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ABSTRACT

Let R be a commutative ring with identity and M a unitary R-module.
The fuzzy classical primary spectrum Fep.spec(M) is the collection of
all fuzzy classical primary submodules A of M, the recent generalization
of fuzzy primary ideals and fuzzy classical prime submodules. In this
paper, we topologize F M(M ) with a topology having the fuzzy primary
Zariski topology on the fuzzy classical primary spectrum Fcp.spec(M)
as a subspace topology, and investigate the properties of this topological
space.
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1. INTRODUCTION

Throughout this paper all rings are commutative with identity and all mod-
ules are unitary. The fuzzy classical primary submodule in module theory
plays crucial role in algebra. The concept of fuzzy classical primary submodule
which is a generalization of fuzzy primary ideals and fuzzy classical prime sub-
modules. The Zariski topology on the prime spectrum of an R-module have
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been introduced by Lu [13] and these have been studied by several authors
[1, 2, 6, 7, 8,9, 15, 16]. In 2008, Ameri and Mahjoob [3] investigated some
properties of the Zarisky topology of prime L-submodules. As it is well known
that Ameri and Mahjoob in 2009 [4] introduced the notion of the Zarisky topol-
ogy of prime fuzzy hyperideals. In 2013, Darani and Motmaen [10] introduced
and studied the concept of the Zariski topology on the spectrum of graded clas-
sical prime submodules and these have been studied by several authors [18].
The concept of Zariski topology on prime fuzzy submodules was introduced
Ameri and Mahjoob [5] in 2017. In 2021, Goswami and Saikia [11] gave the
concept of the spectrum of weakly prime submodules and investigated related
properties.

In this paper, we rely on the fuzzy classical primary submodules, and then
introduce and study a new topology on the fuzzy classical primary spectrum
Fep.spec(M) is the collection of all fuzzy classical primary submodules A of M,
which generalizes the Zariski topology of fuzzy prime submodule, called fuzzy
primary Zariski topology and investigate several properties of the topology.

2. BASIC DEFINITIONS AND PRELIMINARY RESULTS

In this section, a brief overview of the concepts of fuzzy sets and fuzzy
modules are required in this study.

A function p: M — [0,1] is called a fuzzy set [17] of a non empty set M.

The concept of fuzzy ideals of a ring was introduced in [12] as a generalization
of the notion of fuzzy subrings.

Definition 2.1 ([12]). A fuzzy set u of a ring R is called a fuzzy ideal of R
if

(1) u(adb) > p(a) Vv u(d) for all a,b € R;

(2) p(a—10) > p(a) A u(d) for all a,b € R.

The set of all fuzzy sets ( fuzzy ideals) of R is denoted by FS(R) (FZ(R)).
Let p be a fuzzy set of a ring R. The radical of p is denoted by R(u) and is
defined by (R(u)) (r) = \/ wu(r™) for every element r € R.

neN

Definition 2.2. Let u be a fuzzy ideal of a ring R. A fuzzy set p is called a
fuzzy primary ideal of R if for every fuzzy ideals v and ) of R with v©On < p,
then either v < p or n < R(p)

The concept of fuzzy modules of an R-module M was introduced in [14] as
a generalization of the notion of fuzzy ideals.

Definition 2.3 ([14]). A fuzzy set A of an R-module M is called a fuzzy
module of M if

(1) A0) =1
(2) A(am) > A(m) for all a € R and m € M;
3) A(m —n) > A(m) A A(n) for all m,n € M.
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Condition (3) of the above definition is equivalent to A(m +n) > A(m) A
A(n), and A(m) = A(—m) for all m,n € M. The set of all fuzzy sets (fuzzy
modules) of an R-module M is denoted by FS(M) (FM(M)).

Theorem 2.4. Let A be a fuzzy set over an R-module R such that A(0) = 1.
Then the following conditions are equivalent.

(1) A is a fuzzy module of R.

(2) A is a fuzzy ideal of R.

Proof. By Definition 2.3 it suffices to prove that (2) implies (1). Assume that
(2) holds. Let a and b be any elements of R. Since A is a fuzzy ideal of R
with A(0) = 1, we have u(ab) > u(a) V u(b) > u(b) and pla —b) > u(a) A u(b).
Therefore, we obtain that A is a fuzzy module of R. g

Let N be a non empty subset of an R-module M. For each a € [0,1), a
characteristic function of N is denoted by aCy and is defined as

acx)m={ & (el

« ; otherwise.
We note that the R-module M can be considered a bipolar fuzzy set of itself
and we write M = aCyr (R = aCg), i.e., M(m) =1 for all m € M.
In the following theorem, we establish a relationship between bipolar fuzzy
modules and submodules of an R-module.

Theorem 2.5. Let « be any element of [0,1) and let M be an R-module. Then
the following conditions are equivalent.

(1) N is a submodule of M.
(2) The characteristic function aCy of N is a fuzzy module over M.

Proof. First assume that IV is a submodule of M. Since 0 is an element of N,
we have (aCn)(0) = 1. Let m and n be any elements of M and r € R. If
m,n € N, then (aCy) (m) =1 = (aCx) (n) and since m —n,rm € N, we have
(aCpy) (rm) =1 = (aCy) (m) and (aCn) (m —n) =1 = (aCn) (M)A (aCnN) (n).
Otherwise, if m ¢ N or n € N, then (aCy) (m) = a or (aCy) (m) = « and
so we have (aCy) (m —n) > a = (aCx) (m) A (aCy) (n). It is obvious that
(aln) (rm) > a = (aCn) (m). Therefore aCy is a fuzzy module over M and
hence (1) implies (2).

Conversely, assume that (2) holds. Let m and n be any elements of M and
r € R such that m,n € N. Set z = rm and y = m —n. Then (aCx) (z) =
(aCn) (rm) > (aCn) (m) =1 and (aCx) (y) = (aCn) (m —n) > (aCn) (M) A
(aCn)(n) =1 A1 =1. Hence we have (aCy) (z) = 1 and (oCy) (y) = 1, and
so m —n,rm € N. Therefore N is a submodule of M and hence (1) implies
(2). O

From the above result, we have the following corollary:

Corollary 2.6. Let M be an R-module. Then the following conditions are
equivalent.
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(1) N is a submodule of M.
(2) The characteristic function 0Cn of N is a fuzzy module over M.

Let p and A be a fuzzy set over a ring R and fuzzy set over an R-module M,
respectively. Define the composition ;1 © A, and product p.A respectively as
follows:

(u(r) NA(m)) ;if x =rm for somer € R,m e M
poa@ -] A

0 ; otherwise,

and

n

\/ /”\ p(ry) A /\ A(m;) sz = irimiﬂri eRm;eM
n i=1 i=1 i
) @) =3 3,
0 i ; otherwise.

Next, let z be an element of an R-module M and « € (0,1]. Define the
fuzzy set z, over M as follows:

xa<a)={§ r=a

; otherwise.

Then z, is called a fuzzy point or fuzzy singleton. Let A be a fuzzy set
over an R-module M. Next, let (A) denote the intersection of all fuzzy modules
over M which contain A. Then (A) is a fuzzy module over M, called the fuzzy
module generated by A.

Definition 2.7. Let A and B be any fuzzy sets of an R-module M. For every
fuzzy set p of R define (A : B) and (A : ), as follows:

(A:B)=\/{ne FS(R): noB < A}
and

(A:p)=\/{Be FS(M): po B < A}.

3. TOPOLOGIES ON FUZZY CLASSICAL PRIMARY SUBMODULES

The given definition of fuzzy classical primary submodule is a generalization
of the notion of classical prime and classical primary submodules in module
theory.

Definition 3.1. Let A be a fuzzy submodule of an R-module M. A fuzzy set
A is called a fuzzy classical primary submodule of M if for every elements
a and b of R and every element x of M with acbexo € A, then either acz, € A
or b?wa € A for some positive integer n.

We now present the following example satisfying above definition.
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Example 3.2. Let Z be the set of all integers. Suppose M = R = Z is a
commutative ring. Define the fuzzy set A of Z as follows:

1 ;ifaedzZ
A(””)_{ 0 ;ifz ¢ 42.

Then it is easily seen that A is a fuzzy classical primary submodule of an an
R-module M.

Let M be an R-module. In the sequel Fep.spec(M) denotes the set of all
fuzzy classical primary submodules of an R-module M. We call Fep.spec(M),
the fuzzy classical primary spectrum of M. For every fuzzy submodule A
of M, the fuzzy classical variety of A is denoted by V(A), and is defined as
the set of all fuzzy classical primary submodule containing A, i.e., V(A) =
{B € Fep.spec(M) : A < B}.

Theorem 3.3. For any family of fuzzy submodules {A;},.; of an R-module
M. Then the following properties hold.

(1) V(01) = Fep.spec(M) and V(M) = @.
2) (V(A) =V (ZAZ) .

icl iel
(3) V(A1) UV (Ag) =V (A A Ay).
Proof. (1). Obvious.

(2). Let B be a fuzzy submodule of M such that B € ﬂ V(A;). Then we
iel
have B eV (A;) for all i € I, i.e., A; < B. Next let z be an element of M. We
also consider

i€l icl

IA
<

N Bla)
x:in x=2xi

iel el

= \/  Blx)
x:in

el

= B(x)
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ans so ZAi < B. Thus we have B € V (Z Ai>, which implies that
iel i€l
(V(A) cV ZAi) On the other hand, let B be a fuzzy submodule
iel il
of M such that B € V (Z AZ-). It is easy to see that A; < Z‘Ai < B,
il iel

ie, B e V(A) for all i € I. Therefore V (Z AZ‘> C mV(Ai) and hence

iel iel
(V(4)=V <2Ai>.
iel iel

(3). Let B be a fuzzy submodule of M such that B € V (A;)UV (Az). Then
we have A; < Bor Ay < B, it follows that A1 AAs < B. Thus Be V (A4; A Ay)
and so V(A1) UV (A2) C V(A1 AAy). On the other hand, let B be a fuzzy
submodule of M such that B € V (A; A Ag). This implies that A; A Ay < B,
ie, Ay <Bor Ay < B. Also, B €V (A1)UV (Az). Therefore, we obtain that

V(A1 ANAy) TV (A1) UV (A2) and hence V (A1) UV (A2) =V (A1 A Ay). O

Corollary 3.4. Let pu and v be any fuzzy ideal of a ring R. Then V (u ® M)U
VwvoM)=VporvoM).

Set X = Fep.spec(M). For every fuzzy submodule A of an R-module M we
define £(A) and 7 as follows:

E(A) =X —V(A) and 7 = {£(A) : A € FM(M)).

In the next theorem we will show that the pair (X, 7) is a topological space.

Theorem 3.5. Let M be an R-module. Then the following statements hold:

(1) The pair (X, 1) is a topological space.
(2) X is a Ty topological space.

Proof. 1. Since V(01) = X and V(M) = &, we have £(0;) = X — X = & and
EM)=X-o=X, e, a3, X eT.

2. Let A and B be any fuzzy submodules of M. Thus by Theorem 3.3(3),
we have

E(A) NEB)

I
N/-\
5

<< <

Il
3
(-
</—\
=

>

o C
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3. For any family of fuzzy submodules {A;},.; of M. Then by Theorem
3.7(2), we have
UE(Ai) = U (X =V (4))
iel i€l
= X-[V(4A)

i€l

- xv[a)

il
= ¢ (Z Ai> :
iel
2 and 3 show that 7 is closed under arbitrary union and finite intersection.
Thus the pair (X, 1) satisfies in axioms of a topological space. Therefore we
have (X, 7) is a topological space.

(2) Let A and B be two distinct points of X. If A £ B, then obviously
Be&(A) and A ¢ E(A) showing that X is a Tp topological space. O

In this case, the topology 7 on X is called the fuzzy primary Zariski
topology. For every fuzzy submodule A of M, the set

V*(A) = {B € Fep.spec(M) 1 /(A: M) < /(B M)}

Then we have the following lemma.

Lemma 3.6. Let A and B be any fuzzy submodules of an R-module M. If
A < B, then V* (B) < V* (A).

Proof. Let C be a fuzzy submodule of M such that C € V* (B). Then we have
V(B:M) < /(C: M). Since A < B, we have \/(A: M) < /(B: M), ie.,
V(A M) </(C: M). Therefore C € V* (A) and hence V* (B) < V* (A). O

Then we have the next results.

Theorem 3.7. For any family of fuzzy submodules {A;},c; of an R-module
M. Then the following properties hold.

(1) v*(01) = Fep.spec(M) and V*(M) = @.
2) )V (A)=V" Z(Ai:M)QM)

iel iel
(3) V* (A1) UV* (Ag) = V* (A1 A Ag).
Proof. (1). Obvious.
(2). Let B be a fuzzy submodule of M such that B € ﬂ V* (A;). Then we
icl
have B € V* (A4;) for all i € I, i.e., /(A : M) < /(B: M). Since (4; : M) ®

M < AT M) oM < /(B: M)© M, we have > (At M) © M <

icl
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V(B : M) M, it follows that,

\l((;(Ai:M)GM> :M) < \/<\/WQM:M>

< (B: M)
= (B: M).

It is easy to see that B € V* (Z (A; : M) @M) and so ﬂV* (A;) C

i€l el

V* (Z (A4; = M) @./\/l). On the other hand, let B be a fuzzy submodule

el

of M such that B € V* (Z (A : M) O M) Thus we have

el

J((;(Ai:M)®M> :M) </(B: M).

Clearly, we have (((A; : M) © M) : M) = (A; : M) for all ¢ € I. Also for each
1 € I, we obtain that

(A M) = V(((Ai: M) O M) : M)
< J((Z(Ai:/w)@/w):/w)

< V(B:M)
= (B: M).

Therefore we obtain that B € ﬂ V* (A;) and hence V* <Z (A; : M) /\/l) -

iel el
ﬂ V*(A).
iel
) (3). Let B be a fuzzy submodule of M such that B € V* (A;) U V* (As).
Then we have /(A; : M) < /(B: M) or /(A2 M) < /(B: M). If
V(AL M) < /(B: M), then /(A1 A Az : M) < /(A1 : M) < /(B: M),
it follows that, B € V* (A; A Ag). Similarly, if \/(Az : M) < /(B : M), then
B € V*(A; AN Az). On the other hand, let B be a fuzzy submodule of M
such that B € V*(A; A Az). Then /(A1 AAy: M) < /(B: M). Since
A1 AAy < Ay and A A Az < A, we have (/(Ag - M) < /(A1 A Az M) and
\/(A2 M) < \/(.Al A As : M), which implies that,

VA M) 0 /(As - M) < /(A7 A Ay - M).
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Now since /(B : M) is prime and /(A1 : M) ® /(A2 : M) < \/(B: M), it
follows that /(A1 : M) < /(B: M) or /(A3 : M) < /(B: M). Clearly,
we have B € V* (A1) or B € V* (Ap), i.e.,, B € V* (A1) UV* (Az). Therefore
V* (A1 A .AQ) < p* (Al)UV* (.AQ) and hence V* (Al)UV* (.AQ) =V* (A1 A .AQ)

([

For every fuzzy submodule A of an R-module M we define £*(A) and 7* as
follows:
E(A)=X-V*(A) and 7" = {£*(A) : A € FM(M)}.

In the next theorem we will show that the pair (X, 7*) is a topological space.

Theorem 3.8. Let M be an R-module. Then the following statements hold:

(1) The pair (X,7*) is a topological space.
(2) X is a Ty topological space.

Proof. The proof follows from Theorem 3.5. (I

For any R-module M and A, B € FM(M) we have the next result.

Proposition 3.9. Let A and B be any fuzzy submodules of an R-module M.
If J(A: M) = \/(B: M), then V*(A) = V* (B). Moreover, the converse is

true if both A and B are classical primary.

Proof. Let A and B be any fuzzy submodules of M such that /(A : M) =
V(B:M). Next let C be a fuzzy submodule of M such that C € V*(A).
Then we have \/(A: M) < /(C: M), ie, \/(B: M) < /(C: M). Thus
C € V*(B) and so V*(A) C V*(B). Similarly, we obtain that V*(B) C
V* (A). For the converse, suppose that A, B € FM(M) is classical primary
and V*(A) = V*(B). Since A € V*(A),B € V*(B) and V*(A) = V*(B),
we have \/(B: M) < /(A: M) and /(A : M) < /(B: M). Therefore, we
obtain that /(A : M) = /(B: M). O

For a fuzzy prime ideal p of R, by Fecp.spec,(M) we mean the set of all
A € FM(M) such that \/(A: M) = p. In other words

Fep.spec,(M) = {A € Fep.spec(M) = /(A M) = p}.

Theorem 3.10. Let i and A be any fuzzy ideal and any fuzzy submodule of R
and M, respectively. Then the following properties hold.

(1) V*(A) = U Fep.spec,(M).
(A:M)<p
(2) V*(u™ o M) =V (u™ e M) for some positive integers m,n.

3)V (\/(A M) 6 M) CV*(A) SV (A: M) o M).

Proof. (1). Let B be a fuzzy submodule of M such that B € V* (A4). Then we
have \/(A: M) < /(B: M) =p and so
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B € Fep.spec,(M) C U Fep.spec,(M).

vV (AM)<p
It is easy to see that V*(A) C U Fep.spec,(M). On the other hand, let
vV (AM)<p
B be a fuzzy submodule of M such that B € U Fep.specy,(M). Thus

(A:M)<p
there exists a fuzzy prime ideal p of R such that m < pand B €
Fep.spec,(M). Clearly, we have \/(B: M) = p, i.e., /(A: M) </(B: M),
it follows that, B € V* (A). Therefore we obtain that U Fep.spec, (M) C
(A:M)<p
V*(A) and hence V*(A) = U Fep.specy,(M).

vV (A:M)<p
(2). Let B be a fuzzy submodule of M such that B € V (u™ ® M). Then

we have u" © M < B, ie, /(pm OM: M) < /(B: M). This implies
that B € V* (™ ©M) and so V(u" © M) C V* (™ © M). On the other
hand, let B be a fuzzy submodule of M such that B € V* (u™ ® M). Thus
VoM M) < \/(B: M). Obviously, g < (g™ ®M : M). Since
Vi oM:iM) < /(B: M) and p™ < (u"® M : M), we have u™ <

(B : M), which implies that, u™ © M < B. It is easy to see that B €
V (u™ @ M). Therefore V* (u™ ©@ M) CV (1™ ® M) and hence V* (™ & M) =
V(u™oM).

(3). Let B be a fuzzy submodule of M such that B € V* (A). Then we have
V(A M) </(B: M). Since (A: M) ® M < A, we have

VA M) oM :M) < /(A M) </(B: M).
This implies that B € V* ((A: M) ® M) and so V*(A) CV*((A: M) > M).
Next, let B be a fuzzy submodule of M such that B € V (\/(A M) /\/l)
Thus /(A : M) M < B. Obviously, /(A : M) < (B: M). Since (B: M)
(B: M), we have \/(A: M) < /(B : M), which implies that, B € V* (A

<
).
Therefore V (\/(.A M)O /\/l) C V*(A) and hence V (\/(A M) M) C
V*(A) CV*((A: M) o M). O
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