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Cancellation of 3-Point Topological Spaces

S. CARTER AND F. J. CRAVEIRO DE CARVALHO™

ABSTRACT. The cancellation problem, which goes back to S. Ulam
[2], is formulated as follows:

Given topological spaces X,Y, Z, under what circumstances does X x
Z =Y X Z (= meaning homeomorphic to) imply X ~ Y?

In [1] it is proved that, for Ty topological spaces and denoting by S the
Sierpinski space, if X X S =Y x S then X =~ Y.

This note concerns all nine (up to homeomorphism) 3-point spaces,
which are given in [4].
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1. TWO CANCELLATION RESULTS
Below X and Y denote T3 topological spaces.

Proposition 1.1. Let S be a topological space with a unique closed singleton
{p}. If there is a homeomorphism ¢ : X xS — Y xS then ¢(X x{p}) = Y x{p}.

Proof. We shall show that ¢(X x{p}) C Y x{p} which, using similar arguments,
will be enough to prove that ¢(X x {p}) =Y x {p} and, consequently, that
X~Y.

Let us suppose that for some ¢ € X,y € Y and ¢ € S\ {p} we have
o(z,p) = (y,q9). Then {(y,q)} is closed and, therefore, (Y x S)\ {(y,q)} is
open.

Let r belong to the topological closure of {¢},r # ¢q. Then (y,r) € (Y x S)\
{(y,q)} and we must have open sets Uy, U,, containing y and r, respectively,
such that Uy x U, C (Y x S)\ {(y,¢q)}. We reach a contradiction since (y, q)
belongs to Uy x U,. O
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An example of such an S is obtained as follows. Let S be a set with 4
elements at least. Let a,b € S and denote by S; the complement of the subset
they form. Take then as basis for a topology on S the set {{a}, {a,b}, S1}. If
S happens to have just 4 points then it is the only minimal, universal space
with such a number of elements [3].

Proposition 1.2. Let S be a topological space with a dense, open singleton
{p} and such that, for every q € S\ {p}, the topological closure of {q} is finite.
If there is a homeomorphism ¢ : X x S —Y x S then ¢(X x {p}) =Y x {p}.

Proof. Let {p} be an open, dense singleton in S. We will show that ¢(X x
{p}) =Y x {p} which, as observed before, is enough to conclude that X ~ Y.

Assume that for some z € X,y € Y and ¢ # p we have ¢(z,p) = (y,q).
Consider the closed set {y} x @, the bar denoting closure, its image ¢! ({y} x
@), which is also closed, and suppose that m has s elements. Also, observe
that p ¢ {q}. o

Since (x,p) belongs to ¢~ ({y} x {q}) and this set has s elements, there is an
7 in {q} such that (z,7) does not belong to this set. There are then open sets
U., U, containing z and r, respectively, with U, x U, C (X xS)\¢~ ' ({y} x{q}).
We have a contradiction since (z,p) € U, X U,.

An example for S can be the following Door space. Let S be a set and fix
p € S. Define U C S to be open if it is empty or contains p.

2. 3-POINT SPACES

We go on assuming that X, Y are 737 topological spaces though such assum-
ption is not used in Propositions 2.1 and 2.2 below.

If we now consider S = {a,b,c} to be one of the 3-point spaces [4], we see
that Propositions 1.1 and 1.2 of §1 allow us to deduce immediately that S can
be cancelled except in the following cases

- S is discrete,
- S has {{a}, {b},{a,c}} as a topological basis,
- S is trivial.

If S is discrete the situation is not as simple as one might be led to think.

Let us take the following example. Let S = Z, here Z stands for the integers
with the discrete topology, and consider the discrete spaces X = {0,1,...,n —
1},n > 2)Y = {0}. Now define ¢ : {0,1,....,n — 1} x Z — {0} x Z by
¢(z,r) = (0,nr +z). This map is a homeomorphism and however Z cannot be
cancelled.

We can say something when the spaces X,Y have a finite number of con-
nected components.

Proposition 2.1. Let S be a finite discrete space and assume that X has a
finite number of connected components. If X x S~Y x S then X =Y.
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Proof. The connected components of X x S or Y x S are of the type X' x
{z},Y' x{y}, where X', Y’ are components of X and Y, respectively. It follows
that Y has the same number of components as X.

Let us consider in the sets of connected components of X and connected

components of Y the homeomorphism equivalence relation and take an equi-
k

valence class of components of X, say {X1,..., X;}. The subspace U X; xS
i=1
has kn components, where n is the cardinal of S. The same happens with
k

QS(U X; x S), where ¢ is a homeomorphism between X x S and Y x S.

i=1

Let p € S. For every i = 1,...,k, &(X; x {p}) = Y; x {¢;}, where the
g;’s belong to S and the Y;’s are components of ¥ homeomorphic to the X;’s.

Assume that the equivalence class to which the Y;’s belong is {Y1,...,Y;}. Then
l k l

k
qb(U X; x{p}) C U Y; x S. Consequently, also <Z>(U X;x98)C U Y; x S.
i=1 j=1 i=1 =1
Using the inverse homeomorphism ¢!, we are led to conclude that the re-

k

1 k
verse inclusion holds and, therefore, qb(U X;xS)= U Y; x S. So U X; xS
i=1 j=1 i=1
l
and U Y; x S have the same number of components and it follows that k£ = [.
=1
Frjom each component class in X choose a representative and use ¢ to es-
tablish a homeomorphism between that representative and a component in Y.
These homeomorphisms can then be used to conclude that every component
of X is homeomorphic to a component of Y. Since components are closed and
finite in number, X is homeomorphic to Y. O

Proposition 2.2. Let X and Y be topological spaces with the same finite num-
ber of connected components and S be a discrete space. Assume, moreover,
that neither space has two homeomorphic components. If X x S =Y x S then
X~Y.

Proof. Let X;,i =1,...,n, be the components of X and fix p € S.

If ¢ is a homeomorphism between X x S and Y x S then there are ¢; €
S,i=1,...,n, such that ¢(X; x {p}) =Y; x {¢;},i = 1,...,n, where, due to
our assumption on the non-existence of homeomorphic components, the Y;’s
are the components of Y. Hence ¢ induces a homeomorphism ¢; : X; — Y;,i =
1,...,n.

Again, since the number of components is finite and they are closed, the ¢;’s
can be used to obtain a homeomorphism between X and Y. (I

Proposition 2.3. Let S have {{a}, {b},{a,c}} as basis. Ifp: X xS —Y xS
is a homeomorphism then ¢(X x {b}) =Y x {b}.
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Proof. Let mg : Y xS — S denote the standard projection. The image
ms(p(X x {b})) is open and, therefore, it is either {b} or contains a.

Assume that for some € X,y € Y we have ¢(z,b) = (y,a). The subset
{(z,b)} is closed and, consequently, the same happens with {(y,a)}. Hence
(Y x S)\ {(y,a)} is open and contains (y,c). We must then have an open
neighbourhood Uy of y such that U, x {a,c¢} C (Y x S)\ {(y,a)}. Again we
have a contradiction and ¢(X x {b}) =Y x {b}. O

To conclude the proof that a non-discrete 3-point space can be cancelled it
only remains to deal with the case where S is trivial.

Above we have an example of a homeomorphism ¢ : X x S — Y x S which
does take a slice X x {z} onto a slice Y x {y}. More examples can be obtained.

Take X =Y, with at least 2 elements, a trivial space S with also, at least,
2 elements and let ¥ : S — S be a fixed point free bijection. Fix zg € X and
define ¢ : X x S — X x S by ¢(z,s) = (z,8), for x # x9, and ¢(zg,s) =
(xOv w(s))

Then ¢ is a bijection and ¢({z} x S) = {z} x S, for x € X. Since open sets
in X x S are of the form U x S, U open in X, and ¢(U x S) =U x S, ¢ is a
homeomorphism. Obviously no slice X x {z} is mapped onto a similar slice.

Proposition 2.4. Let S be a finite trivial space. If X x S =Y x S then
X=Y.

Proof. Open (closed) sets in X x S and Y x S are of the form U x S, where U
is open (closed).

We are going to define f : X — Y as follows. Let z € X. Then {z} is
closed and so are {z} x S and ¢({z} x S), where ¢ : X xS — ¥V x S is a
homeomorphism. Hence ¢({z} x S) = C x S, for some closed set C' in Y. Since
S is finite, C' is a singleton and we make {f(z)} = C.

This way we obtain an f which is a bijection since we began with a bijective
¢.

If Cis closed in X, ¢(C x S) = f(C) x Sisclosed in Y x S. Consequently
f(C) is closed in Y. Therefore f is closed and f~! is continuous.
Taking ¢!, we would conclude that f is continuous the same way. (I

We can now state.

Theorem 2.5. For X andY T} topological spaces and S a non-discrete 3-point
topological space, if X x S ~Y xS then X =Y.

3. A PARTICULAR CASE

We will no longer assume X,Y to be 77 and will suppose that S has a
unique isolated point a. Moreover, the singleton {a} will be assumed to be
closed. That is, for instance, the case where S = {a,b,c} and {{a},{b,c}} is
an open basis.
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Proposition 3.1. Let S have a unique isolated point a. Assume that {a} is
closed. For X,Y connected with, at least, an isolated point each, if ¢ : X x S —
Y xS is a homeomorphism then ¢(X x {a}) =Y x {a}.

Proof. Let mg : Y xS — S denote the standard projection, as before.

The image 7g(¢(X x {a})) is open and connected. Therefore it is either {a}
or some open, connected subset of S, which naturally does not contain a.

Let the latter be the case. If z € X is an isolated point then {(z, a)} is open
and the same happens to its image under mg o ¢. This is impossible because
{a} is the unique open singleton of S. O

Examples of spaces satisfying the conditions of Proposition 3.1 are, again,
some Door spaces.
Let Z be a set. Fix p € Z and define U C Z to be open if U = Z or p ¢ U.
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