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ABSTRACT. In this paper we introduce the concept of directed
fractal structure, which is a generalization of the concept of fractal
structure (introduced by the authors). We study the relation with
transitive quasiuniformities and inverse limits of posets. We define the
concept of GF-compactification and apply it to prove that the Stone-
Cech compactification can be obtained as the GF-compactification of
the directed fractal structure associated to the Pervin quasi-uniformity.
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1. INTRODUCTION

Looking for a topological generalization of the notion of self-similar sets
(commonly known as ”fractals”), the authors introduced in [2] the notion of GF-
space, where the way of looking at self-similar sets like fixed points of iterated
function systems was replaced by looking at them as a family of coverings
recursively defined. The success of this point of view in dealing with many
problems of General Topology (and not only those of self-similar sets) has
motivated the authors to go one step further in their generalization.

In section 2 of this paper we give away the countability of the family of
coverings and we introduce the notion of directed GF-space (in the same line
of thought that gives nets from sequences or inverse spectra from inverse se-
quences). The categorical issues (relation with quasiuniformities or inverse
limits) follow closely those of the countable case, but now the range of topo-
logical spaces we can consider grows. The most starling consequence of all the
work done in sections 2, 3 and 4 is the relation between Pervin quasi-uniformity

*The authors acknowledge the support of the Spanish Ministry of Science and Technology,
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and Stone-Cech compactification in sections 5 and 6. We also describe the di-
rected fractal structures induced by the Pervin and the finest transitive quasi-
uniformities, as well as the directed fractal structure which yields the Stone-
Cech compactification of any Tychonoff space.

2. DIRECTED GF-SPACES

2.1. Introduction. In this paper, every topological space will be Tj.

Now, we recall some definitions and introduce some notations that will be
useful in this paper.

Let I" be a covering. Recall that St(z,T) = J{A €T : z € A}

A (base B of a) quasi-uniformity U on a set X is a (base B of a) filter U
of binary relations (called entourages) on X such that (a) each element of U/
contains the diagonal Ax of X x X and (b) for any U € U there is V € U
satisfying V o V. C U. A base B of a quasi-uniformity is called transitive if
Bo B = B for all B € B. The theory of quasiuniform spaces is covered in [3].

If U is a quasi-uniformity on X, then so is Y~ = {U~!: U € U}, where

U™ ={(y,2) : (z,y) € U}.
The generated uniformity on X is denoted by U*. A base is given by the
entourages U* = UNU™L. The topology (i) induced by the quasi-uniformity
U is that in which the sets U(z) = {y € X : (z,y) € U}, where U € U, form a
neighbourhood base for each z € X. There is also the topology 7(U/~!) induced
by the inverse quasi-uniformity.

A quasi-uniformity U is said to be half complete if each U*-Cauchy net is
U-convergent.

A relation < on a set G is called a partial order on G if it is a transitive
antisymmetric reflexive relation on G. If < is a partial order on a set G, then
(G, <) is called a partially ordered set.

(G,<,7) will be called a poset (partially ordered set) or Ty-Alexandroff
space if (G, <) is a partially ordered set and 7 is that in which the sets

l9.2[={heG:g<h}
form a neighborhood baifor each g € G (we say that the topology 7 is induced
by <). Note that then {g} =]+, g] for all g € G.

Let us remark that a map f : G — H between two posets G and H is
continuous if and only if it is order preserving, i.e.

91 < g2 implies f(g1) < f(g2)-
Let I be a covering of X. T is said to be locally finite if for all z € X there
exists a neighborhood of z which meets only a finite number of elements of T'.

2.2. Directed GF-spaces.

Definition 2.1. LetT'y and I's be coverings of a set X. We denote byI'y << T’y
if Ty is a refinement of Ta (that is, T1 < T's) and for each B € T's it holds

B=|J{4el:ACB}
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A base of directed fractal structure over a set X is a family of coverings
T={l;:iel}

such that for each ¢, j € I there exists & € I such that I'y << T; andI'y, << T;.
A base of directed fractal structure over a set X is said to be a directed
fractal structure if given a covering A with I' << A for any I'' € T it holds that
AeT.
If T is a base of directed fractal structure over a set X then it is clear that
the family of coverings

{T": there exists I' € T with I << T'}

is a directed fractal structure.

If T is a directed fractal structure over X, we will say that (X, T') is a directed
GF-space. If there is no confusion about I', we will say that X is a directed
GF-space. Whenever the index set I is N, the set of natural numbers with its
usual order, we drop the word ”directed” in this definition (this notion was
introduced in [2]).

If T is a directed fractal structure over a set X, then it induces a transitive
base of quasi-uniformity as follows.

We define Ur as the quasi-uniformity of base B = {Ur : I' € '}, where

Ur={(zy) e XxX:ye X\ J{deT:z ¢ A}}.

Then it is easy to check that B is a transitive base of quasi-uniformity and hence
Ur is a transitive quasi-uniformity. We will use the notations Uy instead of
(Ur)~! and U} instead of (Ur)* in order to avoid using unneeded parentheses
(the terms (U~1)r and (U*)r has no special meaning here).

The topology induced by a directed fractal structure I' on a set X is defined
as the topology induced by the quasi-uniformity Ur.

If T is a directed fractal structure over X, and {St(z,I") : I € T} is a
neighborhood base of z for all x € X, we will call (X,T) a starbase directed
GF-space and T a starbase directed fractal structure.

Let T be a (base of) directed fractal structure over X. We say that I is finite
if I is a finite covering for each I' € I'. Note that a directed fractal structure
is finite if any base of the directed fractal structure is finite.

A directed fractal structure can be induced in subspaces as follows. If A C X,
and (X,T) is a directed GF-space, then the induced directed fractal structure
over A is denoted by T'4 and is defined by 'y = {T'4 : T € '}, where

(T4)={BNA:BeT}.

Definition 2.2. A map f between two directed GF-spaces (X,T) and (Y, A)
is said to be a GF-map if for each A € A it follows that f~*(A) € T, where

FHA)={f"(A):Ae A}

Next, we are going to summarize some basic properties about directed fractal
structures.
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Proposition 2.3.

(1) IfT is a directed fractal structure over X, then T is closure preserving
for each T € T'. Moreover A is closed for every A € T' and for every
I'eT.

(2) If T is a directed fractal structure over X, then Ug'(z) = ({A €T :
z € A}

Proof.

(1) The proof is as in [1] (where it is done for fractal structures).
(2) The proof is as in [2].

3. RELATIONS OF DIRECTED GF-SPACES WITH TRANSITIVE
QUASI-UNIFORMITIES AND INVERSE LIMITS OF POSETS

Now, we are going to relate the concepts of directed fractal structure, tran-
sitive base of quasi-uniformity and inverse limit of posets.

3.1. Directed fractal structure — Transitive quasi-uniformity. We re-
call (see section 2.2) that the transitive quasi-uniformity Ur induced by a di-
rected fractal structure I' is the quasi-uniformity with transitive base {Ur : T €
T}, where Ur = {(z,y) e X x X :ye X \U{A €T :z € A}}.

Proposition 3.1. Let (X,T) and (Y, A) be directed GF-spaces and let Ur and
Ua be the transitive quasi-uniformities induced by T' and A respectively. Let
f:(X,T) - (Y,A) be a GF-map. Then f : (X,Ur) = (Y,Ua) is quasi-
uniformly continuous.
Proof. Let A € A, since f is a GF-map, there exists I' € T such that I' <<
f~1(A). Let us prove that f x f(Ur) C Ua.

Let + € X and y € Ur'(z), and B € A be such that f(z) € B, since
' << f~Y(A) there exists A € T such that z € A and f(A4) C B. Since

yeUs'(z)=({CeT:zeC},
then y € A and hence f(y) € f(A) C B. Then
fw) e[ BeA: f(z) € B} =Uz'(f(2)),
and therefore f(Ur(z)) C Ua(f(z)), so f is quasi-uniformly continuous. O

3.2. Transitive base of quasi-uniformity — Directed fractal structure.
If B is a transitive base for a quasi-uniformity U/, then we define I'y; as the
directed fractal structure for which {T'y : V € B} is a base, where

Iy ={V~Xz):2 € X} for each V € B.

Ty is called the directed fractal structure induced by the transitive quasi-
uniformity .
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We note that {T'y : V' € V} is in fact a base of directed fractal structure and

that T'y; does not depends on the transitive base B, but on the quasi-uniformity
U.

Proposition 3.2. Let (X,U) and (Y,V) be quasi-uniform spaces and let Ty
and Ty be the directed fractal structures induced by U and V respectively. Let
f:(XU) = (Y,V) be a quasi-uniformly continuous map. Then f: (X,Ty) —
(Y,Ty) is a GF-map.

Proof. Let V € V be a transitive entourage and let us prove that f~1(T'y) € Ty.
Since f is quasi-uniformly continuous, there exists U € U a transitive entourage
such that f x f(U) C V. Let us prove that T'yy << f~'(I'y). Let z € X and
V~1(y) € Ty such that f(z) € V~!(y). Let us prove that f(U~!(z)) C V~1(y)
(note that z € U~!(z) and U~!(x) € T'y). Indeed, let z € U~'(x), then
z € U(z) and f(z) € V(f(2)), and hence

f(z) eVHf(@) CV oV y) =V 1(y).

Therefore f(U~!(z)) C V~1(y). On the other hand, it is clear that U~!(z) C
fFY(V-Y(f(z))), and hence Ty << f 1(Ty), so f }(Ty) € Ty and f is a
GF-map. O

3.3. Transitive base of quasi-uniformity — Inverse limit of posets. Let
X be a topological space and B be a transitive base of quasi-uniformity for X.
For each U € B, we define Gy = {U*(z) : ¢ € X}. We note that Gy is a
partition of X for each U € Y.

The following statements can be proved like the suitable ones in [2].

We define py : X — Gu by py(z) = U*(x), with the order py(z) <v pu(y)
if and only if y € U(x). For U,V € B with V C U, we define ¢yy : Gy = Gu
by ¢vulpv(z)) = pu(z).

Then py and ¢yy are continuous mappings for each U € B and each V € B
with V C U, and p = (pv)vep is an embedding from X into @{GU :U € B}
(which is the inverse limit of a directed system of posets).

We call @{GU : U € B} (resp. Gy) the inverse limit (resp. poset) induced
by the transitive base B (resp. entourage U).

Remark 3.3. In what follows, we will identify the space X with p(X).
Then, for example, when we deal with the restriction to X of a quasi-uniformity
on @{GU : U € B} we mean the restriction to p(X).

3.4. Inverse limit of posets — Transitive base of quasi-uniformity. Let
X =1im{G; : i € I} be the inverse limit of posets and define

Uc:(9) = {h = (hj)jer € m{Gj : j € I} : gi <; hi},

where g = (g;)jer- Then Bymg, = {Ug, : ¢ € I} is a transitive base of
quasi-uniformity for X, where

Us, = {(9.h) € ImG; : h € Ug, (9)}.
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We say that the transitive quasi-uniformity U;m g, generated by the base Bl-gl Gi
is the transitive quasi-uniformity induced by the inverse limit I&n G;.

Proposition 3.4. Let X = l'gliel G;iandY = %iLnJEJ Hj, and let Uyjm g; and
Uiy 11; be the transitive quasi-uniformities induced by X and Y respectively.
Let f = (fj)jes : X =Y, where for each j € J there exists i(j) € I such
that f; : Gi;) — Hj is order preserving, the set {i(j) : j € J} is cofinal in
I and ¢j,5, © fi, = [ © Digja),i(in) for each j2 > ji, where @5, : Hj, — Hj
and ¢iniy : Giy = Gy, (for jo > j1 and iz > 1) are the bonding maps of
X and Y respectively. Then f : (X, Ul(i._nc,-) - (Y, Lllzl-11 H;) 15 quasi-uniformly
continuous.

Proof. Let j € J, and let i(j) be as in the statement of the proposition. Let us
see that f(Ug,;,) C Un,. Let © = (2i)icr and y = (y;)ier with y € Ug,;, (2),
then ;) <i(;) vi(j), and since f; is order preserving, it follows that f; () <;
Fi(Wis))- Since f(x) = (fj(zi;)))jes and f(y) = (f;(%i()))jes it follows that
f(y) € Un,; (f(x)). Therefore f is quasi-uniformly continuous. O
3.5. Other relations. The following relations follow in an easy way:

Proposition 3.5. With the previous notation.

(1) V =Ur, for each transitive entourage V.

(2) V =Ugy|xxx for each transitive entourage V (see Remark 3.3).
(3) H = Guy for each poset H.

(4) Typ << T for each covering T.

Corollary 3.6. With the previous notation.

(1) V= Z/{rv andV = ul’gn{GwVeV}'XxX-

(2) Im{G; :i € It =lim{Gy,, :i € I}.

(3) T CTy,..
Notation. Let T' be a directed fractal structure over X and let Ur be the
transitive quasi-uniformity induced by I'. In order to simplify a little the

notation, we will write Gr (resp. pr, ¢r,r,) instead of Gy, (resp. puy, dvr, vy, )
foreachT €T

Definition 3.7. With the previous notation. Let T' be a directed fractal struc-
ture over X. Then X C I'&n{GF :T' € T'} (see Remark 3.3). We can consider
in @{Gr : ' € T'} the directed fractal structure G(T') = Tuy, g wery -

We define G(X) as the set of closed points of ]{ir_n{Gp :T' e T}, and we will
consider the directed GF-space (G(X),G(T)q(x))-

We will use the symbol (X, G(T')) (resp. (G(X),G(T"))) instead of (X,G(T") x)
(resp. (G(X),G(T)q(x)))-
Proposition 3.8. Let (X,T) be a directed GF-space, and let Ur (resp. Ug(r)y)

be the transitive quasi-uniformity induced by T' (resp. G(T')) on X. Then T C
G(T)x =Ty, Ugr)x =Ur and G(G(T)) = G(T).
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Proof. Let us prove that I' C G(T')x = I'y,.. It can be proved that G(I')x =
C0marrery)X = T(Uymiaprerylxxx)s and by Corollary 3.6 it follows that

G(T')x = T'y,.. Tt also follows from Corollary 3.6 that T' C T'y..

Let us prove that Ug(r), = Ur. Since G(T')x = Ty, we have by Corollary
3.6 that U(G(I‘)X) = Urur = Ur.

The equality G(G(T')) = G(I") also follows from Corollary 3.6. O

From the preceding proposition it follows that T' and G(T') induce the same
quasi-uniformity and topology on X.

Hereafter we will refer to quasi-uniformity properties of directed fractal
structure (for example we will say that a directed fractal structure is half com-
plete), and this will mean that the transitive quasi-uniformity induced by the
directed fractal structure has that property.

Proposition 3.9. Let T be a directed fractal structure over a topological space
X, let Ur be the transitive quasi-uniformity induced by T, let G(T') be the
directed fractal structure induced by Ur, and let Gy be the posets induced by
Ur, for each Ur € Ur.

(1) If T is finite then G(T') is finite.

(2) G(T) is finite if and only if Ur is totally bounded if and only if Gr is
finite for every I € T.

(3) If T is starbase then G(T') is starbase.

(4) G(T) is starbase if and only if Ur is locally symmetric.

Proof. First, note that by Proposition 3.8 it follows that G(T') = Ty = {T'yyp -
[ €T} on X and we recall that Ty, = {Ug ' () : ¢ € X} whenever T € T.

(1) Since U ' (z) = N{A € T : z € A}, it follows that G(T) is finite if T is.

(2) First, let us prove that Ua is totally bounded if A is a finite directed
fractal structure.

Since Uf(z) = ({A €T :z € A}\ (U{B €T :z ¢ B}) for every z € X
and I' € T, then it follows that if ' is finite then {Ufi(z) : € X} is finite and
hence Ur is totally bounded.

Applying this result to G(T'), we obtain that Ugr) is totally bounded. Fi-
nally, we note that Ug ) = Ur by Proposition 3.8.

Conversely, if U is totally bounded, since U (z) = {Uj(y) : y € Ur ' (2)},
then it follows that Ty, = {Up ' (z) : € X} is finite and hence G(T) is a finite
directed fractal structure over X.

Finally, since Gr = {Uj(z) : * € X} then it follows that Ur is totally
bounded if and only if Gr is finite.

(3) This is obvious, since I' C I'y. = G(T') by Corollary 3.6.

(4) Let us prove that Ur" o Ur(z) = St(z, Ty, ) for each z € X and T € T.

y € Ur! o Ur(z) if and only if there exists z € X such that z,y € U '(2) if
and only if y € St(z,Tyy.) (recall that Ty = {Up '(2) : 2 € X}).

Therefore Ur is locally symmetric if and only if G(T) is starbase. O
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4. THE CATEGORY OF DIRECTED GF-SPACES

Let us describe the categories of directed GF-spaces and transitive quasi-
uniform spaces and the relation between them.

Directed GF-spaces. An object is a space joint with a directed fractal struc-
ture. A morphism is a GF-map.

Transitive quasi-uniform spaces. An object is a space joint with a transi-
tive quasi-uniformity. A morphism is a quasi-uniformly continuous map.

Functors. Let T be a directed fractal structure over a space X and U be a
transitive quasi-uniformity for X.

Denote by Ur the transitive quasi-uniformity induced by I" on X and denote
by I’y the directed fractal structure induced by ¢ on X.

We define the functor QU from the category of directed GF-spaces to the
category of transitive quasi-uniform spaces as follows. QU(X,T) = (X,Ur)
and QU(f) = f. Note that it is well defined by section 3.1.

We define the functor F'S from the category of transitive quasi-uniform
spaces to the category of directed GF-spaces as follows. F.S(X,U) = (X,Ty)
and FS(f) = f. Note that it is well defined by section 3.2.

By Corollary 3.6, it follows that QU o F'S is the identity functor in the
category of transitive quasi-uniform spaces.

5. COMPACTIFICATION

Lemma 5.1. Let (X,U) be a quasi-uniform space and let le{GU :U e U}
be the inverse limit induced by U (with notations of section 8). Then U is half
complete if and only if for each (gu)veu € @{GU :U € U} there exists z € X
with py(z) <y gu whenever U € U.

Proof. The proof is easy once we note that (zy)yey is a U*-Cauchy net if and

only if (pu(zv))veu € lim{Gy : U € U} and py(x) <v pu(zy) whenever
U € U if and only if (zy) converges to z in (X,U). O

5.1. GF-compactification. In this subsection, the GF-compactification is in-
troduced. (We want to recall Remark 3.3).

5.1.1. Let T be a directed fractal structure over X such that the transitive
quasi-uniformity Ur induced by T is point symmetric (in fact, we only need
that each Uf-Cauchy net which is Uy L_convergent to x is also Up-convergent
to z). Then X C G(X).

Proof. Let z € X and suppose that there exists ¢ = (pr(zr)) € @{GF :
I' € T} such that (pr(zr)) < p(z), that is, there exists A € T such that
pa(za) <a pa(z). Then it is clear that (zr)rer is a Uf-Cauchy net, since
Ur,(zr,) C Ur, (ar,) for all Ty << T4 (since (pr(ar)) € Jm{Gr : I € T'})
and (zr)rer is a net which U~1-converges to x, so by hypothesis we have that
(zr)rer Ur-converges to z. Hence for allT' € T there exists A € T with A << T
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and such that zn € Ur(z) for each IT € T with A << II, whence pr(z) <r
pr(zn) = pr(zr) for each T' € T', what contradicts that pa (za) <a pa(z). The
contradiction shows that {p(z)} is closed, or equivalently, p(z) € G(X). O

5.1.2. Let I be a finite directed fractal structure over X. Then G(T) is a
finite half complete directed fractal structure over G(X).

Proof. Analogously to the proof of Proposition 3.9 it can be proved that G(T')
is finite. Let us prove that it is half complete.
Let (gr) € lim{Gr : ' € T'} and let

F =A{(hr) € jm{Gr : T € T} : (hr) <r (9r)}-

Since (gr) € F, it is nonempty, and if (hL) € @{Gr : T € I'} is a decreasing
chain, then if for each T € T we define hy = min{hL : [ € L} (note that the
minimum exists, since I is finite and {hL : | € L} is a chain) we have that (hr)
is a bound for the chain. Then by Zorn’s lemma, F has a minimal element
(hr). Hence (hr) € G(X) and (hr) < (gr). Therefore G(X) is half complete

by Lemma 5.1. O

5.1.3. Let T be a finite directed fractal structure over X such that Ur, the
transitive quasi-uniformity induced by I', is point symmetric. Then (G(X), G(T"))
is a T7 compactification of X.

We will denote by G(X,T) the directed GF-space (G(X),G(T")).

Proof. By a previous item, X is a subset of G(X), and if g = (pr(2r)) € G(X),
then (zr) converges to g in G(X) (since gr = pr(zr) = pr(za) for all A € T
with A << T, and hence za € Ug,(g) for all A > T"). Therefore X is dense in
G(X).

On the other hand, G(X) is T1, since it is the subset of closed points of
Im{Gr : T' € T'}. G(X) is compact because it is a half complete (by the
previous item) totally bounded (by proposition 3.9) quasi-uniform space. O

5.2. Wallman compactification. Next, we are going to show that the GF-
compactification is a Wallman type compactification.

Let T be a finite directed fractal structure over X, such that the induced
quasi-uniformity is point symmetric (for example, if T is starbase). We define

L=LT) ={{ () Ak : A € Ty € T; K, L finite sets}.
kEK IEL

It is clear that £ is a lattice. On the other hand, since {Ur(z) : z € X;T € T'}
is an open base of X, then {X \ Ur(z) : z € X;T € I'} is a closed base of
X, and since X \ Up(z) = U{A €T : z ¢ A} € L, then L is a closed base of
X. Since X is Ty, £ is a [-lattice. Let us show that it is an a-lattice. Let
z € X and let L € L such that ¢ ¢ L. Since L is closed, and since X is
point symmetric, then there exists I' € T' such that Uz '(z) € X \ L. Since
Ul (z) =N{A €T :z € A} € L, then £ is an a-lattice.
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Therefore W (X, £), the Wallman compactification associated with £, is a Ty
compactification of X. Let A(T') = {B4 : A € T'}, where By = {F € W(X, L) :
AeF}forevery AeT andevery I’ € I'. Let A(T) = {A(T") : T € T} We
denote W (X, £) by W(X,T) hereafter.

Theorem 5.2. A(T') is a finite directed fractal structure over W (X, L) com-
patible with its (usual) topology.

Proof. It is clear that A(T") is a finite closed covering for all I' € T' and hence
Ua(r)(F) is open whenever F € W (X, £). On the other hand, since Br,ur, =
Br,UBrL, we have that for each A € T'; withT'; € T and ' € T with 'y << Ty
it follows that A = |J{C € 'y : C C A}, so B4y = |J{B¢ : C C A}. Therefore
A(T2) << A(Ty).

In order to prove that A(T') is compatible with the usual topology of W (X, £),
let F be a L-ultrafilter such that F ¢ Br. Let L = Upcx Niep Ar with K,
L finite, Ay, € T'y; and Ty € T', and let T € T such that I’ << I'y; for each
k € K and | € L. Let us prove that Ua)(F) C W(X,£) \ Br. Let G
be an ultrafilter such that G € Ua(y(F) and suppose that G € Br. Since
Br = Npex Uier Bay, then for all I € L, there exists k = k(I) € K such that
G € Ba,,- Then, since F € Uy1y(G) = N{Ba € A(T) : G € By; A € T}, we
have that F € Ba,, for each [ € L, and then F € (., Upcx Bay, = Br- The
contradiction proves the desired result.

Therefore A(T') is a finite fractal structure over W (X, £) compatible with
its topology. O

Remark 5.3. Note that B4 = Clyy(x r)A and BANX = Aforeach A eT €T,
and hence A(T')x =T.

Lemma 5.4. Let (X,T) be a half complete Ty GF-space. Then X = G(X)
(recall Remark 3.3).

Proof. Let x € X and suppose that there exists (pr(yr)) € I'&n{GF :T eT}
such that pr(yr) <r pr(z) for all T’ € T'. Since X is half complete, by Lemma
5.1 there exists y € X such that pr(y) <r pr(yr) <r pr(z), and hence we have
that © € Ur(y) for each T' € T, and since X is Ty, it follows that z = y, and
hence pr(yr) = pr(z) for all T' € T'. Therefore p(x) € G(X).

Conversely, let (pr(zr)) € G(X). Since X is half complete then there exists
x € X such that pr(z) <r pr(zr) for each T € T', and since (pr(zr)) € G(X)
it follows that pr(zr) = pr(z) for each T € T, whence (pr(zr)) € p(X). O

Theorem 5.5. Let T’ be o finite directed fractal structure over X such that the
induced quasi-uniformity is point symmetric. Then (G(X,T),Ug(r)) is quasi-
isomorphic to (W (X,T),Ua))-

Proof. First, let us prove that UZ(F)(}') NX #@.

Uray(F) =({{Bae AT): Ae F;AeTH\ | J{Ba€ A(T): A¢ F; A €T},
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and hence ([{AeT:AecFleFand | J{AeT: A¢F} ¢ F, and then

(HAeT:AeFI\|J{AeT:A¢F} #£ o

M{AelT:AeFI\U{AdeTT:A¢gF} =0, then (({AeT:4e€ F} C
U{AeT:A¢F}andhence J{A €T : A¢ F} € F). Let

ze({Ael:AeF}\|{AeT:A¢ 7}

Then Fy € U () (F) (where Fy is the L-ultrafilter generated by ).

Let gr : Gr — Ga(r) be defined by gr (Uf(z)) = Uxm (Fz)- Let see that gr
is a poset isomorphism.

Note first that given A € I' it holds that F, € B4 if and only if A € F, or
equivalently y € A. Then

y € Ur(z) if and only if z € Up ' (y) = [ {{A €T : y € A},

or what is the same, F, € (|{Ba € A(l') : Fy, € By : A € T}, that is,
Fy € Uaqr)(Fz). From this equivalence we can deduce that gr is well defined,
injective and order-preserving. Since we have proved that UZ(F) (FyNX # o,
then it is clear that gr is surjective. Therefore gr is a poset isomorphism.
Moreover, given I') A € T' with A << T it holds that

éar 0 ga(Uj (7)) = ¢ar (Ua(a)(Fz))
= UA(F) (fz)
= gr(Ur (2))
= gr o ¢ar (Ux (2)),
and hence @ar o gy = gr o ¢ar for each A << T.

Then we have that im{Grp : I € T} = lim{Ga(r) : ' € T'}. Now, since
G(X,T) and W(X,T') are compact it follows by Lemma 5.4 that G(X,T) (resp.
W(X,I)) is the set of closed point of @{GF :T € T'} (resp. @{GA(F) :T e
T}.

})Since Ug(r) (resp. Ua(ry) is the transitive quasi-uniformity induced by @{Gr :
' e T'} (resp. @{GA(F) : T € T}), then (G(X,T),Ugr)) is quasi-isomorphic
to (W(X,T'),Ua(r)), what proves the result. O

6. STONE-CECH COMPACTIFICATION AS A GF-COMPACTIFICATION

Next, we are going to consider certain directed fractal structures which in-
duced quasi-uniformities are the Pervin quasi-uniformity and the finest transi-
tive quasi-uniformity.

Definition 6.1. Let T be a covering of a topological space X. We say that T is
compatible with the topology of X (or simply compatible) if Ur(z) = X \U{4 €
T:xz¢ A} is open for all z € X.

If T is a compatible covering, we will denote

Ur ={(z,y) € X x X :y € Ur(z)}.
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Note that Ur is an entourage of X.

Note that it is true that (Ur)~!(z) = ({{A € T : z € A} (see Proposition
2.3). Also note that if T' is a covering and Ur(z) is a neighborhood of z for
every © € X then Ur(xz) is open for every z € X, since if y € Ur(z) then
Ur(y) C Ur().

Proposition 6.2. Let T' be a covering of a topological space X. Then T is
compatible if and only if it is a closed closure-preserving covering.

Proof. If T is a closed closure-preserving covering, then it is clear that
Ur(z) =X\ {4 eT:z ¢ A}
is open for each £ € X and hence I is compatible.
On the other hand, let I" be a compatible covering, let {Ay : A € A} be
any subfamily of T" and let = € |J . Ax- Then Ur(z) NJycp Ax is nonempty,
so there exists Ao € A and y € A,, such that y € Ur(z) N A,,, but then

z € (Ur)t(y) =N{A €T :ye A}, and hence z € Ay,. Therefore [J,, Ax is
closed, and hence T is a closed closure-preserving covering. |

Let 'y, T's be two coverings of a space X. We denote
't ATy :{AQBZAG Fl;B EFQ}.
The proof of the following lemma is straightforward.

Lemma 6.3. Let Ty and T's be two compatible coverings of a topological space.
Then Ur,ar, = Ur, NUr, and hence I'1 ATy is a compatible covering.

Lemma 6.4. Let (X,U) be a quasi-uniform space, and let U € U such that
UoU=U. ThenTy = {U Y(x) : € X} is a compatible covering of X and
Ur, =U.

Proof. First, let us show that I'y is a closed covering. Let z € X, and let
y € U~1(z), then it is clear that there exists 2 € U(y) N U~(z), but then
it follows that x € U o U(y) = U(y), whence y € U~(x), and hence U~(z)
is closed for all z € X. Then I'yy is a closed covering. By Proposition 3.5 it
follows that Ur, = U, and hence I'yy is a compatible covering. d

Proposition 6.5. Let X be a topological space, and let T' be the directed fractal
structure consisting of all compatible coverings of X. Then T is the directed
fractal structure induced by the finest transitive quasi-uniformity (and hence
the quasi-uniformity induced by T' is the finest transitive quasi-uniformity of
X).

Proof. Let FT be the finest transitive quasi-uniformity of X, and let U € FT
with U o U = U. By Lemma 6.4 it follows that I'yy is a compatible covering of
X and that Ur, =U. Then I'r7 CT.

By Lemma 6.3 it follows that 'y ATy € T for each T';, Ty € T and it is clear
that T'y AT << T'1,I's, and hence T is a base of a directed fractal structure
over X. Let I'y, I's be coverings such that I'y is compatible and T';y << Ts.
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Then it is easy to check that Ur, C Ur,, and hence it follows that I's is a
compatible covering. Therefore T is a directed fractal structure over X.

Let Ur be the quasi-uniformity induced by I', then we have proved that
U € Ur whenever U € FT, and therefore 7T C Ur. On the other hand, it is
clear that Ur is transitive, whence FT is finest than Ur, and hence FT = Ur.

Since FT = Ur it follows that T'y,. = T'z7. By Corollary 3.6 we have that
I'CTy. =Tx7rand hence I' =T x7. O

Proposition 6.6. Let T be the finite directed fractal structure consisting of all
compatible finite coverings of X. Then I is the quasi-uniformity induced by
the Pervin quasi-uniformity of X (and hence the quasi-uniformity induced by
T is the Pervin quasi-uniformity).

Proof. Let P be the finest transitive quasi-uniformity of X, and let U € P with
UoU =U. By Lemma 6.4 it follows that I'y is a compatible covering of X
and that Ur, = U. By Proposition 3.9 I'y is finite since U is totally bounded.
Then I'p CT.

By Lemma 6.3 it follows that I'y ATy € T for each I';,I's € T' and it is clear
that I'y ATy << T'1,T'5, and hence T is a base of a directed fractal structure
over X. Let I'y, I's be coverings such that I'; is compatible and finite and
'y << T'3. Then it is easy to check that Ur, C Ur,, and hence it follows that
Iy is a compatible covering. Note that it is also finite. Therefore T is a finite
directed fractal structure over X.

By Proposition 3.9, it follows that Ur is totally bounded. Since the Pervin
quasi-uniformity is the finest totally bounded transitive quasi-uniformity of X
and P C Ur, then it follows that P = Ur.

Since P = Ur it follows that I'y,. = I'p. By Corollary 3.6 we have that
I'CTy.=Tp and hence I' =T'p. O

We denote by I'p the directed fractal structure induced by the Pervin quasi-
uniformity, which by Proposition 6.6 is the finite directed fractal structure
consisting of all finite closed coverings of X (note that a finite covering is
compatible if and only if it is closed).

Lemma 6.7. Let X be a topological space. Then Ly, is the family of closed
sets of X.

Proof. Let F be a closed subspace of X, and let I' = {F, X \ F°}, then it is
clear that I' € I'p and hence F € Lr,. O

From the previous lemma, the proof of the following theorem is straightfor-
ward. This theorem allow us to introduce the Stone-Cech compactification as
a GF-compactification.

Theorem 6.8. Let X be a topological space. Then G(X,T'p) is the Stone-Cech
compactification of X if and only if X is normal.

Finally, we obtain the Stone-Cech compactification of any Tychonoff space
X as a GF-compactification.
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Theorem 6.9. Let X be a Tychonoff space, and let T z be the family of all finite
covering by zero-sets. ThenI'z is a finite starbase directed fractal structure and
G(X,Tz) is the Stone-Cech compactification of X .

Proof. Let z € X and U be an open set containing z, then there exists a
continuous map f : X — [0,1] with f(z) C {0} and f(X \U) C {1}. Let
F = f71(0,1]) and V = f=1([0, 4[). Then it is clear that z € V C F C U,
and hence I'; = {F, X \ V} is a finite covering by zero-sets, so I'; € T'z. It is
also clear that St(z,I'1) = F CU.

On the other hand, if 'y, T's € Tz then it is clear that Ty ATy € T'z (note that
intersection and union of zero-sets is a zero-set), and since I'y ATy << Ty,
it follows that I' 7 is a base of a directed fractal structure over X. If I’y << T’y
with Ty € T'z then it is easy to check that I'y € T'z, and hence T'z is a finite
starbase directed fractal structure over X.

Finally, since Lr, is the family of zero-sets of X, then it follows that
W(X,Lr,) is the Stone-Cech compactification of X, and by Theorem 5.5 it
follows that G(X,T'z) is the Stone-Cech compactification of X (note that the
quasi-uniformity induced by T'z is locally symmetric by Proposition 3.9). O
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