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Abstract

Bornologies abstract the properties of bounded sets of a metric space.
But there are unbounded bornologies on a metric space like P(IR) with
the Euclidean metric. We show that by replacing [0,∞) with a partially
ordered monoid every bornology is the set of bounded subsets of a
generalized metric mapped into a partially ordered monoid. We also
prove that the set of bornologies on a set is the join completion of the
equivalence classes of a relation on the power set of the set.
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1. Introduction

Let X be a topological space. A bornology on X is a family of subsets A of
X which satisfies the following axioms:

• A is closed under finite union and
⋃
A = X

• A ∈ A and B ⊆ A implies B ∈ A

A typical example of a bornology is the set of bounded subsets of a metric
space. Another example is the set of finite subsets of a given set; it is denoted
by F . One can easily verify that every bornology on a set contains F .

The bornology generated by a given subset H of a set X is the smallest
bornology containing H and in [4] is called a principal bornology and it can
be easily seen that it is ↓ H ∪ F , where ↓ H = {Y ⊆ X : Y ⊆ H}.
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Given bornologies A and B on the sets X and Y respectively, a function
f : X → Y is called bounded map provided that f(M) ∈ B if M ∈ A.

The theory of bornologies play an important role in functional analysis, see
[5] and [7]. Bornologies also have been considered in the theory of locally
convex spaces, see [11].

Bornologies on topological spaces are the generalization of the set of bounded
sets of a metric space, the sets whose elements are within a fixed distance from
each other. Metrics are useful when we talk about distance between the points
and sets, closeness of sets and points, and more importantly one can talk about
Cauchy sequences and convergence. But, some of these notions fail when we
deal with topological spaces. These concepts are all related to boundedness. In
this article we overcome this issue by relating bornologies with boundedness.
In [3], it is proved that a bornology A on a non-empty set X is coincident
with the set of bounded sets of a metric d : X ×X → [0,∞) if and only if A
has a countable base. Therefore, when one wants to relate a bornology with
uncountable base with boundedness, the boundedness or the set of radii must
come from a more general setting than the real numbers. Here we consider
generalized metrics into partially ordered monoids, po-monoids. Po-monoids
are monoids with an order which is cooperative with the binary relation. This
will enable us to talk about distance between the points and sets and more
importantly about bounded sets and bornologies.

In [12] Hu considered bornologies on topological spaces and he proved the
following theorem:

Hu’s Theorem: Let B 6= P(X) be a bornology on a normal topological
space X. Then there is a continuous function f : X → [0,∞) such that
B =↓ {{x ∈ X : f(x) < t} : t ≥ 0} if and only if B has a countable base and
every x ∈ X is in the interior of some element B ∈ B.

In the next section we prove a similar theorem for every bornology on a
set X by allowing the range of the function be a lattice rather than [0,∞).
In Section three we show that every bornology is the set of bounded sets of a
generalized metric space. In the last section we show that the set of bornologies
on a set X is a frame and we investigate the properties of this frame.

2. Induced bornologies by compatible functions

Let L be a poset, D be a directed subset of L, and α : X → L be a function,
for every t ∈ D define Nt,α = {x ∈ X : α(x) < t} and N t,α = {x ∈ X : α(x) ≤
t}. We call Nt,α and N t,α respectively the strict sublevel and the sublevel of
X with respect to α and D.

Define Bα,D = {A ⊆ X : ∃t ∈ D such that A ⊆ Nt,α} and Bα,D = {A ⊆
X : ∃t ∈ D such that A ⊆ N t,α}. One can easily see that Nt,α ⊆ N t,α and

therefore, Bα,D ⊆ Bα,D.

We say α and D are compatible if for every x ∈ X there is a t ∈ D such
that α(x) < t.
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Theorem 2.1. Let (L,≤) be a poset and D be a directed subset of L. If
α : X → L is a function compatible with D, then Bα,D and Bα,D are bornologies
on X.

Proof. We prove Bα,D is a bornology and the proof that Bα,D is a bornology
is similar and we will leave it to the reader. One can easily see that if B ⊆ A ∈
Bα,D then B ∈ Bα,D. Next if A ⊆ Nt,α and B ⊆ Ns, then for every x ∈ A ∪B
either α(x) < t or α(x) < s. Since D is directed, there is an r ∈ D such that
s, t ≤ r. Since t, s ≤ r, we have α(x) < r. Thus, A ∪ B ⊆ Nr and therefore,
Bα,D is closed under finite union. Since α is a function compatible with D, one
can see that

⋃
Bα,D = X �

Proposition 2.2. Let L and J be posets and D be a directed subset of L. If
α : X → L is a function compatible with D and f : L→ J is an order preserving
map, then Bf◦α,f(D) is a bornology on X such that Bα,D ⊆ B̄f◦α,f(D).

Proof. First of all note that f(D) is a directed subset of J because for every
f(a), f(b) ∈ f(D), we have f(a), f(b) ≤ f(r), where r ∈ D with a, b ≤ r.
Next note that if M ⊆ E ∈ Bf◦α,f(D) then obviously, M ∈ Bf◦α,f(D). Also
if E, T ∈ Bf◦α,f(D) then there are f(r), f(s) ∈ f(D) such that E ⊆ {x ∈ X :
(f ◦ α)(x) < f(r)} and T ⊆ {x ∈ X : (f ◦ α)(x) < f(s)}. Consequently,
E ∪ T ⊆ {x ∈ X : (f ◦ α)(x) < f(p)}, where p ∈ D and r, s ≤ p and so,
E ∪ T ∈ Bf◦α,f(D).

Also for every x ∈ X, since α is compatible with D, there is a t ∈ D such
that α(x) < t and therefore, x ∈ {x ∈ X : (f ◦ α)(x) < f(t)}.

For the second part, note that if A ⊆ {x : α(x) < t}. Then, A ⊆ {x :
f(α(x)) ≤ f(t)}. �

Proposition 2.3. Let (L,≤) be a poset and D be a directed subset of L. If
α : X → L is a function compatible with D and f : R → X is a function,
then Bα◦f,D is a bornology on R and f : R → X is a bounded map between
(R,Bα◦f,D) and (X,Bα,D).

Proof. Note that if M ⊆ E ∈ Bα◦f,D then M ∈ Bα◦f,D. Also if E, J ∈ Bα◦f,D
then there are r, s ∈ D such that E ⊆ {x ∈ X : (α ◦ f)(x) < r} and J ⊆ {x ∈
X : (α ◦ f)(x) < s}. Consequently, E ∪ J ⊆ {x ∈ X : (α ◦ f)(x) < p} where
p ∈ D and r, s ≤ p and so, E ∪ J ∈ Bα◦f,D. Also for every x ∈ R we have
f(x) ∈ X. Since α is compatible with D, there is a t ∈ D such that α(f(x)) < t
and therefore, x ∈ {x ∈ X : (α ◦ f)(x) < t}.

For the second part, suppose C ∈ Bα◦f,D. We show that f(C) ∈ Bα,D. Since
C ∈ Bα◦f,D, there is an r ∈ D such that C ⊆ {x ∈ R : (α ◦ f)(x) < r}. Thus,
for every c ∈ C we have α(f(c)) < r and so, f(c) ∈ {x ∈ X : α(x) < r}. Thus,
f(C) ⊆ {x ∈ X : α(x) < r} ∈ Bα,D.

�

In order to show the converse of Theorem 2.1, we need to employ a second
relation on the partially ordered set that is compatible with the original order
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of the partial ordered set. In [16] and [20] a second relation was called a good
relation , so we adopt the same name.

Definition 2.4. A good relation ≺ on a poset (G,≤) is a subset of ≤ such that
for each a, b, c, d ∈ G:

(trans) a ≤ b ≺ c ≤ d⇒ a ≺ d.

Example 2.5.

• On each poset , ∅ is a good relation.
• If (L,≤) is a partially ordered set, then < is a good order on L
• Let G = R × H with the lexicographic order, H any poset. Define

(r, h) ≺ (s, k) if r < s; then ≺ is a good relation on G.

Theorem 2.6. Let A be a bornology on a set X. There is a lattice (L,≤)
equipped with a good relation ≺, a directed subset D of L, and a function α :
X → L compatible with D such that A = B∗α,D, where B∗α,D = {A ⊆ X : ∃t ∈ D
such that A ⊆ {x ∈ X : α(x) ≺ t}}. Moreover, A = {{x ∈ X : α(x) ≺ t} : t ∈
D}, the strict sublevel of X with respect to α and D.

Proof. Suppose that A is a bornology on a set X. For each K ∈ A let LK =
[0, 1] × [0, 1] equipped with the lexicographic order: (q, r) ≤ (s, t) if q < s or
q = s and r ≤ t. Then LK is a lattice. Let L =

∏
K∈A LK and define a good

relation on L as follows: if (gK)K∈A, (hK)K∈A ∈ L then (gK)K∈A ≺ (hK)K∈A
if and only if gK < hK for every K ∈ A. One can easily see that ≺ obeys the
good order condition.

For each K ∈ A let DK = [0, 1]× (0, 1] and
D = {r = ((r1K , r

2
K))K∈A ∈ L : ∃M ∈ A such that r1K = 0 for every K ⊇M}

We prove that D is a directed subset of L. Let r = ((r1K , r
2
K))K∈A ∈ D and

s = ((s1K , s
2
K))K∈A ∈ D. By definition, there is an M ∈ A such that r1K = 0

for every K ⊇ M and there is an E ∈ A such that s1K = 0 for every K ⊇ E.
Now define

t1K =

{
0, if K ⊇M ∪ E;

r1K ∨ s1K , otherwise
.

One can see that t = ((t1K , t
2
K))K∈A where t2K = r2K ∨s2K is in D and r, s ≤ t.

Therefore, D is a directed set.

For K ∈ A define ϕK : X → [0, 1] such that ϕK(z) =

{
0, if z ∈ K
1, if z 6∈ K

. Now

define the function α : X → L by (α(x))K = (0, ϕK(x)).

We prove that B∗α,D = A. First we show that B∗α,D ⊆ A. Suppose that

W ∈ B∗α,D. There is a t ∈ D such that W ⊆ {x ∈ X : α(x) ≺ t}. Let

t = ((t1K , t
2
K))K ∈ D. For every x ∈ W we have, α(x) ≺ t and therefore for

every K ∈ A we have (0, ϕK(x)) < (t1K , t
2
K). Since t ∈ D, there is a C ∈ A
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such that t1K = 0 for every K ⊇ C and in particular, t1C = 0. Now we show
that W ⊆ C and therefore W ∈ A

By way of contradiction, suppose that W 6⊆ C. Let z ∈ W \ C. Then
(α(z))C = (0, ϕC(z)) = (0, 1) 6< (0, t2C) = (t1C , t

2
C) and therefore, z 6∈ {x ∈ X :

α(x) ≺ t} which is a contradiction. Consequently, W ⊆ C. Hence, B∗α,D ⊆ A.
Next , we prove that A ⊆ B∗α,D. Suppose H ∈ A. We will prove that

H = {x ∈ X : α(x) ≺ tH}, where tH = (t1K , t
2
K) =

{
(0, 0.5), if K ⊇ H
(1, 1), if K 6⊇ H

.

Note that for every x ∈ H we have α(x)K = (0, ϕK(x)) =

{
(0, 0), if x ∈ K
(0, 1), if x 6∈ K

.

There are two cases either x ∈ K or x 6∈ K. If x ∈ K, then α(x)K =
(0, ϕK(x)) = (0, 0) < (t1K , t

2
K). Suppose now that x 6∈ K. In this case, α(x)K =

(0, ϕK(x)) = (0, 1). From x 6∈ K we haveK 6⊇ H, which implies that (t1K , t
2
K) =

(1, 1). Hence, α(x)K = (0, ϕK(x)) = (0, 1) < (1, 1) = (t1K , t
2
K). By cases,

α(x) ≺ tH . Therefore, H ⊆ {x ∈ X : α(x) ≺ tH}. Therefore, A = B∗α,D.
Since H was an arbitrary element of A in the previous paragraph, showing

{x ∈ X : α(x) ≺ tH} ⊆ H completes proving A = {{x ∈ X : α(x) ≺ t} : t ∈
D}. Note that if z 6∈ H, then ϕH(z) = 1. Thus, α(z)H = (0, ϕH(z)) = (0, 1) 6<
(tH)H = (0, 0.5). Therefore, z 6∈ {x ∈ X : α(x) ≺ tH} and so, {x ∈ X : α(x) ≺
t} ⊆ H. Consequently, A ⊆ {{x ∈ X : α(x) ≺ t} : t ∈ D} ⊆ B∗α,D = A.

Therefore, A = {{x ∈ X : α(x) ≺ t} : t ∈ D} and the proof is complete.
�

In the next theorem we will simplify the lattice in Theorem 2.6 and will
obtain a similar result. Here we work with sublevels of X rather than strict
sublevels.

Theorem 2.7. Let A be a bornology on a set X. Then there is a poset (L,≤),
a directed subset D of L, and a function α : X → L compatible with D such
that A = Bα,D = {{x ∈ X : α(x) ≤ t} : t ∈ D}.

Proof. Suppose that A is a bornology on a set X. Let
∏
K∈A[0, 1] be or-

dered coordinatewise and define α : X →
∏
K∈A[0, 1] by α(x) = (ϕK(x))K∈A

where ϕK(x) is defined as Theorem 2.6. For every H ∈ A define (SH)K ={
0, if K ⊇ H;

1, if K 6⊇ H.
.

Define D = {SH : H ∈ A} ⊆ L. One can see that if SH and SP are in D
then, SH , SP ≤ SH∪P and therefore D is directed.

We show that H = NSH
for every H ∈ A which implies A = Bα,D. First,

we show that H ⊆ NSH
by proving that if a ∈ H, then α(a)K ≤ (SH)K for

every K ∈ A. It is enough to show that α(a)K = 1 implies (SH)K = 1. Note
that α(a)K = 1 implies a 6∈ K. So, a ∈ H \K. Thus, K 6⊇ H, which implies
that (SH)K = 1. Therefore, H ⊆ NSH

.
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Next suppose a ∈ NSH
. So, α(a)K ≤ (SH)K for everyK ∈ A. We prove that

a ∈ H. By way of contradiction, suppose that a 6∈ H. In this case, α(a)H = 1.
On the other hand, (SH)H = 0 which is a contradiction. Thus, NSH

⊆ H.
Therefore, H = NSH

. Consequently, A = {{x ∈ X : α(x) ≤ t} : t ∈ D}. Thus,
Bα,D, the bornology generated by {{x ∈ X : α(x) ≤ t} : t ∈ D}, equals A as

A is a bornology. Therefore, {{x ∈ X : α(x) ≤ t} : t ∈ D} = A = Bα,D.
�

We conclude this section by representing bornologies on a set as special
subsets of the power set of the set.

Let A be a bornology on a set X. Define:

ν : A ↪→
∏
K∈P(X){0, 1} by ν(H)K =


0, if K ∈ A and K ⊇ H;

1, if K ∈ A and K 6⊇ H
0, if K 6∈ A

.

Lemma 2.8. Let A be a bornology on a set X.

• ν(∅) = (0)K∈A,
• ν(H ∪ T ) = ν(H) ∨ ν(T ) and therefore, ν is order preserving.
• ν is one-to-one.

Proof. We leave the proof of the first claim to the reader. For the second claim
note that if (ν(H ∪ T ))K = 0 then K ⊇ H ∪ T and so, K ⊇ H and K ⊇ T .
Therefore, (ν(H))K = (ν(T ))K = 0. On the other hand if (ν(H ∪ T ))K = 1
then K 6⊇ H ∪ T and therefore, either K 6⊇ H or K 6⊇ T . Thus, (ν(H))K = 1
or (ν(T ))K = 1. Consequently, ν(H ∪ T ) = ν(H) ∨ ν(T ) = 1

For the third claim note that if A,B ∈ A and A 6= B, either A \ B 6= ∅ or
B \A 6= ∅. Without lost of generality suppose that A \B 6= ∅ and z ∈ A \B.
Then, (ν(A))(A∪B)\{z} = 1 but (ν(B))(A∪B)\{z} = 0 and therefore, ν(A) 6=
ν(B). Consequently, ν is one-to-one. �

Theorem 2.9. Suppose L ⊆
∏
K∈P(X){0, 1}. Consider the following four

conditions.

(a) For every r ∈ L and K ∈ P(X) if rK = 0, then rM = 0 for every
M ⊇ K.

(b) For every r ∈ L and K ∈ P(X) if rK = 1, then rM = 1 for every
M ⊆ K.

(c) For every r, s ∈ L and M,N ∈ P(X) if rM = 1 and sN\M = 1, then
there is an t ∈ L such that tM∪N = 1.

(d) If X has more than one element, then for every x ∈ X there is an t ∈ L
such that t{x} = 1.

If L satisfies conditions (a)-(d), then AL = {M ⊆ X : ∃r ∈ L such that
rM = 1} is a bornology on X. Conversely, if A 6= P(X) is a bornology on
the set X, then ν(A) ⊆

∏
K∈P(X){0, 1} satisfies conditions (a)-(d). Moreover,

Aν(A) = A.
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Proof. Suppose that L ⊆
∏
K∈P(X){0, 1} satisfies conditions (a)-(d). We prove

that AL = {M ⊆ X : ∃r ∈ L such that rM = 1} is a bornology on X. Suppose
T ⊆M ∈ AL. There exists an r ∈ L such that rM = 1. So, rT = 1 by property
(b). Thus, T ∈ AL. Next we show that M,N ∈ AL implies M∪N ∈ AL. Since
M,N ∈ AL, there are s, t ∈ L such that sM = 1 and tN = 1. Since tN = 1,
by property (b) we have tN\M = 1. So, by property (c) there is an r ∈ L such
that rM∪N = 1. Therefore, M ∪N ∈ AL. Finally, since for every x ∈ X there
is an r ∈ L such that r{x} = 1, we have {x} ∈ AL. Therefore,

⋃
AL = X.

For the converse suppose A is a bornology on the set X.
We first show that conditions (a) and (b) are satisfied. To this end let

r = ν(H) ∈ Aν(A), where H ∈ A. For condition (a) assume that rK = 0 and
K ∈ P(X) and M ⊇ K. If M 6∈ A then rM = 0 by definition of ν. If M ∈ A
then K ∈ A and hence K ⊇ H. Consequently, M ⊇ H and therefore, rM = 0.
So, ν(A) satisfies condition (a). For condition (b), assume rK = 1. We show
that rM = 0 for M ⊆ K. Since rK = 1, we have K ∈ A and K 6⊇ H. Thus,
M ⊆ K implies M 6⊇ H. Therefore, rM = 1. So, ν(A) satisfies condition (b).

For condition (c) assume that M,N ∈ P(X) and r, s ∈ ν(A) are such that
rM = 1, and sN\M = 1. Let H,J ∈ A be such that r = ν(H) and s = ν(J).
Notice that M ∈ A, M 6⊇ H, N \M ∈ A, and N \M 6⊇ J . Thus, M ∪N ∈ A.
Now, let t = ν(M ∪ N ∪ {z}) where z 6∈ M ∪ N . Therefore, rM∪N = 1. So,
ν(A) satisfies condition (c).

For condition (d) note that for every y 6= x we have, ν({y}){x} = 1.
At last we prove Aν(A) = A. Let B ∈ A. Since A 6= P(X), there is a

z ∈ X \ B. Now, ν(B ∪ {z})B = 1 and so, B ∈ Aν(A). Therefore, A ⊆ Aν(A).
On the other hand, if B 6∈ A, then by definition of ν we have ν(H)B = 0 for
every H ∈ A and therefore B 6∈ Aν(A). Consequently, Aν(A) = A. �

Definition 2.10. Let L ⊆
∏
K∈P(X){0, 1}. By the kernel of L we mean

ker(L) = {K ⊆ X : ∀r ∈ L, rK = 0} and kerC(L), the co-kernel of L, will be
defined by P(X) \ ker(L)

Definition 2.11. We say L ⊆
∏
K∈P(X){0, 1} is called a ν-subset of

∏
K∈P(X){0, 1}

if for every r = (rK)K∈P(X) ∈ L there is an H ⊆ X such that for every

K ∈ kerC(L) we have rK = 1 if and only if K 6⊇ H.

Remark 2.12. By what we learned for every ν-subset of
∏
K∈P(X){0, 1} we

can define a bornology on X and conversely we can assign a ν-set to every
bornology.

3. Generalized metrics

The goal of this section is to show that for every bornology A on a set X we
can find an algebraic structure M and a generalized metric d : X ×X →M so
that A is the set of bounded subsets of X. Since d is a metric, at minimum M
must be equipped with a binary operation + and have a 0. Also, there should
be an order on M that is compatible with +.
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There is a long tradition of allowing metrics to take values in structures
more general than the non-negative reals or to satisfy weaker axioms. Kelley,
in [13], lists several references going back as far as [18] in 1941. For more
recent related work see [8], [9], [10], [15], [14], [17], [19], and [20]. Here
we study generalized metrics that satisfy all of the axioms of metrics except
that their values are in a po-monoid equipped with a partial order rather than
[0,∞).

The motivation of this paper comes from our some previous work in gener-
alized metrics. In [17], topologies induced by positive filters on abelian lattice
ordered groups were defined and used to show that some of the topologies on
C(X) such as the m-topology or the uniform topology are obtained that way.
Later in [20], k-metrics, another generalization of metrics, were defined and
topologies induced by positive filters on general `-groups were studied and the
methods developed there were used later on in [16] to show that even though
non-T0 completely regular spaces cannot be subspaces of powers of [0, 1] sim-
ilar results can be obtained by replacing R with a non-Archimedean partially
ordered group, which can be given a natural Euclidean-like bitopological struc-
ture.

To pursue our goal here it seems that partially ordered monoids, po-monoids
for short, are the natural candidates for the values of the generalized metric we
are after.

We bring the following definitions from [6].

Definition 3.1. The structure (M,+, 0,≤) is an (abelian) po-monoid if M 6=
{0} and (M,+, 0) is an (abelian) monoid which is equipped with a partial order
≤ such that for every a, x, y ∈M , x ≤ y implies a+x ≤ a+y and x+a ≤ y+a.
We call the po-monoid M abelian, if x+ y = y + x for every x, y ∈M .

A po-monoid is a good candidate for the values of a metric and can be used
as a set of radii for inducing topology as it is equipped with an order and a
binary operation.

Example 3.2. Both (R,+,≤) and ([0, 1],⊕,≤), where ⊕ is the truncated sum,
are abelian po-monoids. Another example is G = R×M with the lexicographic
order and coordinatewise addition, where M is any po-monoid.

Let M to be the set of order preserving maps on a poset P with composition
of functions. For f, g ∈M define f ≤ g provided f(x) ≤ g(x) for every x ∈ P .
Then M with the composition of functions and ≤ is a non-abelian po-monoid.

Definition 3.3. Let (M,+, 0,≤) be po-monoid such that 0 ≤ m for every
m ∈ M . We define an M -metric on a set X to be a map d : X × X → M
satisfying the axioms for a metric, except that it maps into M rather than
[0,∞).

Metrics on a set induce a topology on the set. Here we define a topology
induced by a generalized metric into a monoid M . By M+ we mean {r ∈M :
r > 0}.
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Definition 3.4. Let (M,+, 0,≤) be a po-monoid with 0 the smallest element,
E be a subset of M+, and d : X ×X → M be an M -metric. For every r ∈ E
let Nr(x) = {y ∈ X : d(x, y) < r} and Nr(x) = {y ∈ X : d(x, y) ≤ r}. We
call sets of the form Nr(x) open balls and sets of the form Nr(x) closed balls.
Define τE = {T ⊆ X : ∀x ∈ T∃r ∈ E such that Nr(x) ⊆ T} ∪ {X}.

We say a set A is E-bounded if there is an r ∈ E such that A×A ⊆ {(x, y) :
d(x, y) < r}. We call A bounded if A is M+-bounded.

Theorem 3.5. Let (M,+, 0,≤) be a po-monoid with 0 the smallest element,
E ⊆M+, and d : X ×X →M be an M -metric on the set X. Then

• If E is a down directed set, τE is a topology on X.
• If M = ↓↓E = {x : ∃e ∈ E such that x < e} then the set of E-bounded

subsets of X form a bornology.

Proof. For the first part suppose E is a down directed set. We show that τE is
a topology on X. It is straightforward to show that τE is closed under union
and X,∅ ∈ τE . We show that τE is closed under intersection. Let A,B ∈ τE
and x ∈ A ∩ B, then there are r, s ∈ E such that Nr(x) ⊆ A and Ns(x) ⊆ B.
Since E is a down directed set, there is a t ∈ E such that t ≤ r, s. Now one
can easily see that Nt(x) ⊆ A ∩B. Hence, τE is a topology.

We now show the second part. Assume M = ↓↓E = {x : ∃e ∈ E such that
x < e}. We show the collection of E-bounded sets is a bornology.

Suppose that A and B are bounded. We prove that A ∪ B is bounded.
Since A and B are bounded, there are r, s ∈ E such that d(x, y) < r for every
x, y ∈ A and d(x, y) < s for every x, y ∈ B. Let a be a fixed element of A
and b be a fixed element of B. Thus, for every x ∈ A and y ∈ B, we have
0 ≤ d(x, y) ≤ d(x, a) + d(a, b) + d(b, y) ≤ r + d(a, b) + d(b, y) ≤ r + d(a, b) + s.

Since M = ↓↓E, there is an e ∈ E such that r+ d(a, b) + s < e. Thus, for every
x, y ∈ A ∪B we have d(x, y) < e and therefore, A ∪B is E-bounded.

It is obvious that if A is E-bounded and H ⊆ A then H is E-bounded.
Finally note that the union of all E-bounded sets is X as every singleton set is
E-bounded. �

Corollary 3.6. Let (M,+, 0,≤) be a po-monoid with 0 the smallest element,

E ⊆M+, and d : X×X →M be an M -metric on the set X. If M+ = ↓↓M+ =
{x : ∃e > 0 such that x < e} then the set of bounded subsets of X form a
bornology.

Theorem 3.7. Let A be a bornology on a set X. Then there is an abelian
po-monoid (M,+, 0,≤) with 0 the smallest element and an M -metric d on X
such that A is the set of bounded subsets of d.

Proof. Suppose A is a bornology on a set X. For each K ∈ A let SK =
[0,∞)× [0,∞). Define +K : SK ×SK → SK coordinatewise and let ≤K be the
lexicographic order.

Let S =
∏
K∈A SK . Then S with the coordinatewise addition and coordi-

natewise order forms a po-monoid. Define M ⊆ S by,
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M = {((x1K , x2K))K∈A ∈ S : ∃C ∈ A such that x2K = 0 for every K ⊇ C}.
We show that M with inherited addition and order from S is a po-monoid.

It is enough to show that M is a monoid. Note that (0, 0)K∈A ∈ M because
by letting C = ∅ we have x2K = 0 for every K and obviously it is the smallest
element of M . Suppose ((x1K , x

2
K))K∈A and ((y1K , y

2
K))K∈A are elements of

M . Then, by definition of M there are C,D ∈ A such that x2K = 0 for
every K ⊇ C and y2K = 0 for every K ⊇ D. It is straightforward to verify
that x2K + y2K = 0 for every K ⊇ C ∪ D ∈ A and we leave it to the reader.
Therefore, ((x1K , x

2
K))K∈A + ((y1K , y

2
K))K∈A ∈M . Thus, M is a monoid.

Define d : X × X → M by (d(x, y))K = (0, |ϕK(x) − ϕK(y)|), where ϕ is
defined as in Theorem 2.6. First we show that d is well defined. Note that
whenever K ⊇ {x, y} we have ϕK(x) = ϕK(y) = 0 and therefore, |ϕK(x) −
ϕK(y)| = 0. Consequently d(x, y) ∈M . Next we prove that d is an M -metric.
One can easily see that for every x, y ∈ X, d(x, x) = 0 and d(x, y) = d(y, x). We
show that d(x, z) ≤ d(x, y) +d(y, z) for every x, y, z ∈ X. Due to the definition
of d, it is enough to show that for every K ∈ A the case of d(x, z)2K = 1 and
d(x, y)2K = d(y, z)2K = 0 is impossible. Note that d(x, z)2K = 1 implies that
one of x and z belongs to K and the other one does not belong. Without
loss of generality, suppose that x ∈ K and z 6∈ K. Then d(x, y)2K = 0 and
x ∈ K implies y ∈ K. On the other hand, d(y, z)2K = 0 and z 6∈ K implies
y 6∈ K, which is in contradiction with y ∈ K. Thus, the case d(x, z)2K = 1
and d(x, y)2K = d(y, z)2K = 0 is not possible and therefore the triangularity
condition holds. Next, we show that d(x, y) = ((0, 0))K∈A implies x = y. Note
that if x 6= y then (d(x, y)){x} = (0, |ϕ{x}(x)− ϕ{x}(y)|) = (0, |0− 1|) 6= (0, 0)
and therefore d(x, y) 6= ((0, 0))K∈A. Consequently, d is an M -metric.

Next we show that the set of bounded subsets of X equals A. Suppose
H ∈ A. We show that H × H ⊆ {(x, y) : d(x, y) < tH}, where (tH)K ={

(0, 1), if K ⊇ H;

(1, 1), if K 6⊇ H.
.

Note that for every x, y ∈ H, dK(x, y) = (0, |ϕK(x) − ϕK(y)|) < (1, 1) =
(tH)K when K 6⊇ H. On the other hand x, y ∈ H implies x, y ∈ K when K ⊇
H. Therefore, in this case dK(x, y) = (0, |ϕK(x) − ϕK(y)|) = (0, 0) < (tH)K .
Thus, d(x, y) < tH for every x, y ∈ H and therefore H is bounded.

For the reverse inclusion suppose that A is a bounded subset of X. Thus,
there is a t = ((t1K , t

2
K))K∈A ∈ M such that d(x, y) < (t1K , t

2
K) for every

x, y ∈ A. By definition there is a Q ∈ A such that t2K = 0 for every K ⊇ Q.
We prove that A ⊆ Q. Assuming the contrary, if A 6⊆ Q then there is a
z ∈ A \ Q. If A = {z} obviously A ∈ A and we are done. If A 6= {z},
consider y ∈ A \ {z}. Then, R = Q ∪ {y} ∈ A. Then since R ⊇ Q, we have
(t1R, t

2
R) = (0, 0). Now, dR(y, z) = (0, |ϕR(y) − ϕR(z)|) = (0, |0 − 1|) 6< (0, 0),

which is a contradiction. Thus, A equals the set of bounded sets of the metric
d.

�
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In the previous theorem for every A in the bornology A define BtA = {P ⊆

X : ∀x, y ∈ P, d(x, y) < tA}, where (tA)K =

{
(0, 1), if K ⊇ A;

(1, 1), if K 6⊇ A.,
then

Proposition 3.8. Let A be a bornology on the set X then BtA =↓ A = {P :
P ⊆ A} for every A ∈ A.

Remark 3.9. For a bornology A on a set X let S =
∏
K∈A[0,∞). Then S

with the coordinatewise addition and coordinatewise order forms a po-monoid.
Define M ⊆ S by,
M = {(xK)K∈A ∈ S : ∃C ∈ A such that xK = 0 for every K ⊇ C}.
Similarly, it can be shown that M with inherited addition and order from

S is a po-monoid and (0)K∈A is in M . Next define d : X × X → M by
(d(x, y))K = |ϕK(x)− ϕK(y)|. Similarly, d is an M -metric on X.

Then by an argument similar to the one in the previous theorem one can
verify that for every A ∈ A we have, A × A ⊆ {(x, y) : d(x, y) ≤ tA}, where

tAK
=

{
0, if K ⊇ A;

1, if K 6⊇ A.

4. The lattice of bornologies on a set

In this section we consider, BX , the set of bornologies on a set X. We prove
some of the properties of it as a lattice. The ultimate goal of this section is to
prove that BX is the join-completion of P(X) modulo finite sets.

The set of bornologies on a set X, BX , forms a complete lattice, where F is
the smallest element and P(X) is the largest element; for B1,B2 ∈ BX we have
B1 ∧ B2 = B1 ∩ B2 and B1 ∨ B2 = {B1 ∪ B2 : B1 ∈ B1, B2 ∈ B2}. So, one can
see that if S ⊆ BX , then

∨
S = {B1 ∪ · · · ∪Bn : Bi ∈ Bi ∈ S}; see [4].

A complete lattice L is a frame if a∧
∨
S =

∨
s∈S(a∧ s) for every a ∈ L and

S ⊆ L.
A frame X is normal if x ∨ y = 1 implies the existence of u and v in X

satisfying u ∧ v = 0 and x ∨ u = y ∨ v = 1.

Theorem 4.1. The set of bornologies on a set X is a normal frame.

Proof. It is enough to show that A∩
∨
S ⊆

∨
{A∩B : B ∈ S}. Let H ∈ A∩

∨
S.

There are Bi ∈ Bi ∈ S, i = 1, · · · , n such that H = B1 ∪ · · · ∪ Bn. So,
H = (H ∩ B1) ∪ · · · ∪ (H ∩ Bn). Since H ∩ Bi ∈ A ∩ Bi, we conclude that
H ∈

∨
{A ∩ B : B ∈ S}.

For normality, suppose that A ∨ B = P(X). If A = F or B = F then we
are done. So, assume that A 6= F and B 6= F . Since A ∨ B = P(X), there
are R ∈ A and S ∈ B such that R ∪ S = X. Now, let U = F ∪ {S} and
V = F ∪ {R \ S}. Obviously, U ∩ V = F , A ∨ U = P(X), and B ∨ V = P(X).

�

In [1] they define more general structures which they call L-bornologies and
they show that the set of L-bornologies is a frame. However, they do not state
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that it is a frame. They just prove the distributivity of meet over arbitrary
join.

Consider P(X) and define the relation / on P(X) by A/B if (A\B)∪(B\A)
is finite. Let [P(X)] be the set of equivalence classes of the relation /. Define
v on [P(X)] by [H] v [K] if and only if H \K is finite.

Lemma 4.2. Let X be a set. Then [P(X)] with v forms a lattice.

Proof. It is straightforward to show that v is well defined and we will leave
it to the reader. Obviously, for every [H] we have [H] = [H]. We leave to
the reader to prove that v is antisymmetric. We show that v is transitive.
Assume [G] v [H] and [H] v [K] then [G] v [K]. Note that since G \ K ⊆
(G\H)∪ (H \K) and both G\H and H \K are finite, we have G\K is finite.
Thus, [G] v [K]. Therefore, v is transitive.

Next we show that [H ∪K] = [H] ∨ [K] and [H ∩K] = [H] ∧ [K] for every
[H], [K] ∈ [P(X)]. Note that H ⊆ K implies [H] v [K]. Thus, [H ∩ K] v
[H]∧ [K] v [H]∨ [K] v [H∪K] for every [H], [K] ∈ [P(X)]. We now show that
[H ∪K] v [H] ∨ [K]. Let [M ] ∈ [P(X)] be such that let [H], [K] v [M ]. Since
H \M is finite and K \M is finite, (H ∪K) \M is finite. So, [H ∪K] v [M ].
Similarly, if [P ] ∈ P(X) is such that [P ] v [H], [K] then P \ H is finite and
P \K is finite. So, P \ (H ∩K) is finite. Thus, [P ] v [H ∩K].

�

Let BX be the set of bornologies on the set X. Define θ : [P(X)] → BX
by θ([H]) =↓ H ∪ F , where F is the bornology of finite subsets of X and
↓ H = {Y : Y ⊆ H}. Recall that bornologies of ↓ H ∪ F form are called
principal bornologies.

Lemma 4.3. The map θ : [P(X)]→ BX is an embedding.

Proof. It is straightforward to show that θ is well defined and order preserving
and we will leave it to the reader. Note that if θ([H]) ⊆ θ([K]) then H ∈ θ([K])
and therefore, H = Z ∪ E where Z ⊆ K and E is a finite subsets of X. Thus,
H \K is finite and therefore, [H] v [K].

�

Corollary 4.4. If I(BX) is the set of principal bornologies of a set X, then
θ : [P(X)]→ I(BX) is an isomorphism.

Definition 4.5. Let L be a lattice and C be a complete lattice. We say C is
a join-completion of L if L is a sublattice of C and every element of C is join
of elements of L. The concept of a meet-completion is defined dually.

The join-completions and meet-completions were introduced by Banaschewski
in [2] and were extensively studied and extended by Schimidt in [21] and [22].

Theorem 4.6. For every set X, the frame BX is a join-completion of I(BX); it
is a meet-completion if and only if X is finite. Further, if L is another complete
lattice which is join-completion of I(BX), there is a unique isomorphism from
BX to L fixing I(BX) and therefore, L must be a frame.
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Proof. Let A be a bornology on a set X. Then, A =
∨
H∈A(↓ H ∪ F) and

therefore, I(BX) is join-dense in L.
Next we show that if X is infinite then I(BX) is not meet-dense in BX . It is

enough to show that I(B(Z)) is not meet-dense in BZ. Let A =
∨
p∈P (↓ pZ∪F),

where P is the set of prime numbers. We show that A cannot be the infimum
of principal bornologies. Suppose to the contrary that A =

∧
i∈I(↓ Hi ∪ F) =⋂

i∈I(↓ Hi ∪F). Then, pZ ∈ (↓ Hi ∪F) for every p ∈ P and every i ∈ I. Thus,⋃
p∈P pZ ∈ (↓ Hi ∪ F) for every i ∈ I. Therefore,

⋃
p∈P pZ ∈

⋂
i∈I(↓ Hi ∪ F).

But
⋃
p∈P pZ 6∈ A which is a contradiction.

If i : I(BX) → L is an embedding, define f : BX → L by f(A) =
∨
H∈A i(↓

H ∪ F). Then f is an isomorphism. �

Corollary 4.7. The set of bornologies on a set X is the join-completion of
[P(X)].
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