@ Appl. Gen. Topol. 23, no. 1 (2022), 145-156 doi:10.4995/agt.2022.15571 © AGT, UPV, 2022 Common new fixed point results on b-cone Banach spaces over Banach algebras Hojjat Afshari a , Hadi Shojaat b and Andreea Fulga c a Department of Mathematics, Faculty of Sciences, University of Bonab, Bonab, Iran (hojat.afshari@yahoo.com) b Department of Mathematics, Farhangian University, Qazvin, Iran. (hadishojaat@yahoo.com) c Department of Mathematics and Computer Sciences, Transilvania University of Brasov, Brasov, Romania (afulga@unitbv.ro) Communicated by E. Karapinar Abstract Recently Zhu and Zhai studied the concepts of cone b-norm and cone b- Banach space as generalizations of cone b-metric spaces and they gave a definition of φ-operator and obtained some new fixed point theorems in cone b-Banach spaces over Banach algebras by using φ-operator. In this paper we propose a notion of quasi-cone over Banach algebras, then by utilizing some new conditions and following their work with introducing two mappings T and S we improve the fixed point theorems to the common fixed point theorems. An example is given to illustrate the usability of the obtained results. 2020 MSC: 47H10; 54H25; 55M20. Keywords: common fixed point; φ-operator; cone b-norm; cone b-Banach space. 1. Introduction The notion of b-metric was proposed by Czerwik [12, 13] to generalize the concept of distance. The analog of the famous Banach fixed point theorem was proved by Czerwik in the frame of complete b-metric spaces, see also [9, 10, 11]. In [19] E. Karapinar generalized some conclusions on the cone Banach space, Received 06 May 2021 – Accepted 27 September 2021 http://dx.doi.org/10.4995/agt.2022.15571 https://orcid.org/0000-0003-1149-4336 https://orcid.org/0000-0002-6838-072X https://orcid.org/0000-0002-6689-0355 H. Afshari, H. Shojaat and A. Fulga in the literature [2] and obtained the existence results of fixed points for self- mappings. Also, the cone metric space over Banach algebra, proposed by Liu and Xu (see [23]) and they considered some fixed point results on such new space. In 2001 Hussain and Shah [17] introduced the notation of cone b-metric space. Many researchers continued the work of Hussain and Shah, and proved some fixed point theorems and common fixed point theorems for multiple op- erators on these new spaces, and also used them to investigate the existence of the solutions of fractional integral equations (see [3, 5, 4, 6, 8, 14, 15, 16, 18, 24, 25, 27, 28, 26, 20, 21]). Recently Zhu and Zhai [30] studied the concepts of cone b-norm and cone b- Banach space as generalizations of cone b-metric spaces. Also they introduced the operator φ and obtained some new fixed point theorems in cone b-Banach spaces over Banach space utilizing the φ-operator. In this paper by introducing a notion of quasi-cone over Banach space and also with applying different conditions we examine the existence of some common fixed points of two self-mappings S and T that has led to the development of similar results in the literature. 2. Preliminaries Let (E,‖ · ‖) be a real Banach space, P ⊂ E a cone and θ be the zero of E, also there is a partial ordering ≤ such that ξ ≤ ζ iff ζ − ξ ∈ P. Write ξ � ζ for ζ − ξ ∈ intP, where intP is the interior set of P. We say that P is normal if there exists N > 0 such that θ ≤ ξ ≤ ζ implies ‖ ξ ‖≤ N ‖ ζ ‖, for ξ,ζ ∈ E. P is called to be solid if intP 6= ∅. Definition 2.1 (see [17]). Let X 6= ∅ and s ≥ 1, a mapping % : X × X → E is a cone b-metric if; (i ) θ < %(ξ,ζ) with ξ 6= ζ and %(ξ,ζ) = θ iff ξ = ζ; (ii ) %(ξ,ζ) = %(ζ,ξ); (iii ) %(ξ,ζ) ≤ s[%(ξ,η) + %(η,ζ)], for all ξ,ζ,η ∈ X. The pair (X,%) is said a cone b-metric space, in short, CBMS. Lemma 2.2 (see [17]). If (X,%) is a CBMS. Then; (p1) If ξ � ζ and ζ � η, then ξ � η. (p2) If ξ � ζ and ζ � η, then ξ � η. (p3) If θ ≤ ξ � c for c ∈ intP, then ξ = θ. (p4) If c ∈ intP, θ ≤ ξn and ξn → θ, then there exists n0 such that ξn � c for n > n0. (p5) Suppose θ � c, if θ ≤ %(ξn,ξ) ≤ ζn and ζn → θ, then eventually %(ξn,ξ) � c, where ξ ∈ X and {ξn}n≥1 is a sequence in X. (p6) If θ ≤ ξn ≤ ζn and ξn → ξ, ζn → ζ, then ξ ≤ ζ, for each cone P. (p7) If ξ ≤ λξ where ξ ∈ P and 0 ≤ λ < 1, then ξ = θ. Definition 2.3 (see [19]). Let X be a vector space over R. For a cone P ⊂ E and a mapping ‖ · ‖E: X → E if we have; © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 146 Common new fixed point results on b-cone Banach spaces over Banach algebras (i ) ‖ ξ ‖E≥ θ for ξ ∈ X and ‖ ξ ‖E= θ iff ξ = θ; (ii ) ‖ ξ + ζ ‖E≤‖ ξ ‖E + ‖ ζ ‖E for ξ,ζ ∈ X; (iii )‖ kξ ‖E=| k |‖ ξ ‖E for k ∈ R. Then ‖ · ‖E is said a cone norm on X, and (X,‖ · ‖E) is said a cone normed space (CNS). If we set %(ξ,ζ) =‖ ξ − ζ ‖E, then every CNS is a CMS. Definition 2.4 (see [19]). Let 1 ≤ s ≤ 2, X be a vector space over R, cone P ⊂ E. If ‖ · ‖P: X → E satisfies; (i ) ‖ ξ ‖P≥ θ for ξ ∈ X and ‖ ξ ‖P= θ iff ξ = θ; (ii ) ‖ ξ − ζ ‖P=‖ ζ − ξ ‖P for ξ,ζ ∈ X; (iii ) ‖ ξ + ζ ‖P≤ s[‖ ξ ‖P + ‖ ζ ‖P] for ξ,ζ ∈ X; (i v)‖ kξ ‖P=| k |s‖ ξ ‖P for k ∈ R. Then we call ‖ · ‖P a cone-norm on X, and (X,‖ · ‖P), we call it a cone-normed space (CNS). Obviously, each CNS is a CMS. In fact, we only need to set %(ξ,ζ) =‖ ξ − ζ ‖P. Definition 2.5 (see [30]). Suppose that (X,‖ · ‖P) is a cone b-normed space, P ⊂ E is a solid cone, ξ ∈ X and {ξn}n≥1 is a sequence in X. Then; (i ) we say that {ξn}n≥1 converges to ξ if for c ∈ E with θ � c, there is a natural number N satisfying ‖ ξn − ξ ‖P� c for n ≥ N. We denote lim n→∞ ξn = ξ or ξn → ξ; (ii ) we say that {ξn}n≥1 is a Cauchy if for c ∈ E with θ � c, there exists a natural number N satisfying ‖ ξn − ξm ‖P� c for all n,m ≥ N; (iii ) we say that (X,‖ · ‖P) is complete if every Cauchy is convergent. Lemma 2.6 (see [30]). Suppose (X,‖ · ‖P) is a cone b-normed space, P is a solid cone, ξ ∈ X and {ξn}n≥1 is a sequence in X. Then the following conclu- sions hold: (i ) ‖ ξn − ξ ‖P→ θ(n →∞) iff {ξn} converges to ξ. (ii )‖ ξn − ξm ‖P→ θ(n,m →∞) iff {ξn} is a Cauchy. Lemma 2.7 ([29]). Suppose (E,‖ · ‖) is a real Banach space and P is a normal cone in E, then there is an equivalent norm ‖ · ‖1, which satisfies θ ≤ ξ ≤ ζ =⇒‖ ξ ‖1≤‖ ζ ‖1, for ξ,ζ ∈ E, that is, norm ‖ · ‖1 is monotonous. Remark 2.8. Suppose E is a linear space, ‖ · ‖1 and ‖ · ‖2 are two given norms in E, we say that ‖ · ‖2 is stronger than ‖ · ‖1 if ‖ ξn ‖2→ 0 =⇒‖ ξn ‖1→ 0 (n → ∞). If ‖ · ‖2 is stronger than ‖ · ‖1, and ‖ · ‖1 is stronger than ‖ · ‖2, then ‖ · ‖1 is equivalent ‖ · ‖2. Definition 2.9 ([29, 7]). Let E be a real Banach algebra, that is, for ξ,ζ,η ∈ E, a ∈ R, (i ) ξ(ζη) = (ξζ)η; (ii ) ξ(ζ + η) = ξζ + ξη, (ξ + ζ)η = ξη + ζη; (iii ) a(ξζ) = (aξ)ζ = (aζ)ξ; (i v) ‖ ξζ ‖≤‖ ξ ‖‖ ζ ‖. If Banach algebra E with unit element e, such that ξe = eξ = ξ for all ξ ∈ E, then ‖ e ‖= 1. If every non-zero element of E has an inverse element in E, then E is called a divisible Banach algebra. © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 147 H. Afshari, H. Shojaat and A. Fulga Definition 2.10 ([7]). Let E be a Banach algebra with unit element e and P ⊆ E be a cone. P is called algebra cone if e ∈ P and for each ξ,ζ ∈ P, ξζ ∈ P. In our following discussions, ξ = (X,‖ · ‖P) is a cone b-Banach space, P is a solid cone and S is a operator defined on D of X. Let E := (E,‖ · ‖) be a divisible Banach algebra with unit element e. Let PE be a normal algebra cone in E with a normal constant N. Definition 2.11. Let (E,‖ · ‖) be a divisible Banach algebra. PE is a normal algebra cone in E. We call the mapping φ : PE → PE is a φ-operator if it satisfies (i ) φ is an increasing operator; (ii ) φ is a continuous bijection and has an inverse mapping φ−1 which is also continuous and increasing; (iii ) φ(ξ + ζ) ≤ φ(ξ) + φ(ζ) for all ξ,ζ ∈ PE; (i v) φ(ξζ) = φ(ξ)φ(ζ) for all ξ,ζ ∈ PE. Remark 2.12. By Definition 2.11, the part of (iii ), we can get φ−1(ξ)+φ−1(ζ) ≤ φ−1(ξ + ζ) for all ξ,ζ ∈ PE. In fact, note that φ(ξ + ζ) ≤ φ(ξ) + φ(ζ) for all ξ,ζ ∈ PE and φ−1 is also a continuous and increasing operator, then φ−1(φ(ξ + ζ)) ≤ φ−1(φ(ξ) + φ(ζ)), which yields that ξ + ζ ≤ φ−1(φ(ξ) + φ(ζ)). Hence, φ−1(φ(ξ)) + φ−1(φ(ζ)) ≤ φ−1(φ(ξ) + φ(ζ)). Since φ : PE → PE is a continuous bijection, thus φ−1(ξ)+φ−1(ζ) ≤ φ−1(ξ+ζ), for all ξ,ζ ∈ PE. Remark 2.13. By Definition 2.11, the part of (i v), we can obtain φ−1(ξζ) = φ−1(ξ)φ−1(ζ), for all ξ,ζ ∈ PE. Indeed, from φ(ξζ) = φ(ξ)φ(ζ) for all ξ,ζ ∈ PE and φ−1 : PE → PE is also a continuous, we get φ−1(φ(ξζ)) = φ−1(φ(ξ)φ(ζ)), which yields that ξζ = φ−1(φ(ξ)φ(ζ)). Then φ−1(φ(ξ))φ−1(φ(ζ)) = φ−1(φ(ξ)φ(ζ)). Thanks to that φ : PE → PE is a continuous bijection, φ−1(ξζ) = φ−1(ξ)φ−1(ζ), for all ξ,ζ ∈ PE. Remark 2.14. For example, let E = R, a divisible Banach algebra, PE = {ξ ∈ E | ξ ≥ 0} be a normal cone in E, suppose φ : PE → PE, defined by φ(ξ) = ξ 1 5 and then φ−1(ξ) = ξ5, for ξ ∈ PE. We can prove it also satisfies the above conditions. © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 148 Common new fixed point results on b-cone Banach spaces over Banach algebras 3. Main results Theorem 3.1. Let X be a cone-b-Banach space with the coefficient 1 ≤ s ≤ 2, E1 and E2 be divisible Banach space with identity elements e1 and e2, also PE1 and PE2 be normal algebra cones in E1 and E2 (respectively). If D and D ′ ⊂ X with D ∩ D′ 6= ∅ are closed and convex, also φ : PE1 ∪ PE2 → PE1 ∪ PE2 is φ-operator and T : D → D′, S : D′ → D satisfying the followings φ(%(η,Sξ′)) + φ(%(η′,T ξ)) ≤ k1φ(%(η,ξ)),(3.1) φ(%(ξ′,T η)) + φ(%(ξ,Sη′)) ≤ k2φ(%(ξ′,η′)), for all ξ,η ∈ D, ξ′,η′ ∈ D′, where φ(2se1) ≤ k1 < φ(2s+1e1) , φ(2se2) ≤ k2 < φ(2s+1e2) in PE1 and PE2 (respectively). Then S and T have a common fixed point in D ∩ D′. Proof. Let ξ1 ∈ D, η1 ∈ D′ be arbitrary. We introduce two sequences {ξn},{ηn}∈ D ∪ D′, defined by ξ2 = η1+T ξ1 2 ∈ D′, η2 = ξ1+Sη1 2 ∈ D, ξ3 = η2+Sξ2 2 ∈ D′, η3 = ξ2+Tη2 2 ∈ D, ... ξ2n = η2n−1+T ξ2n−1 2 , n = 1, 2, · · · , η2n = ξ2n−1+Sη2n−1 2 , n = 1, 2, · · · , ξ2n +1 = η2n +Sξ2n 2 , n = 1, 2, · · · , η2n +1 = ξ2n +Tη2n 2 , n = 1, 2, · · · . We get η2n −Sξ2n = 2(η2n − ( η2n + Sξ2n 2 )) = 2(η2n − ξ2n +1), ξ2n −T η2n = 2(ξ2n − ( ξ2n + T η2n 2 )) = 2(ξ2n −η2n +1), η2n +1 −T ξ2n +1 = 2(η2n +1 − ( η2n +1 + T ξ2n +1 2 )) = 2(η2n +1 − ξ2n +2), ξ2n +1 −Sη2n +1 = 2(ξ2n +1 − ( ξ2n +1 + Sη2n +1 2 )) = 2(ξ2n +1 −η2n +2), which is equivalent to %(η2n,Sξ2n ) = ‖ η2n −Sξ2n ‖PE1 = ‖ 2(η2n − ξ2n +1) ‖PE1 = 2s ‖ η2n − ξ2n +1 ‖PE1 = 2s%(η2n,ξ2n +1), © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 149 H. Afshari, H. Shojaat and A. Fulga %(ξ2n,T η2n ) = ‖ ξ2n −T η2n ‖PE2 = ‖ 2(ξ2n −η2n +1) ‖PE2 = 2s ‖ ξ2n −η2n +1 ‖PE2 = 2s%(ξ2n,η2n +1) and %(η2n +1,T ξ2n +1) = ‖ η2n +1 −T ξ2n +1 ‖PE2(3.2) = ‖ 2(η2n +1 − ξ2n +2) ‖PE2 = 2s ‖ η2n +1 − ξ2n +2 ‖PE2 = 2s%(η2n +1,ξ2n +2), %(ξ2n +1,Sη2n +1) = ‖ ξ2n +1 −Sη2n +1 ‖PE1(3.3) = ‖ 2(ξ2n +1 −η2n +2) ‖PE1 = 2s ‖ ξ2n +1 −η2n +2 ‖PE1 = 2s%(ξ2n +1,η2n +2). Substituting ξ′ = ξ2n,ξ = ξ2n +1 and η = η2n,η ′ = η2n +1 in (3.1), we can obtain φ(%(η2n,Sξ2n )) + φ(%(η2n +1,T ξ2n +1)) ≤ k1φ(%(η2n,ξ2n +1)). We get φ(2s%(η2n,ξ2n +1)) + φ(2 s%(η2n +1,ξ2n +2)) ≤ k1φ(%(η2n,ξ2n +1)). According to the condition (iii ) of φ-operator, φ(2s(%(η2n,ξ2n +1) + %(η2n +1,ξ2n +2))) ≤ k1φ(%(η2n,ξ2n +1)). Remark 2.13 and the property of φ−1 operator, we can get 2s(%(η2n,ξ2n +1) + %(η2n +1,ξ2n +2)) ≤ φ−1(k1)%(η2n,ξ2n +1), by simplifying, we get %(η2n +1,ξ2n +2) ≤ ( φ−1(k1) 2s −e1)%(η2n,ξ2n +1). Substituting ξ′ = ξ2n,ξ = ξ2n +1 and η = η2n,η ′ = η2n +1 in (3.1). Then one can obtain φ(%(ξ2n,T η2n )) + φ(%(ξ2n +1,Sη2n +1)) ≤ k2φ(%(ξ2n,η2n +1)). By (3.2) and (3.3) we get φ(2s%(ξ2n,η2n +1)) + φ(2 s%(ξ2n +1,η2n +2)) ≤ k2φ(%(ξ2n,η2n +1)). According to the condition (iii ) of φ-operator, φ(2s(%(ξ2n,η2n +1) + %(ξ2n +1,η2n +2))) ≤ k2φ(%(ξ2n,η2n +1)). By Remark 2.13 and the property of φ−1 operator, we can get 2s(%(ξ2n,η2n +1) + %(ξ2n +1,η2n +2)) ≤ φ−1(k2)%(ξ2n,η2n +1), © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 150 Common new fixed point results on b-cone Banach spaces over Banach algebras by simplifying, we get %(ξ2n +1,η2n +2) ≤ ( φ−1(k2) 2s −e2)%(ξ2n,η2n +1). Thus, %(η2n +1,ξ2n +2) ≤ k′1%(η2n,ξ2n +1) and %(ξ2n +1,η2n +2) ≤ k′2%(ξ2n,η2n +1), where k′1 = φ−1(k1) 2s −e1 and k′2 = φ−1(k2) 2s −e2. Repeating this relations, we get %(η2n +1,ξ2n +2) ≤ k′2 n k′1 n %(η1,ξ2),(3.4) %(ξ2n +1,η2n +2) ≤ k′2 n k′1 n %(ξ1,η2). For any m ≥ 1,p ≥ 1, we have one of the following two cases: (i ) m + p = 2r − 1, r ≥ 1,r ∈ N, then we get %(ηm+p,ξm) ≤ s[%(ηm+p,ξm+p−1) + %(ξm+p−1,ξm)] ≤ s%(ηm+p,ξm+p−1) + s2[%(ξm+p−1,ηm+p−2) + %(ηm+p−2,ξm)] ≤ s%(ηm+p,ξm+p−1) + s2%(ξm+p−1,ηm+p−2) + s3%(ηm+p−2,ξm+p−3) + · · · +sp−1%(ξm+2,ηm+1) + s p−1%(ηm+1,ξm) ≤ sk′2 r−2 k′1 r−1 %(η2,ξ1) + s 2k′2 r−3 k′1 r−2 %(ξ2,η1) + s 3k′2 r−4 k′1 r−3 %(η2,ξ1) + · · · +sp−1k′2 2r−p−1 k′1 2r−p %(ξ2,η1) + s p−1k′2 2r−p−2 k′1 2r−p−1 %(η2,ξ1) = (sk′2 r−2 k′1 r−1 + s3k′2 r−4 k′1 r−3 + · · · + sp−1k′2 2r−p−2 k′1 2r−p−1 )%(η2,ξ1) +(s2k′2 r−3 k′1 r−2 + · · · + sp−1k′2 2r−p−1 k′1 2r−p )%(ξ2,η1) = sk′2 r−2 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(η2,ξ1) + s2k′2 r−3 k′1 r−2 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1). (ii ) m + p = 2r, r ≥ 1,r ∈ N, then we get %(ξm+p,ηm) ≤ s[%(ξm+p,ηm+p−1) + %(ηm+p−1,ηm)] ≤ s%(ξm+p,ηm+p−1) + s2[%(ηm+p−1,ξm+p−2) + %(ξm+p−2,ηm)] ≤ s%(ξm+p,ηm+p−1) + s2%(ηm+p−1,ξm+p−2) + s3%(ξm+p−2,ηm+p−3) + · · · +sp−1%(ηm+2,ξm+1) + s p−1%(ξm+1,ηm) ≤ sk′2 r−1 k′1 r−1 %(ξ2,η1) + s 2k′2 r−2 k′1 r−2 %(η2,ξ1) + s 3k′2 r−3 k′1 r−3 %(ξ2,η1) + · · · +sp−1k′2 2r−p k′1 2r−p %(η2,ξ1) + s p−1k′2 2r−p−1 k′1 2r−p−1 %(ξ2,η1) © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 151 H. Afshari, H. Shojaat and A. Fulga = (sk′2 r−1 k′1 r−1 + s3k′2 r−3 k′1 r−3 + · · · + sp−1k′2 2r−p−1 k′1 2r−p−1 )%(ξ2,η1) +(s2k′2 r−2 k′1 r−2 + · · · + sp−1k′2 2r−p k′1 2r−p )%(η2,ξ1) = sk′2 r−1 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1) + s2k′2 r−2 k′1 r−2 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e1 − s 2 (k′2k ′ 1) 2 %(η2,ξ1). Since φ(2se1) ≤ k′2 < φ(2s+1e1) in PE1 and φ(2se2) ≤ k′1 < φ(2s+1e2) in PE2 with 1 ≤ s ≤ 2, we know θ2 ≤ k′2 < e1, θ1 ≤ k′1 < e2, thus θ2 < se2 −k′2 ≤ se2, θ1 < se1 −k′1 ≤ se1. Further, ‖ k′2 r−p −θ2 ‖=‖ k′2 r−p ‖≤‖ k′2 ‖ r−p, ‖ k′1 r−p −θ1 ‖=‖ k′1 r−p ‖≤‖ k′1 ‖ r−p,(3.5) since θ2 ≤ k′2 < e2, θ1 ≤ k′1 < e1 and PE is a normal cone in E, by Lemma 2.7 we know there is an equivalent norm ‖ · ‖1 and thus 0 ≤‖ k′2 ‖1<‖ e2 ‖1= 1,(3.6) 0 ≤‖ k′1 ‖1<‖ e1 ‖1= 1. By (3.5) and (3.6), we get ‖ k′2 r−p −θ2 ‖1≤‖ k′2 ‖ r−p 1 → 0((r − p) →∞), ‖ k′1 r−p −θ1 ‖1≤‖ k′1 ‖ r−p 1 → 0((r − p) →∞).(3.7) From Remark (2.8) and (3.7), ‖ k′2 r−p −θ2 ‖≤‖ k′2 ‖ r−p→ 0((r − p) →∞), ‖ k′1 r−p −θ1 ‖≤‖ k′1 ‖ r−p→ 0((r − p) →∞). Thus, lim (r−p)→∞ k′2 (r−p) → θ2, lim (r−p)→∞ k′1 (r−p) → θ1. (3.8) Let θ1,θ2 � c be given. By (3.8), sk′2 r−1 k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(η2,ξ1)+ s2k′2 r−2 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1) → θ1, sk′2 r k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1)+ s2k′2 r−1 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e1 − s 2 (k′2k ′ 1) 2 %(η2,ξ1) → θ2, © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 152 Common new fixed point results on b-cone Banach spaces over Banach algebras as (r − p) → ∞. Making full use of Lemma 2.2 (p4), we find m0 ∈ N, such that sk′2 r−1 k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(η2,ξ1)+ s2k′2 r−2 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1) � c, sk′2 r k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1)+ s2k′2 r−1 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e1 − s 2 (k′2k ′ 1) 2 %(η2,ξ1) � c, for each m > m0. Thus sk′2 r−1 k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(η2,ξ1)+ s2k′2 r−2 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1) � c, sk′2 r k′1 r (e1e2 − s 2 (k′2k ′ 1) 2 ) p+1 2 e1e2 − s 2 (k′2k ′ 1) 2 %(ξ2,η1)+ s2k′2 r−1 k′1 r−1 (e1e2 − s 2 (k′2k ′ 1) 2 ) p−1 2 e1e1 − s 2 (k′2k ′ 1) 2 %(η2,ξ1) � c, for m > m0 and each p. Considering the upper relations we can get; %(ξm+p,ξm) ≤ s(%(ξm+p,ηm) + %(ηm + ξm)), %(ηm+p,ηm) ≤ s(%(ηm+p,ξm) + %(ξm + ηm)). Now by Lemma ?? part (p1), we can claim that {ξn} and {ηn} are Cauchy sequences in D. Note that D and D′ are closed and convex and {ξ2n}, {η2n} converges to some ζ,ζ′, that is, ξ2n,η2n → ζ,ζ′ ∈ D ∪ D′. Regarding the inequality %(ζ,Sη2n +1) ≤ s[%(ζ,ξ2n +1) + %(ξ2n +1,Sη2n +1)], %(ζ′,T ξ2n +1) ≤ s[%(ζ′,η2n +1) + %(η2n +1,T ξ2n +1)], and from (3.3), we obtain %(ζ,Sη2n +1) ≤ s[%(ζ,ξ2n +1) + 2s%(ξ2n +1,η2n +2)],(3.8) %(ζ′,T ξ2n +1) ≤ s[%(ζ′,η2n +1) + 2s%(η2n +1,ξ2n +2)], let n → ∞, then Sη2n +1 → ζ, T ξ2n +1 → ζ. Finally, replacing η2n +1 = ζ in (3.8). Then one can obtain φ(%(ζ,Sζ′)) ≤ s[%(ζ,ξ2n +1) + 2s%(ξ2n +1,η2n +2)], and if ζ = ξ2n +1 φ(%(ζ′,T ζ)) ≤ s[%(ζ′,η2n +1) + 2s%(η2n +1,ξ2n +2)], and by making use of the property iv of φ-operator, we obtain, φ(e1) = e1,φ(e2) = e2. So we get φ(%(ζ,Sζ′) = e1, φ(%(ζ′,T ζ) = e2. Therefore as n → ∞, we can obtain Sζ′ = ζ,T ζ = ζ′. Hence considering ζ = ζ′, we conclude ζ = Tζ = Sζ. � © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 153 H. Afshari, H. Shojaat and A. Fulga Corollary 3.2. Let X be a cone-b-Banach space with the coefficient 1 ≤ s ≤ 2, E be a divisible Banach algebra with identity element e, and also PE be a normal algebra cone in E. If D ⊂ X is closed and convex, φ : PE → PE is an φ-operator and S,T : D → D are mappings satisfying the conditions φ(%(η,Sξ)) + φ(%(η,T ξ)) ≤ kφ(%(η,ξ)),(3.9) φ(%(ξ,T η)) + φ(%(ξ,Sη)) ≤ kφ(%(ξ,η)), for all ξ,η ∈ D, where φ(2se) ≤ k < φ(2s+1e) in PE. Then S and T have a common fixed point in D. Proof. If in Theorem 3.1 we set, T = S and D = D′, considering the condition of (3.10) and by the proof similar to the proof of Theorem 3.1 we deduce the result. � Example 3.3. Let X = R2 and E = R2 endowed with partial ordered ξ = (ξ1,ξ2) ≤ ζ = (ζ1,ζ2) iff ξ1 ≤ ζ1,ξ2 ≤ ζ2. If P = {(ξ1,ξ2) ∈ E : ξ1 ≥ 0,ξ2 ≥ 0}, we define ‖ (ξ1,ξ2) ‖P= (| ξ1 |2, | ξ2 |2). Then (X,‖ · ‖P) is a cone b-Banach space with s = 2. For ξ = (ξ1,ξ2) and ζ = (ζ1,ζ2) we define; ξ.ζ = (ξ1ξ2,ζ1ζ2). By the the mentioned definition P is a Banach algebra and E := (E,‖ · ‖) is a divisible Banach algebra with unit element e = (1, 1), because ξe = eξ = ξ,‖e‖ = 1 and hence e is a multiplicative identity. If we put φ : P → P with φ(ξ = (ξ1,ξ2)) = ( √ ξ1, √ ξ2), then φ satisfies the conditions (i )-(i v) of Definition 3.4. Also we set; %(ξ,ζ) =‖ ξ − ζ ‖P= (| (ξ1 − ζ1 |2, | ξ2 − ζ2 |2),%(ξ,A) = inf{%(ξ,ζ) : ζ ∈ A} and Sξ = ξ 2 ,T ξ = ξ 2 4 . Now we define the region D as the following; D = {(ξn,ηn ) : |ηn− ξn 2 |+|ηn− ξn 2 4 | ≤ 2.8|ηn−ξn|, |ξn− ηn 2 |+|ξn− ηn 2 4 | ≤ 2.8|ξn−ηn|,n = 1, 2}. Obviously D is closed and convex. φ(%(η,Sξ)) + φ(%(η,T ξ)) ≤ φ(%(η, ξ 2 )) + φ(%(η, ξ 2 4 )) ≤ φ(|η1 − ξ12 | 2, |η2 − ξ22 | 2) + φ(|η1 − ξ1 2 4 |2, |η2 − ξ2 2 4 |2) = (|η1 − ξ12 |, |η2 − ξ2 2 |) + (|η1 − ξ1 2 4 |, |η2 − ξ2 2 4 |) = (|η1 − ξ12 | + |η1 − ξ1 2 4 |, |η2 − ξ22 | + |η2 − ξ2 2 4 |) ≤ (|η1 − ξ12 | + |η1 − ξ1 2 4 |, |η2 − ξ22 | + |η2 − ξ2 2 4 |), © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 154 Common new fixed point results on b-cone Banach spaces over Banach algebras also φ(%(ξ,T η)) + φ(%(ξ,Sη)) ≤ φ(%(ξ, η 2 4 )) + φ(%(ξ, η 2 )) ≤ φ(|ξ1 − η1 2 4 |2, |ξ2 − η2 2 4 |2) + φ(|ξ1 − η12 | 2, |ξ2 − η22 | 2) = (|ξ1 − η1 2 4 |, |ξ2 − η2 2 4 |) + (|ξ1 − η12 |, |ξ2 − η2 2 |) = (|ξ1 − η12 | + |ξ1 − η1 2 4 |, |ξ2 − η22 | + |ξ2 − η2 2 4 |) ≤ (|ξ1 − η12 | + |ξ1 − η1 2 4 |, |ξ2 − η22 | + |ξ2 − η2 2 4 |). Considering φ(2se) = φ(4, 4) = (2, 2) ≤ k < φ(2s+1e) = φ(8, 8) = (2 √ 2, 2 √ 2), we should have (|η1 − ξ12 | + |η1 − ξ1 2 4 |, |η2 − ξ22 | + |η2 − ξ2 2 4 |) ≤ (2.8, 2.8)(|η1 − ξ1|, |η2 − ξ2|) = (2.8|η1 − ξ1|, 2.8|η2 − ξ2|), (|ξ1 − η12 | + |ξ1 − η1 2 4 |, |ξ2 − η22 | + |ξ2 − η2 2 4 |) ≤ (2.8, 2.8)(|ξ1 −η1|, |ξ2 −η2|) = (2.8|ξ1 −η1|, 2.8|ξ2 −η2|). So according to the definition of region D the conditions of Corollary 3.2 are satisfied. Hence S and T have a common fixed point. Corollary 3.4. Let X be a cone-b-Banach space with the coefficient 1 ≤ s ≤ 2, E be a divisible Banach algebra with identity element e, and also PE be a normal algebra cone in E . If D ⊂ X is closed and convex, φ : PE → PE is an φ-operator and T : D → D is a mapping satisfying the condition φ(%(η,T η)) + φ(%(ξ,T ξ)) ≤ kφ(%(η,ξ)), for all ξ,η ∈ D, where φ(2se) ≤ k < φ(2s+1e) in PE. Then T has a fixed point in D. References [1] M. A. Alghamdi, S. Gulyaz-Ozyurt and E. Karapinar, A note on extended Z-contraction, Mathematics 8 (2020), Paper No. 195. [2] T. Abdeljawad, D. Turkoglu and M. Abuloha, Some theorems and examples of cone Banach spaces, J. Comput. Anal. Appl. 12, no. 4 (2010), 739–753. [3] H. Afshari, H. Aydi and E. Karapinar, On generalized α-ψ-Geraghty contractions on b-metric spaces, Georgian Math. J. 27 (2020), 9–21. [4] H. Afshari, Sh. Rezapour and N. Shahzad, Absolute retract of the common fixed points set of two multifunctions, Top. Method in Nonlinear Analysis 40 (2012), 42936. [5] H. Afshari, S. Kalantari and D. Baleanu, Solution of fractional differential equations via α − φ-Geraghty type mappings, Adv. Difference Equ. 2018, Paper No. 347. [6] H. Afshari, Solution of fractional differential equations in quasi-b-metric and b-metric- like spaces, Adv. Differ. Equ. 2018, Paper No. 285. © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 155 H. Afshari, H. Shojaat and A. Fulga [7] A. Ahmed and J. N. Salunke, Algebra cone generalized b-metric space over Banach algebra and fixed point theorems of generalized lipschitz mappings, Asian-Eur. J. Math. 11, no. 5 (2018), 1850068. [8] A. Amini-Harandi, Fixed point theory for quasi-contraction maps in b-metric spaces, Appl. Math. Lett. 24, no. 11 (2011), 1791–1794. [9] H. Aydi, E. Karapinar, M. F. Bota and S. Mitrovic, A fixed point theorem for set-valued quasi-contractions in b-metric spaces, Fixed Point Theory Appl. 2012, 2012:88. [10] H. Aydi, M.F. Bota, E. Karapinar and S. Moradi, A common fixed point for weak φ-contractions on b-metric spaces, Fixed Point Theory 13, no. 2 (2012), 337–346. [11] C. Chifu, E. Karapinar and G. Petrusel, Fixed point results in varepsilon-chainable complete b-metric spaces, Fixed Point Theory 21, no. 2 (2020), 453–464. [12] S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena. 46, no. 2 (1998), 263–276. [13] S. Czerwik, Contraction mappings in b-metric spaces. Acta Math. Inf. Univ. Ostrav. 1 (1993), 5–11. [14] A. Fulga, H. Afshari and H. Shojaat, Common fixed point theorems on quasi-cone metric space over a divisible Banach algebra, Adv. Differ. Equ. 2021, Paper No. 306. [15] Z. M. Fadail and A. G. B. Ahmad, Coupled coincidence point and common coupled fixed point results in cone b-metric spaces, Fixed Point Theory Appl. 2013, 2013:177. [16] H. P. Huang and S. Y. Xu, Fixed point theorems of contractive mappings in cone b- metric spaces and applications, Fixed Point Theory Appl. 2013, 2013:122. [17] N. Hussain and M. H. Shah, KKM mappings in cone b-metric spaces, Comput. Math. Appl. 62, no. 4 (2011), 1677–1684. [18] E. Karapinar and W.-S. Du, A note on b-cone metric and its related results: General- izations or equivalence?, Fixed Point Theory Appl. 2013, 2013:210. [19] E. Karapinar, Fixed point theorems in cone Banach spaces, Fixed Point Theory Appl. 2009, Art. ID 609281. [20] E. Karapinar, Couple fixed point theorems for nonlinear contractions in cone metric spaces, Computers and Mathematics With Applications 59, no. 12 (2010), 3656–3668. [21] E. Karapinar, Some nonunique fixed point theorems of Ciric type on cone metric spaces, Abstr. Appl. Anal. 2010, Art. ID 123094. [22] E. Karapinar and A. D. Turkoglu, Best approximations theorem for a couple in cone Banach space, Fixed Point Theory Appl. 2010, Art. ID 784578. [23] H. Liu and S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz mappings, Fixed Point Theory Appl. 2013, 2013:320. [24] X. Y. Lv and Y. Q. Feng, Some fixed point theorems for Reich type contraction in generalized metric spaces, J. Math. Anal. 9, no. 5 (2018), 80–88. [25] A. Petrusel, G. Petrusel and J. C. Yao, Fixed point and coincidence point theorems in b-metric spaces with applications, Appl. Anal. Discrete Math. 11 (2017), 199–215. [26] J. Mathuraiveerana and S. Mookiah, Common fixed point theorems in M-fuzzy cone metric spaces, Results in Nonlinear Analysis 4 (2021) no. 1, 33–46. [27] H. Shah, S. Simić, N. Hussain, Sretenović and A. Radenović, Common fixed points for occasionally weakly compatible pairs on cone metric type spaces, J. Comput. Anal. Appl. 14, no. 2 (2012), 290–297. [28] H. Shojaat, H. Afshari and M. S. Asgari, A new class of mixed monotone operators with concavity and applications to fractional differential equations , TWMS J. App. and Eng. Math. 11, no. 1 (2021), 122–133. [29] K. Yosida, Functional analysis, Beijing World Publishing Corporation, 1999. [30] X. Zhu and C. Zhai, Some extension results on cone b-metric spaces over Banach space via ϕ-operator, J. Anal. 29 (2021), 281–295. © AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 1 156