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On the topology of generalized quotients
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ABSTRACT. Generalized quotients are defined as equivalence classes
of pairs (z, f), where x is an element of a nonempty set X and f is an
element of a commutative semigroup G acting on X. Topologies on X
and G induce a natural topology on B(X,G), the space of generalized
quotients. Separation properties of this topology are investigated.
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1. PRELIMINARIES

Let X be a nonempty set and let S be a commutative semigroup acting on
X injectively. For (z,¢), (y,%) € X x S we write

(@,9) ~ (y,9) if Yz =gy
This is an equivalence relation in X x S. Finally, we define
B(X,S) = (X x 8)/~,

the set of generalized quotients. The equivalence class of (x, ¢) will be denoted
by £.

]éplements of X can be identified with elements of B(X, S) via the embedding
t: X — B(X,S) defined by () = 3%”, where ¢ is an arbitrary element of S.
The action of G can be extended to B(X, S) via p3; = 5‘;—“ If o3 = u(y), for
some y € X, we will write cp% € X and cpi = y. For instance, we have p£ = x.

Other properties of generalized quotients and several examples can be found
in [2] and [4].

If X is a topological space and G is a commutative semigroup of continuous
maps acting on X, equipped with its own topology, then we can define the
product topology on X x G and then the quotient topology on B(X,S) =
(X xG)/~.
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It is easy to show that the embedding ¢ : X — B(X,S) is continuous.
Moreover, the map % — -“Z—x is continuous for every ¢ € G. These and other
topological properties of generalized quotients can be found in [1].

In this note we will always assume that the topology on G is discrete. In
most examples, it is a natural assumption.

Let Y be a topological space and let ~ be an equivalence relation. If y € Y,
then by [y] we denote the equivalence class of y, that is, [y] = {w € Y : w ~ y}.
The map ¢ : Y — Y/, defined by ¢(y) = [y], is called the quotient map. A
subset U C Y is called saturated if y € U implies [y] C U. In other words, U
is saturated if U = ¢~ !(q(U)). Let Z = Y/~. A set V C Z is open (in the
quotient topology) if and only if V' = ¢(U) for some open saturated U C Y.

Whenever convenient, we use convergence arguments. The sequential con-
vergence defined by the topology of B(X,G) is not easily characterized. The
following theorem is often useful.

Theorem 1.1. Let % € B(X,G), n € N. If there exist a) € G and ay € X

such that % = %, ﬁ)r alln € N, and y, — y in the topology of X, then
% — % in the topology of B(X,G).

Proof. 1f U is an open neighborhood of ¥ in B(X, ), then (y,v) € g 1(U).

Since ¢~1(U) is open in X x G, there exists an open V C X such that (y,v) €
Vx{¢} C ¢ *(U). But then y,, € V for almost all n € N, because y,, — y in the
topology of X. Hence, (yn,v) € ¢~ *(U) for almost all n € N or, equivalently

%:%GUforalmost all n € N. O

In this note we investigate some separation properties of the topology of
B(X,G).
2. GENERAL SEPARATION PROPERTIES

We are interested in the general question whether a separation property of
X is inherited by B(X, G). First we consider T;.

Theorem 2.1. If X is Ty and the topology of G is discrete, then B(X,G) is
T.

Proof. If 2 € B(X,G), then (X x G) \ g ! (%) is an open saturated subset of
X xG. (]

Now we give an example of a Banach space X and a semigroup G of contin-
uous injections on X for which B(X, G) is not Hausdorff.

If f,g: R — R and the set {t € R : f(t) # g(t)} is meager in the usual
topology of R, then we will write f ~ g. Let B(R) be the space of all bounded
real-valued functions on R and let X = B(R)/~. With respect to the norm

I = inf{llgllec : g =~ f}
X is a Banach space. Let

G=A{[fle X:{teR: f(t) =0} is a meager set in R}.
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Then G is a semigroup of injections acting on X by pointwise multiplication.
Note that B(X,G) can be identified with R®/~. To show that the topology of
B(X,G) is not Hausdorff we need two simple lemmas. In what follows, we will
not distinguish between functions and equivalence classes of functions. The
indicator function of a set A will be denoted by 4.

Lemma 2.2. If (A,) is a sequence of subsets of R such that A, C Apt1, for
each n € N, and R\ U, A, is meager, then for each f € C(R) the sequence
fn = fla, is convergent to f in B(X,QG).

Proof. Define a function g : R — R as follows
1 ifte A,
gt) =91 .
= ifte A, \ Ay
It is easy to see that f,g — fg in X. Consequently f,, — f in B(X, Q). O

Corollary 2.3. If a set U C B(X, G) is sequentially open and 5 e U, then for
each r € R there exists a open neighborhood V.C R of r such that m% eU.

Lemma 2.4. If (A,) is a sequence of subsets of R such that A,41 C A,, for
each n € N, and the set (., A, is meager, then for each f € X the sequence
(fn), where fn, = fla,, is convergent to 0 in B(X,G).

Proof. Use
1 ifté¢ A,
gty =49, .
= ifte Ay \ Angr.
O
Theorem 2.5. If U is a nonempty sequentially open subset of B(X,G), then
U is sequentially dense in B(X,G).

Proof. Tt is enough to prove that there exists a sequence F,, € U such that
F, — 0in B(X,G). Consider an arbitrary element f/g € U and assume that
(rn) is a sequence of all rational numbers. Then, by Corollary 2.3, there exits
a neighborhood V; of r; such, that

I
_ f R\V; c
g
Next we find a neighborhood V5 of r5 such, that

_ e c

I U.

Fy U.

By induction, we construct a sequence V,, C R such that V,, is a neighborhood
of r, and

_ JIr\(Viu..uv)

E, e U.

The set UZO=1 V, is open and dense in R. Hence, the complement of UZO=1 V, is
ameager set. By Lemma 2.4, fIg\(v,u...uv,) — 01in B(X, G), and consequently
F, — 0in B(X, Q). O
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Since X in this example is a Banach space, no separation property of X above
T, will be inherited by the topology of B(X, G) without additional assumptions.
In the remaining part of this note we give examples of theorems that discribe
special situations in which the topology of B(X, G) is Hausdorff.

3. HAUSDORFF PROPERTY IN SPECIAL CASES

First we introduce some notation and make some useful observations. If
UCXXG, then U = UcpEG U, x {¢}, where U, C X. For every ¢ € G let
ITy : X x G — X be the projection defined by

Iy | |J U x {9} | = Uy
e
If A C X x G, then the smallest saturated set containing A will be denoted by
> A. We have the following straightforward characterization on X A.

Proposition 3.1. If A C X x G, then
SA= ) ¢ WA x {4},
P PeG
In other words, for every ¥ € G, we have
MyYA = ¢ I, A
pelG
Corollary 3.2. A set A C X x G is saturated if and only if
o WI,A C I, A
for every v, € G.
Theorem 3.3. If X is Hausdorff and every ¢ € G is an open map, then
B(X,G) is Hausdorff.
Proof. Let % and f be two distinct elements of B(X,G). It suffices to find
open and saturated subsets of X x G that separate (z,¢) and (y,). Since
Yz # @y and X is Hausdorff, there exist open and disjoint sets U, V' C X such
that ¥x € U and oy € V. Define
A=9"'U x{p} and B=¢ 'V x {¢}.
Consider the sets 3 A and Y. B. By Proposition 3.1, ¥A and B are open sets.
If (z,7) € I, XA, then z € o1y ~1U, again by Proposition 3.1. This means
that pz = v~ lu for some u € U. Hence, (z,7) ~ (¥~ tu,¢). Similarly, if

(z,7) € II,EB, there exists a v € V such that (z,7) ~ (¢~ 'v,1). Therefore,
(v~u, ) ~ (p~tv, 1), which implies v = v, contradicting U NV = @. O

For topological spaces X and Y, by C(X,Y’) we denote the space of continu-
ous maps from X to Y. For a continuous ¢ : X — X, by ¢* : C(X,Y) —
C(X,Y) we denote the adjoint map, that is, (¢*f)x = f(pzx) where f €
C(X,Y).
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Theorem 3.4. Let X be a topological space, G a commutative semigroup of
continuous injections from X into X, equipped with the discrete topology, such
that o(X) is dense in X for all p € G. Let'Y be a Hausdorff space and let
F C C(X,Y) be such that F separates points in X and for every ¢ € G we
have F C o*(F). Then the topology of B(X,G) is Hausdorff.

Proof. First note that, since ¢(X) is dense in X, ¢* is a injection. For f € F
and ¢ € G define f, to be the unique function in F such that ¢* f, = f. Then,
for any ¢, € G, we have ¥* fy, = f = (p¥)* foy and hence ¥* fy, = ¥*p* foy.
Since 9* is injective, we have fy, = ©* foy. Thus, fy(z) = ©* fou(z) = fop(ex)
for any = € X.

Consider two distinct elements F} and Fy of B. Without loss of generality,
we can assume that Fj} = % and I = %, for some 1 # xo. There exists an
f € Fsuchthat f(z1) # f(x2). Let Q1,2 C Y be open disjoint neighborhoods
of f(x1) and f(z2), respectively. For every ¢ € G let

Up =t (F710) and V=o' (f71(0)).
We will show that
U= JUyx{y} and V=[] Vyx{¢}

YeG YeG

are disjoint saturated open sets that separate (21, ) and (z2,¢). It suffices to
prove that the sets are saturated. Since the sets are defined the same way, we
will only prove it for U. Suppose x € Uy and (z,%) ~ (y,7). Then v = ¢y
and

v (py) = fur (py) = fur(prz) = fy(pz) € Q1.
Thus y € U,. O

Example 3.5. Let X = {x € C(R) : (0) = 0}, with the topology of uniform
convergence on compact sets, and let G = {A™ : n € Ny}, where Az(t) =
fg x(s)ds and Ny denotes the set of all nonnegative integers. To show that
the topology of B(X,G) is Hausdorff we use Theorem 3.4 with ¥ = R and
F ={f € DR) : f # 0}, where D(R) is the space of smooth functions with
compact support. If f € F and x € X, then we define f(x) = [ f(t)x(t)dt.

Clearly, A™ is injective and A™(X) is dense in X for every n € N. Moreover,
F separates points in X. If f € F and n € N, then there exists a g € F such
that f(z) = g(A™2) for every € X, namely g = (—1)"f(). Thus all the
assumptions of the theorem are met.

The assumption that 2(0) = 0, in the definition of X, may seem artificial.
It is made for convenience and it does not affect the final result. Note that for
any x € C(R) we have 15 = % and Az € X. One can prove that, in general,
B(X,G) = B(gX,G) for any g € G (see [1]).

In the next theorem we assume that G is generated by a single function,
that is, G = {¢™ : n € Ng}.
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Proposition 3.6. Let G = {¢" : n € No} and A C X x G. A is saturated if
and only if, for all i,j € N,

(3.1) z €A if and only if @7z € T4 A,
where 11y, = Il,, .

Proof. Assume that (3.1) holds for some A C X xG, z € I, A, and ¢y = o™z
for some y € X and m € Ny. If n < m, then y = ¢ "x. Hence, if we take
j=m-—n,i=mn,and z = x, we obtain y = " "z € II,, A, by (3.1). If
n > m, then x = " ™y, and thus, " ™z € II,,A. Hence y € II,,, by (3.1).
Therefore A is saturated.

Assume now that A C X x G is saturated. Then, by Corollary 3.2, we have
@I A C 1A, Hence, if 2z € II;, then ¢z € II;1;A. Now, conversely, if
@z € ;1 ;A, then z € II; since (z,¢") ~ (¢/2,¢"™7) and A is saturated. [

Corollary 3.7. If G = {¢" : n € No}, then A C X x G is saturated if and
only if
Hj_lA = (‘0_1HjA

for every j € N.

Theorem 3.8. If X is a normal space, ¢ : X — X is a closed and continuous
injection, and G = {¢™ : n € Ny}, then B(X,G) is a Hausdorff space.

Proof. Consider two distinct points in B(X,G). Without loss of generality,
we can assume that they are represented by ;" and Wyn for some z,y € X
and n € N. Then x # y and there exist open sets U,,V, C X such that
x € Up,y €Vy,and U, NV, = @. Since ¢ is a closed injective map, ¢(U,)

and ¢(V},) are disjoint closed sets. Whereas X is normal, there exist open sets
Un+1, Vi1 C X such that

QD(U_n) C Uns1, (p(vn) C Vpg1, and Uy NVyq = 9.

Similarly, by induction, we can construct open sets Uy 1k, V4x C X such that

OUn+sr) C Unskrt, ¢(Vasr) C Vagryr, and Upipp1r N Vigprr = 9,

forall k =1,2,.... Now, for m =n,n+ 1,n+ 2,..., we define open subsets
of X x G:
Up=J (¢/7"Un) x {¢'} and Vi = (¢/7"Vi) x {¢}.
J=0 j=0

Note that U], c U, C ..., V, CV, , C...,and U/, NV, = @ forallm > n.
Finally, let

o0 o0
U= |JU, and V=]V,
Clearly, U and V are disjoint open subsets of X x G such that (x, ™) € U and
(y,¢™) € V. Since U and V are defined the same way, it suffices to show that
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U is saturated. Note that
(oo}
LU= |J ¢/ "Un
m=n
if j=0,...,n, and
o0
LU = | J ¢/ "Un
m=j
if j > n. Since I;_1U = ¢ '11;U for every j € N, it follows that U is saturated
by Corollary 3.7. (|

Corollary 3.9. If X is a compact Hausdorff space and G is generated by a
continuous injection, then B(X,G) is a Hausdor(f space.

Now we consider the case when X has an algebraic structure, namely X
is a topological semigroup. A nonempty set X with an associative operation
(x,y) — xy from X x X into X is called a semigroup. If the topology of X
is Hausdorff and the semigroup operation is continuous (with respect to the
product topology on X x X), then X is called a topological semigroup. Our
main result follows from a theorem of Lawson and Madison (see Theorem 1.56
in [3]).

Theorem 3.10 (Lawson and Madison). Let S be a locally compact o-compact
semigroup and let R be a closed congruence on S. Then S/R is a topological
semigroup.

An equivalence ~ in a semigroup A is called a congruence if
a~b implies ca~cb forall c e A.

If (X,-) is a semigroup and G is a commutative semigroup of injective ho-
momorphisms on X, then X x G is a semigroup with respect to the binary
operation * defined by

(@, ) * (y,¥) = (V) - (Py), ¥1b),
where z,y € X and ¢, ¢ € G.

Lemma 3.11. The equivalence ~ in X x G defined by
is a congruence with respect to *.
Proof. Let (x,¢), (y,¥),(2,7) € X x G and (x,¢) ~ (y,¢). Then
(@,0) * (2,7) = ((v2) - (02), 7)) and (y,9) * (2,7) = (W) - (¥2), ¥7).
Since ¥z = @y and G is commutative, we have

Py ((vx) - (p2)) = (yyx) - (Pr9z) = (077Y) - (P792) = 7((Y) - (¥2)),
which means (z, ) * (z,7) ~ (y,¢) * (z,7). 0
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A relation ~ in a topological space Y is called closed if {(a,0) € Y xY :a ~
b} is a closed subset of ¥ x Y with respect to the product topology.

Lemma 3.12. If X is Hausdorff, then ~ is a closed relation in X x G.
Proof. We have to show that the set

R ={((z,9), (y,¥)) : (x,9¢),(y,9) € X x G and (z,¢) ~ (y,¥)}

is closed in (X x G) x (X x G). Consider ((x,¢), (y,v)) ¢ R. Then (z,p) #
(y,v) and hence ¥z # py. Since X is Hausdorfl, there are open and disjoint
U,V C X such that ¢z € U and ¢y € V. Then

(z,9) x (y,9) € (W™HU) x {@}) x (¢ (V) x {¢}).
Clearly, (v=1(U) x {¢}) x (¢=1(V) x {2}) is open and disjoint with R. [

In view of the above lemmas, the theorem of Lawson and Madison gives us
the following result.

Theorem 3.13. If X is a Hausdorff semigroup and (X x G) is locally compact
o-compact, then B(X,G) is Hausdorf}.
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