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Abstract. The concept of strong nearest-cross point (strong n.c.
point) is introduced, which is the generalization of strong uniqueness
of best approximation from a single point. The relation connecting to
localization is discussed. Some criteria of strong n.c. points are given.
The strong best approximation pairs are also studied.
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1. Introduction

In [6], [5], [9] the first author of the paper studied the nearest cross points
(in short, n.c. points) of two subsets of a normed space. More precisely, let G
and F be two disjoint subsets of a normed space X. A point y0 ∈ G is called a
n.c. point of G to F if ρ(y0, F ) = ρ(G, F ), where ρ(G, F ) = infy∈G,x∈F ρ(y, x),
ρ(y, x) = ‖x − y‖ is the norm of x − y in the space X . Moreover, if x0 ∈ F
satisfies ρ(x0, y0) = ρ(F, G), we say that (x0, y0) is a best approximation pair
of F and G. For details, one can see [4]. Obviously, if (x0, y0) is a best
approximation pair of F and G, then y0 is a n.c. point of G to F , and x0 is
the best approximation of y0 from F . The analogous result for x0 also holds.
However, the inverse is not true. If both n.c. points of F to G and G to F exist,
a best approximation pair of F and G may not exist. But if n.c. points of G
to F exist and F is a proximal set, then the best approximation pair of F and
G exists. In [5], the author discussed the uniqueness of n.c. points (if it exists)
and obtained that the n.c. point of G to F is unique if G is strict convex and
F is convex. In this paper, we shall discuss a property which is stronger than
being a n.c. point, which we will call a strong n.c. point. A strong n.c. point is
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the generalization of strong best approximation in a single best approximation
problem. For strong best approximation, one can see [3],[7],[2] in detail.

The organization of the paper is as follows. In Section 2, we will give the
definition of strong n.c. point. In Section 3, we shall discuss the criteria of
strong nearest cross point. In Section 4, we shall discuss strong n.c. points
and strong best approximation pairs by way of the concept of cusp. And we
shall give more examples about the relation between strong best approximation
pairs and strong n.c. points.

Finally, we declare that we will work in complex norm spaces in this paper
and use the following notation. Let X be a normed space. Denote by X∗ the
dual space of X. For a complex number u, we shall write Re u to denote the real
part of u. If F denotes a subset of a normed space X, then ‖F‖ = supx∈F ‖x‖.

2. Definition of strong n.c. point

Definition 2.1. Let F and G be two disjoint sets, y0 ∈ G and a constant r,
0 < r < 1. If the condition

(1) ρ(y, F ) − ρ(y0, F ) ≥ rρ(y, y0)

holds for every y ∈ G, then y0 is called a strong n.c. point of G to F .

Notice that a strong nearest point is a n.c. point. In fact, since ρ(y, F ) −
ρ(y0, F ) ≥ 0 for every y ∈ G, we have ρ(G, F ) = ρ(y0, F ). Then, for every y ∈
G, y 6= y0, ρ(y, F ) > ρ(y0, F ), thus the n.c. point is unique. In Definition 2.1,
the constant r, r < 1 holds automatically because |ρ(y, F )−ρ(y′, F )| ≤ ρ(y, y′)
always holds. In fact, to say y0 is a strong n.c. point, it suffices to remark that
it exists a sufficiently small r, such that (1) holds. If F is a singleton x0, y0 is a
strong n.c. point of G to F, then y0 is the strong (unique) best approximation
of x0 from G; see [3], [7], [2].

Definition 2.2. Consider F, G, r, y0 as in Definition 2.1. If (1) holds only
for y ∈ V0 ∩ G, V0 a neighborhood of y0, then we say y0 is a local strong n.c.
point of G to F.

Obviously, if y0 is a strong n.c. point then y0 is a local strong n.c. point,
but the converse does not hold in general, as the following example shows.

Example 2.3. In the Euclidean space R
2, let F = {(ξ, η) : (ξ−2)2+η2 = 1, ξ ≥

2}, G = {(ξ, η) : ξ2 + η2 = 1, ξ ≤ 0}. If y0 = (0, 1), then y0 is a local strong
n.c. point of G toF , since for every y ∈ G, y be near y0, ρ(y, F ) is equivalent
to ρ(y, x0) = 2 + ρ(y, y0). x0 = (2, 1). So ρ(y, F ) − ρ(y0, F ) is equivalent to
ρ(y, y0). But y0 is not a strong n.c. point. In fact, choose y′ suffice to (0,−1),
then ρ(y0, y

′) is to 2, ρ(y0, F ) = 2, thus ρ(y′, F ) − ρ(y0, F ) converges to 0, so
(1) does not hold. Moreover, (2,-1) is a n.c. point of F to G, (0,1) is a nearest
cross point of G to F , and (2,-1), (0,1) are not strong n.c. points.

In the above example, F and G are not convex sets, but under convexity, we
shall have different results. To state our results, we need the following lemma,
which is well known.
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Lemma 2.4. Let (X, ρ) be a metric space and let F ⊂ X. Then the function
ρ(·, F ) is uniformly continuous. Moreover if F is a convex set, then ρ(·, F ) is
a convex function.

Theorem 2.5. Let F , G be convex sets, and let y0 ∈ G. y0 is a strong nearest
cross point of G to F if and only if y0 is a local strong n.c. point of G to F .

Proof. As above stated, we only need to show that if y0 is a local strong n.c.
point, then y0 is a strong n.c. point. Let V be a neighborhood of y0, where
y0 is a strong n.c. point of G ∩ V to F . If y0 is not a strong n.c. point
of G to F , then for every rn → 0, there exist yn ∈ G, n = 1, 2, . . . , such
that ρ(yn, F ) − ρ(y0, F ) < rn‖yn − y0‖. In the segment [yn, y0], pick zn =
λnyn + (1 − λn)y0, 0 < λn < 1, λn → 0, such that for n sufficiently large,
zn ∈ G ∩ V. By Lemma 2.4, ρ(y, F ) is a convex function. Thus,

ρ(zn, F ) ≤ λnρ(yn, F ) + (1 − λn)ρ(y0, F )
< λnrn‖yn − y0‖ + λnρ(y0, F ) + (1 − λn)ρ(y0, F )
= λnrn‖yn − y0‖ + ρ(y0, F ).

So ρ(zn, F ) − ρ(y0, F ) < λnrn‖yn − y0‖. Since ‖yn − y0‖ = 1/λn‖zn − y0‖,
ρ(zn, F ) − ρ(y0, F ) ≤ rn‖zn − y0‖, zn ∈ G ∩ V. This contradicts the definition
of a local strong n.c. point. This completes the proof. �

In Theorem 2.5 we suppose F and G are convex sets. If one of them is not
convex, then the result does not hold.

Example 2.6. In the Euclidean space R
2, let G = {(ξ, η) : ξ2 +η2 = 1, ξ ≤ 0}.

Notice that G is not convex and F = {(2, 0)} is a singleton. Then y0 = (0, 1)
is a local strong n.c. point of G to F, but y0 is not a strong n.c. point of G
to F . In fact, pick y = (0,−1). Then ρ(y, F ) − ρ(y0, F ) =

√
5 −

√
5 = 0, but

‖y − y0‖ = 2.

Example 2.7. In the Euclidean space R
2, let G = {(ξ, η) : −3 ≤ ξ ≤ 2, η = 0}

be a convex set, indeed, a segment, and F = {(ξ, η) : ξ2 + η2 = 25} a non-
convex set. Then y0 = (2, 0) is a local strong n.c. point, but y0 is not a strong
n.c. point, even if it is not a n.c. point. In fact, (-3,0) is a strong n.c. point.

3. Kolmogorov type and differential type criteria of strong n.c.

points

In [6], the author gave sufficient and necessary conditions for a point to be
a n.c. point by means of linear functions and differentials. Following the same
idea we first obtain a sufficient condition for strong n.c. points.

Theorem 3.1. Let F , G be disjoint sets, y0 ∈ G, and r a constant, 0 < r < 1.
If y0 satisfies one of the following conditions, then y0 is a strong n.c. point of
G to F .
(i) for every ǫ > 0, there exists f ǫ ∈ X∗, ‖f ǫ‖ = 1, such that inf

x∈F
Re f ǫ(x−y) =

ρ(y0, F ) and for every y ∈ G, Re f ǫ(y0 − y) + ǫ ≥ r‖y0 − y‖ holds.
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(ii) for every ǫ > 0, and y ∈ G, there exists fy,ǫ ∈ X∗, ‖fy,ǫ‖ = 1, such that
inf
x∈F

Re fy,ǫ(x − y0) ≥ ρ(y0, F ), and Re fy,ǫ(y0 − y) + ǫ ≥ r‖y0 − y‖.

Proof. Obviously, (i) implies (ii). So we only need to show (ii). For this, given
ǫ > 0, y ∈ G, and fy,ǫ as in (ii), we have

r‖y0−y‖ ≤ Re fy,ǫ(y0−y)+ǫ = Re fy,ǫ(y0−x)+Re fy,ǫ(x−y)+ǫ ≤ ‖x−y‖−ρ(y0, F )+ǫ.

If in the right side of the above inequality, we take the infimum over x ∈ F, we
have r‖y0 − y‖ ≤ ρ(y, F ) − ρ(y0, F ). Thus y0 is the strong n.c. point of G to
F . This completes the proof. �

One may ask immediately if either (i) or (ii) are necessary conditions. To
answer this question, we begin with directional derivatives of the distance func-
tion ρ(y, F ) (for details one can see [6]). From Lemma 2.4, we know ρ(y, F ) is
a convex function. Furthermore,

ρ′+(y, h, F ) = lim
t→0+

ρ(y + th, F ) − ρ(y, F )

t

exists for h 6= 0 ∈ X, and ρ′+(y, h, F ) is a subadditive homogenous function in
the variable h. Theorem 2.2 in [6] says that whenever y0 is a n.c. point of G to
F, ρ′+(y0, y−y0) ≥ 0 for all y ∈ G. In the following, we shall obtain a necessary
condition for strong n.c. points.

Theorem 3.2. Let F , G be two disjoint convex sets of X. If y0 ∈ G is a strong
n.c. point of G to F, then

(Ds) ρ′+(y0, y − y0, F ) ≥ r‖y − y0‖
for all y ∈ G, r > 0.

Proof. From Definition 2.1, ρ(y, F ) − ρ(y0, F ) ≥ r‖y − y0‖. Put h = y − y0,

ρ(y0 + th, F ) − ρ(y0, F )

t
≥ r‖th‖

t
= r‖h‖.

Set t towards to 0 from right of 0, then ρ′+(y0, h, F ) ≥ r‖y − y0‖. Note that
t > 0, t is sufficiently small and y0 + th ∈ G, since G is convex. This completes
the proof. �

We shall consider whether condition (Ds) is sufficient. Some lemmas are
required. To state them we give first some notation.

Γ = {ϕ ∈ X∗ : ‖ϕ‖ = 1, Re ϕ(u) ≤ ϕ(y0), for u ∈ H}, here, H = {u :
ρ(u, F ) ≤ ρ(F, G)}.

NF = {f ∈ X∗ : ‖f‖ = 1, inf
x∈F

Re f(x) = inf
u∈F

‖u‖}.
The following lemma is Lemma 2.3 and Lemma 2.4 in [6].

Lemma 3.3. For every h 6= 0 ∈ X, supϕ∈Γ
Re ϕ(h)
ϕ(y0)

=
ρ′

+(y0,h,F )

ρ(y0,F ) , and −Γ =

NF−y0
.
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Theorem 3.4. Let F be a subspace of X, G a convex subset of X, F ∩G = ∅

and 0 < r < 1. If (Ds) holds, then the following condition holds

(Ks) for every ǫ > 0, and every y ∈ G, there exists f0 (depend on ǫ, y) ∈ X∗

with ‖f0‖ = 1, such that Re f0(y0 − y) + ǫ ≥ r‖y0 − y‖.

Proof. By the condition (Ds), Theorem 3.1 and Lemma 3.3, we have

sup
f∈NF−y0

Re f(y0 − y)

Re f(y0)
≥ r‖y − y0‖

ρ(y0, F )
.

So for every ǫ, y ∈ G, there exists f0 ∈ NF−y0
, such that Re f0(y0−y)

Re f0(y0)
+ ǫ

ρ(y0,F ) ≥
r‖y−y0‖
ρ(y0,F ) . Since 0 ∈ F, the definition of NF−y0

, Re f0(y0) ≥ ρ(y0). This implies

that Re f0(y0−y)+ǫ ≥ r‖y0−y‖, so (Ks) holds. This completes the proof. �

Finally, we give a condition (Bs) which is equivalent to (Ks) for general
disjoint sets F , G. Before stating it, we require a notation. Let F be a subset
of the space X. Denote

QF = {u : Re φ(u) ≤ ‖F‖, for all φ ∈ NF }.
Notice that QF is a cone type set including F. For if z ∈ QF , x ∈ F, z′ =
x + t(z − x), t > 0, then z′ ∈ QF . Because for every φ ∈ NF , Re φ(z) ≤
‖F‖, Re φ(z′) = Re φ(x)+ tRe φ(z−x) = (1− t)Re φ(x)+ tφ(z) ≤ (1− t)‖F‖+
t‖F‖ = ‖F‖. Specially, if F is a singleton x0, then QF is a cone including ball
B(0, ‖x0‖); see [3].

Theorem 3.5. Let F , G be two disjoint sets, then (Ks) is equivalent to

(Bs) QF−y0
∩ cone(y0 − G) is bounded,

cone(E) denotes the cone closure of E.

Proof. Suppose (Ks) holds, for every y ∈ G. Then

sup
y∈NF−y0

Re f(y0 − y) ≥ r‖y0 − y‖, 0 < r < 1.

We should conclude that QF−y0
∩ cone(y0 − G) ⊂ B(0, ‖F − y0‖/r). If this is

not true, there exists t > 0, and some y ∈ G such that t(y0 − y) ∈ QF−y0
,

‖t(y0− y)‖ > 1/r‖F − y0‖. From the definition of QF−y0
, for every f ∈ NF−y0

,
|tRe f(y0 − y)| ≤ ‖F − y0‖. If we take the supremum over all f ∈ NF−y0

, then
‖F − y0‖ ≥ tr‖y0 − y‖ > ‖F − y0‖, which leads us to a contradiction.

Now if (Bs) holds, from the above statement, there exists a sufficient large
number α, such that QF−y0

∩cone(y0−G) ⊂ intB(0, α), α > 0. So for every y ∈
G, y0−y ∈ y0−G, and y0−y

‖y0−y‖ ∈ cone(y0−G). But since α y0−y
‖y0−y‖ /∈ intB(0, α),

then α y0−y
‖y0−y‖ /∈ QF−y0

. There exists f0 ∈ NF−y0
, such that Re f0(

α(y0−y)
‖y0−y‖ ) >

‖F−y0‖. It means that Re f0(y0−y) > 1
α
‖F−y0‖‖y0−y‖. If we put r = ‖F−y0‖

α

and we take α large enough such that 0 < r < 1, then (Ks) holds. �
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4. Cusp and strong best approximation pairs

In this section, we shall discuss the case when either strong nearest cross
point or strong best approximation pair involve a cusp. In the end of this
section, we shall give three examples of strong best approximation pairs. Let
us begin with the definition of a cusp.

Definition 4.1. Let G be a nonempty subset of X, and let ∂G be the boundary
of G. Given y0 ∈ G ∩ ∂G, a point y0 is called a cusp of G if there exists a

hyperplane P supporting G at y0, and ρ(y,P )
(y,y0)

> σ > 0 holds for every y ∈ G,

where σ is a constant.

Obviously, every cusp is a strongly exposed point. We say that y0 is a
strongly exposed point of G if there exists a hyperplane P supporting G at y0,
x ∈ P, f(x) = c and such that if for every arbitrary ǫ > 0, there exists δ > 0,
such that |f(y) − f(y0)| < δ for y ∈ G, then ρ(y, y0) < ǫ. In fact, ρ(y, P ) =
|f(y)−c|

‖f‖ . Without loss of generality, we assume ‖f‖ = 1, then ρ(y, P ) = |f(y)−
f(y0)|. Since y0 is a cusp of G, ρ(y,P )

ρ(y,y0)
> σ, ρ(y, y0) < |f(y) − f(y0)|/σ for

y ∈ G. For exposed points and strongly exposed points, one can see [1], [8] and
the references there in.

Let F , G be two nonempty sets with ρ(F, G) > 0. We say that two hy-
perplanes P , Q regular separate F and G, if P , Q are parallel, F and G are
in two outer sides of P and Q, and ρ(P, Q) = ρ(F, G) = ρ(F, P ) = ρ(G, Q).

Furthermore, if y0 ∈ G is such that ρ(y0, F ) = ρ(F, G), and ρ(y,P )
ρ(y,y0)

> δ > 0, we

say that y0 is cusp of G to F . Obviously, if y0 is a cusp of G to F, then y0 is a
cusp of G.

Theorem 4.2. Let F , G be two disjoint convex sets and let y0 ∈ G. If y0 is a
cusp of G to F , then y0 is a strong n.c. point of G to F .

Proof. From the definition of cusp of G to F , there exist hyperplanes P , Q sep-

arating F , G such that ρ(y,P )
ρ(y,y0)

> δ for every y ∈ G. Then, ρ(y, F )− ρ(y0, F ) ≥
ρ(y, Q)− ρ(y0, F ). Note that since P is parallel to Q, then ρ(y, Q) = ρ(y, P ) +
ρ(P, Q) and ρ(P, Q) = ρ(y0, F ). Thus ρ(y, F ) − ρ(y0, F ) = ρ(y, P ) > δρ(y, y0).
This means that y0 is a strong n.c. point. �

Let h be the Hausdorff metric h(F0, F1) = max{△(F0, F1),△(F1, F0)},
where △(F0, F1) = sup

x∈F0

inf
x′∈F1

‖x − x′‖. We have

Theorem 4.3. (Freud type proposition) Suppose y0 is a strong n.c. point of
G to F. If y1 is a strong n.c. point of G to F1, then ‖y − y0‖ < 2/rh(F0, F1).

Proof. According to Definition 2.1, there exists 0 < r < 1, such that r‖y1 −
y0‖ ≤ △(F, G) + ρ(y1, F ) − ρ(y0, F ). It is easy to see that ρ(y, B) − ρ(y, A) ≤
(A, B) holds for every y. Thus

r‖y1 − y0‖ ≤ △(F1, F0) + ρ(y1, F1) − ρ(y0, F0)
≤ △(F1, F0) + ρ(y0, F1) − ρ(y0, F0)
≤ △(F1, F0) + △(F0, F1) ≤ 2h(F0, F1),
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(to obtain the second inequality, we used that y1 is a strong n.c. point of G to
F ). This completes the proof. �

In smooth normed spaces, F is a singleton and G is a normed subspace, then
Theorem 4.3 is the result of Wulbert [3, page 95].

Theorem 4.4. Let F , G be two disjoint sets with F convex and G a linear
subspace and y0 ∈ G. If ρ(y, F ) is Gateaux differential at y0, then y0 is not a
strong n.c. point of G to F .

Proof. Suppose y0 is a strong n.c. point. By the Gateaux differentiable of
ρ(y, F ), we have ρ′(y0, h, F ) + ρ′+(y0,−h, F ) = 0, for h 6= 0. By Theorem 3.2,
ρ′+(y0, y − y0, F ) ≥ r‖y − y0‖ holds for all y 6= y0, y ∈ G, where 0 < r < 1. If
y− y0 is either h or −h, we have 0 ≥ 2r‖y− y0‖, which is a contradiction. The
proof is complete. �

Definition 4.5. Let F , G be two disjoint sets, x0 ∈ F, and y0 ∈ G. We say that
(x0, y0) is a strong best approximation pair of F and G if there exist positive
constants r, r′ such that ρ(y, y) − ρ(x0, y0) ≥ r‖x − x0‖ + r′‖y − y0‖ for all
x ∈ F, y ∈ G.

Obviously, a strong best approximation pair of F and G is a best approxi-
mation pair of F and G; for best approximation pairs one can see [5] in detail.
In the following, we shall discuss the connection between strong best approxi-
mation pairs and strong n.c. points.

Theorem 4.6. If F , G are two disjoint sets, then (x0, y0) is the strong best
approximation pair of F and G, if and only if, y0 is a strong n.c. point of G to
F , x0 is the strong n.c. point of F to G, and (x0, y0) is a best approximation
pair of F and G. In this case, it is unique.

Proof. If (x0, y0) is the strong best approximation pair of F and G, by Defini-
tion 4.5, ρ(x0, y0) = ρ(F, G) = ρ(y0, G) and ρ(x, y) − ρ(y0, F ) ≤ r′‖y − y0‖ for
all x ∈ F. If we take the infimum over all x ∈ F, we have ρ(y, F ) − ρ(y,F ) ≥
r′‖y− y0‖. Thus y0 is the strong n.c. point of G to F . Similarly, x0 is a strong
n.c. point of F to G.

Conversely, since (x0, y0) is a best approximation pair of F and G, then
ρ(x0, y0) = ρ(F, G) = ρ(y0, F ) = ρ(x0, G). Note that ρ(x, y) ≥ ρ(y, F ) and y0

is a strong n.c. point of G from F . So, ρ(x, y)−ρ(x0, y0) ≥ ρ(y, F )−ρ(y0, F ) ≥
r′‖y−y0‖. Similarly, ρ(x, y)−ρ(x0, y0) ≥ r‖x−x0‖. Thus, ρ(x, y)−ρ(x0, y0) ≥
r/2‖x − x0‖ + r′/2‖y − y0‖. Therefore (x0, y0) is a strong best approximation
pair. This completes the proof. �

Theorem 4.7. Let F , G be two disjoint sets, ρ(F, G) > 0, and (x0, y0) a best
approximation pair of F and G. If y0 is a cusp of G to F , and x0 is a cusp of
F to G, then (x0, y0) is a strong best approximation pair.

Proof. By the definition, y0 is a cusp of G to F , and there exist parallel hy-
perplanes separating P , Q, such that F and G are in the outer side of P and
Q, y0 ∈ P, and ρ(P, Q) = ρ(F, G) = ρ(P, F ) = ρ(Q, G) = ρ(y0, F ). Obviously,
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ρ(x, y) ≥ ρ(y, Q) for all x ∈ F, y ∈ G. Since (x0, y0) is a best approximation
pair of F and G, ρ(x0, y0) = ρ(y0, F ). So ρ(x, y)−ρ(x0, y0) ≥ ρ(y, Q)−ρ(y0, F ).
Note that since ρ(y0, F ) = ρ(P, Q), and ρ(y, Q) = ρ(y, P ) + ρ(P, Q), then
ρ(x, y) − ρ(x0, y0) > ρ(y, P ) > σ′‖y − y0‖. Thus ρ(x, y) − ρ(x0, y0) > σ/2‖x −
x0‖ + σ′/2‖y − y0‖. This completes the proof. �

Finally, we shall give three examples.

Example 4.8. Denote C[0,1] be all continuous function f on [0,1] with norm
‖f‖ = maxt∈[0,1] |f(t)|. In C[0,1], let F = {µt : −∞ < µ < ∞}, G = {λt2 :√

2 + 1 ≤ λ ≤ 5}. We consider n.c. points, best approximation pairs, strong
n.c. points and strong best approximation pairs between F and G. Denote
x(t) = µt, y(t) = λt2. Then

ρ(x, y) = ‖µt − λt2‖ =

{

λ − µ, for µ/λ ≤
√

8 − 2

µ2/4λ, for µ/lz ≥
√

8 − 2.

First we compute inf
−∞<µ<∞

‖µt−λt2‖. For fixed λ, ‖µt−λt2‖ takes its infimum

at µ = µλ. By the representation of ‖µt − λt2‖, µλ satisfies λ − µλ = µ2
λ/4λ,

so µλ = (
√

8 − 2)λ. Thus

ρ(F, G) = inf√2+1≤λ≤5 ‖λt2 − (
√

8 − 2)λt‖
= (

√
2 + 1)‖t2 − (

√
8 − 2)t‖

= (
√

2 + 1)(3 −
√

8) =
√

2 − 1.

From above we obtain that ‖x0 − y0‖ = ρ(F, G), when x0(t) = µ0t, y0(t) =

λ0, λ0 =
√

2 + 1, µ0 = 2. We declare that y0(t) is a strong n.c. point of G to
F, since for every y(t) = λt2 ∈ F,

ρ(y, F ) = inf
−∞<µ<∞

‖λt2 −µt‖ = ‖λt2 −µλt‖ = λ‖t2 − (
√

8− 2)t‖ = (3−
√

8)λ.

Therefore, ρ(y0, F ) = ρ0 = (3−
√

8)λ0, ρ(y, F )−ρ(y0, F ) = (3−
√

8)(λ−λ0) =

r′‖y − y0‖, r′ = 3 −
√

8. Similarly, we have that x0 is a strong n.c. point of F
to G, since for every x(t) = µt,

ρ(x, G) = inf√
2+1≤λ≤5

‖λt2 − µt‖ = inf√
2+1≤λ≤5

{

λ − µ, forλ ≥ µ/
√

8 − 2

µ2/4λ, forλ ≤ µ/
√

8 − 2.

So, ρ(x, G) takes the infimum at λµ =
√

2 + 1/2µ, and ρ(x, G) = λµ − µ =√
2/2µ. Thus, ρ(x, G) − ρ)x0, G) =

√
2 + 1/2µ −

√
2 − 1 = r‖x − x0‖, where

r =
√

2 − 1/2. By Theorem 3.4, we obtain that (x0, y0) is the strong best
approximation pair of F and G.

The following example shows that a n.c. point always exists, but strong n.c.
points can fail to exist.

Example 4.9. Denote ℓ2
1 = {(ξ, η) : ξ, η ∈ R, ‖(ξ, η)‖ = |ξ| + |η|}. In ℓ2

1 space,
let F = {(ξ, η) : ξ = η}, G = {(ξ, η) : η = 0, 2 ≤ ξ ≤ 3}. It is easy to see
that y0 = (2, 0) is a n.c. point of G to F . But the best approximation of (2,0)
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from F is not unique. Thus the nearest cross points of G to F is not unique.
Therefore a strong n.c. point of G to F does not exist .

At the end, we shall give an example, which shows that it is possible to find
best approximation pairs which are not strong best approximation pairs.

Example 4.10. In the Euclidean R
2 space, set F = {(ξ, η) : ξ2 + η2 ≤ 1},

G = {(ξ, η) : ξ ≥ 2,−ξ + 2 ≥ η ≥ ξ − 2}. It is easy to see that x0 = (1, 0), y0 =
(2, 0) is the unique best approximation pair of F and G. Denote an arbitrary
point of F as x = (cos θ, sin θ), 0 ≤ θ < 2π. Put y = (2 + δ, δ) ∈ G, δ > 0.
Then ρ0 = ρ(x0, y0) = 1, ρ2 = ρ2(x, y) = (2 + δ − cos θ)2 + (δ − sin θ)2.
Setting θ → 0, δ → 0, then ρ2 − ρ2

0 is asymptotic to 2(ρ − ρ0). ‖x − x0‖ =

| sin θ|, ‖y− y0‖ =
√

2δ. Since δ
ρ2−ρ2

0

, and θ
ρ2−ρ2

0

are not bounded, then ‖y−y0‖
ρ−ρ0

,

and ‖x−x0‖
ρ−ρ0

are also not bounded. This means that (x0, y0) is not a strong best

approximation pair. However, y0 is a strong n.c. point of G to F .
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