t) → s(t)σ3s(t)
† is generalized such that

x̂∗ = x̂∗aσ = s∗σ3σ
†
∗ (3.4)

parameterizes S2
∗ .

This space may be compared with the supersphere S2,2 defined asOSp(1|2)/U(1),
which has even coordinates xi and odd coordinates θα satisfying

∑

i

xixi +
∑

α,β

Cαβθαθβ (3.5)

where C =

(

0 1
−1 0

)

[15]. The coordinates of S2 are given by

yi =

(

1 +
θCθ

2r2

)

(3.6)

and
∑

i yiyi = r2. The action of the U(1)∗ is right multiplication by an unitary
group element and therefore identified with the action of U(1).

Since the supersymmetry algebra has the form {D∗, D} = 0, where

D =
∂

∂θ
− iθ

∂

∂t
(3.7)

is similar to the exterior derivative operator, it might be considered useful to
determine de Rham cohomology for the supersymmetric Hopf fibration. The
graded differential calculus on a supersphere can be constructed such that

(ω ∧ ω′) = dω ∧ ω′ + (−1)pω ∧ dω′

ω ∈ Ωp(Sm,n), ω′ ∈ Ωp′

(Sm,n)
(3.8)

where Ωp(Sm,n) and Ωp′

(Sm,n) are exterior form algebra. and d2 = 0. As the
dimension of a supermanifold belongs to Z[ǫ]/(ǫ2 − 1) = Z ⊕ Zǫ, there is an
isomorphism of the de Rham cohomology of a supermanifold with that of the
underlying manifold [16][17]. The de Rham cohomology groups of the spheres
have given

Hk
dR(S

n) ∼

{

R if k = 0, n

0 if k 6= 0, n
(3.9)

whereas,

Hk
dR(S

n;Z) ∼

{

Z if k = 0, n

0 if k 6= 0, n
(3.10)

By de Rham’s theorem, there is an isomorphism between the de Rham coho-
mology group Hk

dR(M) and the cohomology groups Hk(M ;R) for any smooth
manifold. From the commutative diagram of isomorphisms, it follows that the
spectral sequences based on the homology groups of spheres could be adapted
to the superspheres after specializing to a specific coefficient field. Conse-
quently, the results of §2 may be used for the superspheres and each of the
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supersymmetric Hopf fibrations, based on the exact sequences.

0 → S3
∗ → S7

∗ → S4
∗ → 0

0 → S7
∗ → S15

∗ → S8
∗ → 0

(3.11)

4. The Action of S7 and its Supersymmetric Generalization

Although it has been demonstrated that the principal bundle structure of
gauge theories is dependent on a Lie group structure, the action of S7 has been
developed for twistor variables. In ten dimensions, the momentum vector of a
massless particle can be expressed as p = ψψ†, where ψ is a spinor that traces
out S8 . By the action of S7 on S8, consistent with that of the Hopf fibration,
there exists a transformation δψα = Tψα = ψαo(α) such that

[T, T ′]ψα = o(α)(o′(α)ψα)− o′(α)(oαψα)
= ([o(α), o′(α)]− 2[o(α), o′(α), e(α)]ē(α))ψα

e(α) = |ψα|−1ψα

(4.1)

the action is not covariant, and this prevents the construction of an entirely
invariant action [18].

For a supersymmetric particle, the variables

ξ = ψθ† + θψ†

ω = Xψ + iξθ
ZA = (ψα, ωα̇)

(4.2)

may be used to construct invariants under the action of S7, ψ → ψo, ω → ωo,
|o| = 1,

JMN =

[

1

2
Z†ΓMNZ

]

(4.3)

where the square brackets refer to the selection of the e0 component. While the
components of JMN , ψ1ψ̄2, ω1ω̄2, ψ1ω̄2 and ψ2ω̄1 are separately invariant, the
repeated action of the S7 transformations generates additional terms through
the nonvanishing associator. . One method for eliminating the extra term may
be based on the construction of a charge which could cancel the associator con-
taining either e(1) or e(2). If this is included in the S7 transformation, it would
cause the transformations to be covariant. The BRST charge, for example, is
typically constructed such that an exact term does not affect the invariance
of the Lagrangian under local gauge transformations. However, this would de-
pend on the associativity of the operations of the gauge transformation and
BRST transformation. Through the variables transforming under SL(2;O), an
additional term derived from an associator containing the two transformations
would be introduced.

Since d = jk in the exact couple, a correspondence between spectral se-
quences and the theories with an operator satisfying d2 = 0 can be established.
The BRST cohomology of quantum field theories has been calculated previ-
ously with spectral sequences [19]. Similarly, in supersymmetric models, the

anticommutator of the supercharge satisfies {Qα, Q
†
α̇} = σµ

αα̇Pµ, and the trace
will be non-zero except for a vacuum with zero energy. The existence of a
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spectral sequence only for the ground state is indicative of a connection with
the index Tr (−1)F .

The necessity of the BRST charge in the study of the action of S7 trans-
formations on components of the supertwistor and the BRST cohomology of
ten-dimensional supergravity and superstring theories implies that the role of
the anomaly, which can be determined through spectral sequences, is similar
to that of the quantum terms representing lack of closure of the classical S7

algebra on spinor fields.

5. Conclusion

The homology groups of the total spaces in the Hopf fibrations are calculated
with the spectral sequence. The conditions for the equality of E∞

p,q = Hp+q(X)
will be satisfied if En

p,q is constant for sufficiently large n. The derived homology

groups En
p,q are found to be constant if n ≥ 5 for the fibration S7 S3

→
S4. and n ≥

9 for the fibration S15 S7

→
S8. The classification of solitons resulting from these

fibrations are given by the homotopy groups π7(S
4) and π15(S

8) respectively.
With the introduction of supersymmetry, the spectral sequences for the su-

perspheres would have the same form. The homotopy groups determining the
classification of the soliton states would follow. The description of the spaces
in the third and fourth supersymmetric fibrations may be given together with
a derivation of the homology and homotopy groups of the superspheres.

It is suggested that an invariant action under S7 transformations can be
developed if a BRST charge is added to the theory. This BRST charge gener-
ates another cohomology, which may be evaluated for a general quantum field
theory. The consistency of the theory through a vanishing anomaly provides
conditions on the matter content.
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