() @ Appl. Gen. Topol. 18, no. 2 (2017), 345-360doi:10.4995/agt.2017.7257 c© AGT, UPV, 2017 Convergence theorems for finding the split common null point in Banach spaces Suthep Suantai a, Kittipong Srisap b, Natthapong Naprang b, Manatsawin Mamat b, Vithoon Yundon b and Prasit Cholamjiak b a Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand (suthep.s.cmu.ac.th) b School of Science, University of Phayao, Phayao 56000, Thailand. (prasitch2008@yahoo.com) Communicated by E. A. Sánchez-Pérez Abstract In this paper, we introduce a new iterative scheme for solving the split common null point problem. We then prove the strong convergence theorem under suitable conditions. Finally, we give some numerical examples for supporting our main results. 2010 MSC: 47H04; 47H10; 54H25. Keywords: convergence theorem; split common null point problem; Banach space; bounded linear operator. 1. Introduction Let H1 and H2 be real Hilbert spaces and T : H1 → H2 a bounded linear operator (we denote A∗ by its adjoint) . Let C and Q be nonempty, closed and convex subsets of H1 and H2, respectively. The split feasibility problem is to find x ∈ C such that T x ∈ Q. In order to solve the split feasibility problem (SFP), Byrne [5] proposed the following iterative algorithm in the framework of Hilbert spaces: x1 ∈ C and (1.1) xn+1 = PC(xn − λT ∗(I − PQ)T xn), n ≥ 1, which is often called the CQ algorithm, where λ > 0, PC and PQ are the metric projections on C and Q, respectively. It was shown that the sequence Received 09 February 2017 – Accepted 04 May 2017 http://dx.doi.org/10.4995/agt.2017.7257 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak {xn} converges weakly to a solution of SFP. Since then several iterations have been invented for solving the SFP (see, for example, [2, 11, 13, 17]). Let A : H1 → 2 H1 and B : H2 → 2 H2 be set-valued mappings. Byrne et al. [6] considered the problem of finding a point z in H1 such that (1.2) z ∈ A−10 ∩ T −1(B−10), where the set of null points of A is defined by A−10 = {z ∈ H1 : 0 ∈ Az}. We know that A−10 is closed and convex. This problem is called the split common null point problem and includes the spit feasibility problem as special cases; see also [8]. In 1953, Mann [10] introduced the following iteration process. Let C be a nonempty , closed and convex subset of a Banach space E. A mapping T : C → C is called nonexpansive if (1.3) ‖T x − T y‖ ≤ ‖x − y‖ for all x, y ∈ C. We denote by F(T ) the fixed point set of T . For an initial point x1 ∈ C, an iteration process {xn} is defined recursively by (1.4) xn+1 = αnxn + (1 − αn)T xn, n ∈ N, where {αn} is a sequence in [0,1] and T is a nonexpansive mapping on C. In 1967, Halpern [7] defined an iteration process as follows: Take x0, x1 ∈ C arbitrarily and define {xn} recursively by (1.5) xn+1 = αnx0 + (1 − αn)T xn, n ∈ N, where {αn} is a sequence in [0, 1] and T is a nonexpansive mapping on C. A mapping f : C → C is said to be a contraction if there exists α ∈ (0, 1) such that (1.6) ‖f(x) − f(y)‖ ≤ α‖x − y‖, ∀x, y ∈ C. In 2000, Moudafi [12] introduced the following algorithm: For x1 ∈ C, define the sequence {xn} by (1.7) xn+1 = αnf(xn) + (1 − αn)T xn, n ∈ N, where {αn} ⊂ (0, 1) and T is a nonexpansive mapping. This method is called the viscosity approximation method. Let H be a Hilbert space and let F be a strictly convex, reflexive and smooth Banach space. Let JF be the duality mapping on F . Let C and D be nonempty, closed and convex subsets of H and F , respectively. Let PC and PD be the metric projections of H onto C and F onto D, respectively. Let T : H → F be a bounded linear operator such that T 6= 0 and let T ∗ be the adjoint operator of T . Suppose that C ∩ A−1D 6= ∅. In 2015, Alsulami and Takahashi [2] defined the following algorithm: For any x1 ∈ H, (1.8) xn+1 = βnxn + (1 − βn)PC(I − rT ∗ JF (T − PDT ))xn, n ∈ N, where {βn} ⊂ [0, 1] and r ∈ (0, ∞). It was proved that if (1.9) 0 < a ≤ βn ≤ b < 1 and 0 < r‖T ‖ 2 < 2 c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 346 Convergence theorems for finding the split common null point for some a, b ∈ R, then {xn} converges weakly to z0 ∈ C ∩ T −1D, where z0 = limn→∞ PC∩T −1Dxn. They introduced the following Halpern’s type iteration: For any x1 ∈ H, (1.10) xn+1 = βnxn + (1 − βn)(αnun + (1 − αn)PC(I − rT ∗ JF (I − PD)T )xn), n ∈ N, where r ∈ (0, ∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1). It was proved that if (1.11) 0 < r‖T ‖2 < 2, lim n→∞ αn = 0, (1.12) ∞ ∑ n=1 αn = ∞ and 0 < a ≤ βn ≤ b < 1 where a, b ∈ R. Then {xn} converges strongly to a point z0 = C ∩ A −1D, for some z0 = PC∩A−1Du. Recently, using the idea of Halpern’s iteration, Alofi et al. [1] proved the following strong convergence theorem for finding a solution of the split common null point problem in Banach spaces. Theorem 1.1. Let H be a Hilbert space and let F be a uniformly convex and smooth Banach space. Let JF be the duality mapping on F. Let A and B be maximal monotone operators of H into 2H and F into 2F ∗ such that A−10 6= ∅ and B−10 6= ∅, respectively. Let Jλ be the resolvent of A for λ > 0 and let Qµ be the metric resolvent of B for µ > 0. Let T : H → F be a bounded linear operator such that T 6= 0 and let T ∗ be the adjoint operator of T . Suppose that A−10 ∩ T −1(B−10) 6= ∅. Let {un} be a sequence in H such that un → u. Let x1 = x ∈ H and let {xn} ⊂ H be a sequence generated by xn+1 = βnxn + (1 − βn)(αnun + (1 − αn)Jλn (I − λnT ∗ JF (I − Qµn)T )xn) (1.13) for all n ∈ N, where {λn}, {µn} ⊂ (0, ∞), {αn} ⊂ (0, 1) and {βn} ⊂ (0, 1) satisfy the following conditions (1.14) 0 < a ≤ λn‖T ‖ 2 ≤ b < 2, 0 < k ≤ µn, 0 < c ≤ βn ≤ d < 1, (1.15) lim n→∞ αn = 0 and ∞ ∑ n=1 αn = ∞ for some a, b, c, d, k ∈ R. Then {xn} converges strongly to z0 ∈ A −10 ∩ T −1(B−10), where z0 = PA−10∩T −1(B−10)u. Motivated by the previous works, we introduce a new iterative scheme for solving the split common null point problem. We then prove the strong con- vergence theorem under suitable conditions. Finally, we give some numerical examples for supporting our main results. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 347 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak 2. Preliminaries and lemmas Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖, respectively. For x, y ∈ H and λ ∈ R, we know from [15] that (2.1) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉; (2.2) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2. Furthermore, for x, y, u, v ∈ H, (2.3) 2〈x − y, u − v〉 = ‖x − v‖2 + ‖y − u‖2 − ‖x − u‖2 − ‖y − v‖2. The nearest point projection of a nonempty, closed and convex set C is denoted by PC, that is, ‖x − PCx‖ ≤ ‖x − y‖ for all x ∈ H and y ∈ C. Such PC is called the metric projection of H onto C. We know the metric projection PC is firmly nonexpansive, i.e., (2.4) ‖PCx − PCy‖ 2 ≤ 〈PCx − PCy, x − y〉 for all x, y ∈ H. Moreover 〈x − PCx, y − PCx〉 ≤ 0 holds for all x ∈ H and y ∈ C; see [15]. Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined by δ(ǫ) = inf { 1 − ‖x + y‖ 2 : ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x − y‖ ≥ ǫ } (2.5) for every ǫ with 0 ≤ ǫ ≤ 2. A Banach space E is said to be uniformly convex if δ(ǫ) > 0. It is known that a Banach space E is uniformly convex if and only if for any two sequences {xn} and {yn} in E such that lim n→∞ ‖xn‖ = lim n→∞ ‖yn‖ = 1 and lim n→∞ ‖xn − yn‖ = 2,(2.6) limn→∞ ‖xn − yn‖ = 0 holds. A uniformly convex Banach space is strictly convex and reflexive. The duality mapping J from E into 2E ∗ is defined by J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}(2.7) for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be Gâteaux differentiable if for each x, y ∈ U, the limit (2.8) lim t→0 ‖x + ty‖ − ‖x‖ t exists. In this case, E is called smooth. We know that E is smooth if and only if J is a single-valued mapping of E into E∗. We also know that E is reflexive if and only if J is surjective, and E is strictly convex if and only if J is one-to-one Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 348 Convergence theorems for finding the split common null point is a single-valued bijection and in this case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. For more details, see [14, 16]. Let C be a nonempty, closed and convex subset of a strictly convex and reflexive Banach space E. Then we know that for any x ∈ E, there exists a unique element z ∈ C such that ‖x − z‖ ≤ ‖x − y‖ for all y ∈ C. Putting z = PCx, we call PC the metric projection of E onto C. Lemma 2.1 ([16]). Let E be a smooth, strictly convex and reflexive Banach space. Let C be a nonempty, closed and convex subset of E, and let x1 ∈ E and z ∈ C Then, the following conditions are equivalent: (1) z = PCx1; (2) 〈z − y, J(x1 − z)〉 ≥ 0, ∀ y ∈ C. Let E be a Banach space and let A be a mapping of E into 2E ∗ . The effective domain of A is denoted by dom(A), that is, dom(A) = {x ∈ E : Ax 6= ∅}. A multi-valued mapping A on E is said to be monotone if 〈x − y, u∗ − v∗〉 ≥ 0 for all x, y ∈ dom(A), u∗ ∈ Ax, and v∗ ∈ Ay. A monotone operator A on E is said to be maximal if its graph is not properly contained in the graph of any other monotone operator on E. The following theorem is due to Browder [4]; see also [14]. Lemma 2.2 ([4]). Let E be a uniformly convex and smooth Banach space and let J be the duality mapping on E into E∗. Let A be a monotone operator of E into 2E ∗ . Then A is maximal if and only for any r > 0, (2.9) R(J + rA) = E∗, where R(J + rA) is the range of J + rA. Let E be a uniformly convex and smooth Banach space with a Gâteaux differentiable norm and let A be a monotone operator of E into 2E ∗ . For all x ∈ E and r > 0, we consider the following equation (2.10) 0 ∈ J(xr − x) + rAxr. This equation has a unique solution xr. We define Jr by xr = Jrx. Such Jr where r > 0 are called the metric resolvent of A. In a Hilbert space H, the metric resolvent Jr of A is simply called the resolvent of A. We also know the following lemmas: Lemma 2.3 ([3, 18]). Let {sn} be a sequence of nonnegative real numbers, let {αn} be a sequence in [0, 1] with ∑ ∞ n=1 αn = ∞, let {βn} be a sequence of nonnegative real numbers with ∑ ∞ n=1 βn < ∞ and {γn} be a sequence of real numbers with lim supn→∞ γn ≤ 0. Suppose that (2.11) sn+1 = (1 − αn)sn + αnγn + βn for all n = 1, 2, .... Then limn→∞ sn = 0. Lemma 2.4 ([9]). Let {Γn} be a sequence of real numbers that does not decrease at infinity in the sense the there exists a subsequence {Γni} of {Γn} which c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 349 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak satisfies Γni < Γni+1 for all i ∈ N. Define the sequence {τ(n)}n>n0 of integers as follows: (2.12) τ(n) = max {k ≤ n : Γk < Γk+1} , where n0 ∈ N such that {k ≤ n0 : Γk < Γk+1} 6= ∅. Then, the following hold: (i) τ(n0) ≤ τ(n0 + 1) ≤ ... and τ(n) → ∞; (ii) Γτ(n) ≤ Γτ(n)+1 and Γn ≤ Γτ(n)+1, ∀n ≥ n0. 3. Main results In this section, we prove strong convergence theorems for finding a solution of the split common null point problem in Banach spaces. Theorem 3.1. Let H be a Hilbert space and let F be a uniformly convex and smooth Banach space. Let JF be the duality mapping on F. Let f : H → H be a contraction. Let A and B be maximal monotone operators of H into 2H and F into 2F ∗ , respectively. Let Jλ be the resolvent of A for λ > 0 and let Qµ be the metric resolvent of B for µ > 0. Let T : H → F be a bounded linear operator such that T 6= 0 and let T ∗ be the adjoint operator of T . Suppose that A−10∩T −1(B−10) 6= ∅. Let x1 ∈ H and let {xn} ⊂ H be a sequence generated by xn+1 = αnf(xn) + βnxn + γnJλn(I − λnT ∗JF (I − Qµn)T )xn(3.1) for all n ∈ N, where {µn}, {λn} ⊂ (0, ∞), {αn} ⊂ (0, 1), {βn} ⊂ (0, 1) and {γn} ⊂ (0, 1) satisfy the following conditions: (3.2) 0 < a ≤ λn‖T 2‖ ≤ b < 2, 0 < k ≤ µn, 0 < c ≤ γn ≤ d < 1, (3.3) lim n→∞ αn = 0 and ∞ ∑ n=1 αn = ∞ for some a, b, c, d, k ∈ R. Then {xn} converges strongly to z0 ∈ A −10 ∩ T −1(B−10), where z0 = PA−10∩T −1(B−10)f(z0). Proof. Put zn = Jλn(I − λnT ∗JF (I − Qµn)T )xn for all n ∈ N and let z ∈ A−10 ∩ T −1(B−10). We have that z = Jλnz and T z = QµnT z for all n ∈ N. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 350 Convergence theorems for finding the split common null point Since Jλn is nonexpansive, we have ‖zn − z‖ 2 = ‖Jλn(I − λnT ∗JF (I − Qµn)T )xn − Jλnz‖ 2 ≤ ‖xn − λnT ∗JF (I − Qµn)T )xn − z‖ 2 = ‖xn − z‖ 2 − 2λn〈xn − z, T ∗JF (I − Qµn)T xn〉 +λ2n‖T ∗JF (I − Qµn)T xn‖ 2 ≤ ‖xn − z‖ 2 − 2λn〈T xn − T z, JF (I − Qµn)T xn〉 + λ2n‖T ‖ 2‖(I − Qµn)T xn‖ 2 = ‖xn − z‖ 2 − 2λn〈T xn − QµnT xn, JF (I − Qµn)T xn〉 −2λn〈QµnT xn − T z, JF (I − Qµn)T xn〉 + λ2n‖T ‖ 2‖(I − Qµn)T xn‖ 2 = ‖xn − z‖ 2 − 2λn‖T xn − QµnT xn‖ 2 −2λn〈QµnT xn − T z, JF (I − Qµn)T xn〉 + λ2n‖T ‖ 2‖(I − Qµn)T xn‖ 2 ≤ ‖xn − z‖ 2 − 2λn‖T xn − QµnT xn‖ 2 + λ2n‖T ‖ 2‖(I − Qµn)T xn‖ 2 = ‖xn − z‖ 2 + λn(λn‖T ‖ 2 − 2)‖(I − Qµn)T xn‖ 2.(3.4) Since 0 < λn‖T ‖ 2 < 2, it follows that ‖zn − z‖ ≤ ‖xn − z‖ for all n ∈ N. So we obtain ‖xn+1 − z‖ = ‖αnf(xn) + βnxn + γnzn − z‖ ≤ αn‖f(xn) − z‖ + βn‖xn − z‖ + γn‖xn − z‖ ≤ αnα‖xn − z‖ + αn‖f(z) − z‖ + (1 − αn)‖xn − z‖ = (1 − αn(1 − α))‖xn − z‖ + αn‖f(z) − z‖.(3.5) By induction, we conclude that {xn} is bounded. So are {T xn}, {zn} and {yn}. Put z0 = PA−10∩T −1(B−10)f(z0). We see that xn+1 − xn = αn(f(xn) − xn) + γn(zn − xn),(3.6) which implies that xn+1 − xn − αn(f(xn) − xn) = γn(zn − xn).(3.7) It follows that 〈xn+1 − xn − αn(f(xn) − xn), xn − z0〉 = γn〈zn − xn, xn − z0〉 = −γn〈xn − zn, xn − z0〉.(3.8) From (2.3), we obtain 2〈xn − zn, xn − z0〉 = ‖xn − z0‖ 2 + ‖zn − xn‖ 2 − ‖zn − z0‖ 2 ≥ ‖xn − z0‖ 2 + ‖zn − xn‖ 2 − ‖xn − z0‖ 2 = ‖zn − xn‖ 2.(3.9) c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 351 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak From (3.8) and (3.9), we obtain 2〈xn+1 − xn, xn − z0〉 = 2αn〈f(xn) − xn, xn − z0〉 − 2γn〈xn − zn, xn − z0〉 ≤ 2αn〈f(xn) − xn, xn − z0〉 − γn‖zn − xn‖ 2.(3.10) Using (2.3) and (3.10), we have (3.11) ‖xn+1−z0‖ 2−‖xn−xn+1‖ 2−‖xn−z0‖ 2 ≤ 2αn〈f(xn)−xn, xn−z0〉−γn‖zn−xn‖ 2. Putting Γn = ‖xn − z0‖ 2 for all n ∈ N, we see that (3.12) Γn+1 − Γn − ‖xn − xn+1‖ 2 ≤ 2αn〈f(xn) − xn, xn − z0〉 − γn‖zn − xn‖ 2 . We note that ‖xn+1 − xn‖ = ‖αnf(xn) + βnxn + γnzn − xn‖ ≤ αn‖f(xn) − xn‖ + γn‖zn − xn‖.(3.13) This shows that ‖xn+1 − xn‖ 2 ≤ (αn‖f(xn) − xn‖ + γn‖zn − xn‖) 2 = α2n‖f(xn) − xn‖ 2 + 2αnγn‖f(xn) − xn‖‖zn − xn‖ + γ2n‖zn − xn‖ 2 .(3.14) Hence by (3.12) and (3.14), we have Γn+1 − Γn ≤ αn(αn‖f(xn) − xn‖ 2 + 2γn‖f(xn) − xn‖‖zn − xn‖) + γ2n‖zn − xn‖ 2 + 2αn〈f(xn) − xn, xn − z0〉 − γn‖zn − xn‖ 2 = αn(αn‖f(xn) − xn‖ 2 + 2γn‖f(xn) − xn‖‖zn − xn‖) + γn(γn − 1)‖zn − xn‖ 2 + 2αn〈f(xn) − z0, xn − z0〉 − 2αn‖xn − z0‖ 2.(3.15) So we obtain Γn+1 − Γn + γn(1 − γn)‖zn − xn‖ 2 ≤ αn(αn‖f(xn) − xn‖ 2 + 2γn‖f(xn) − xn‖‖zn − xn‖) + 2αn〈f(xn) − z0, xn − z0〉 − 2αn‖xn − z0‖ 2.(3.16) We next split the proof into two cases. Case 1: Suppose that there exists a natural number N such that Γn+1 ≤ Γn for all n ≥ N. In this case, limn→∞ Γn exists and then limn→∞(Γn+1−Γn) = 0. Since limn→∞ αn = 0 and 0 < c ≤ γn ≤ d < 1, by (3.16), we have lim n→∞ ‖zn − xn‖ = 0.(3.17) From (3.13) we have lim n→∞ ‖xn+1 − xn‖ = 0.(3.18) c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 352 Convergence theorems for finding the split common null point We next show that lim supn→∞〈f(z0) − z0, zn − z0〉 ≤ 0. Put (3.19) l = lim sup n→∞ 〈f(z0) − z0, zn − z0〉. Then without loss of generality, there exists a subsequence {zni} of {zn} such that l = limi→∞〈f(z0)−z0, zni −z0〉 and {zni} converges weakly to some point w ∈ H. Since ‖xn − zn‖ → 0, we also have that {xni} converges weakly to w ∈ H. On the other hand, from (3.4) we have λn(2 − λn‖T ‖ 2)‖(I − Qµn)T xn‖ 2 ≤ ‖xn − zn‖ 2 − ‖zn − z‖ 2 ≤ ‖xn − zn‖(‖xn − z‖ + ‖zn − z‖).(3.20) Then since ‖xn − zn‖ → 0 and 0 < a ≤ λn‖T ‖ 2 ≤ b < 2, (3.21) lim n→∞ ‖T xn − QµnT xn‖ = 0. Since {xni} converges weakly to w ∈ H and T is bounded and linear, we also have {T xni} converges weakly to T w. Using this and limn→∞ ‖T xn − QµnT xn‖ = 0, we have that Qµni T xni ⇀ T w. Since Qµn is the metric resolvent of B for µn > 0, we have that JF (T xn−Qµn T xn) µn ∈ BQµnT xn for all n ∈ N. By the monotonicity of B we obtain 0 ≤ 〈 u − Qµni T xni, v ∗ − JF (T xni − Qµni T xni) µni 〉 (3.22) for all (u, v∗) ∈ B. We observe that ‖JF (T xni − Qµni T xni)‖ = ‖T xni − Qµni T xni‖ → 0 as i → ∞. Since 0 < k ≤ µni, it follows that 0 ≤ 〈u−T w, v ∗ − 0〉 for all (u, v∗) ∈ B. Because B is maximal monotone, we have T w ∈ B−10. This implies that w ∈ T −1(B−10). Using zn = Jλn(xn − λnT ∗JF (T xn − QλnT xn)), we obtain zn = Jλn (xn − λnT ∗ JF (T xn − QµnT xn))(3.23) ⇔ xn − λnT ∗JF (T xn − QµnT xn) ∈ zn + λnAz ⇔ xn − zn − λnT ∗ JF (T xn − QµnT xn) ∈ λnAzn ⇔ 1 λn (xn − zn − λnT ∗JF (T xn − QµnT xn)) ∈ Azn. Since A is monotone, we have that for (u, v) ∈ A, 〈 zn − u, 1 λn (xn − zn − λnT ∗JF (T xn − QµnT xn)) − v 〉 ≥ 0(3.24) which implies that 〈 zn − u, xn − zn λn − T ∗JF (T xn − QµnT xn)) − v 〉 ≥ 0.(3.25) Replacing n by ni, we have 〈 zni − u, xni − zni λni − T ∗JF (T xni − Qµni T xni) − v 〉 ≥ 0.(3.26) c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 353 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak Since xni −zni → 0, 0 < a ≤ λni‖T ‖ 2, zni ⇀ w and T ∗JF (T xn −Qµni T xni) → 0, we get that 〈w − u, −v〉 ≥ 0. Since A is maximal, we have 0 ∈ Aw. Therefore, w ∈ A−10 ∩ T −1(B−10). Since {zni} converges weakly to w ∈ A−10 ∩ T −1(B−10), it follows that (3.27) l = lim i→∞ 〈f(z0) − z0, zni − z0〉 = 〈f(z0) − z0, w − z0〉 ≤ 0. On the other hand, we see that ‖xn+1 − z0‖ 2 = 〈xn+1 − z0, xn+1 − z0〉 = 〈αnf(xn) + βnxn + γnzn − z0, xn+1 − z0〉 = 〈αn(f(xn) − z0) + βn(xn − z0) + γn(zn − z0), xn+1 − z0〉 = αn〈f(xn) − f(z0) + f(z0) − z0, xn+1 − z0〉 + βn〈xn − z0, xn+1 − z0〉 + γn〈zn − z0, xn+1 − z0〉 = αn〈f(xn) − f(z0), xn+1 − z0〉 + αn〈f(z0) − z0, xn+1 − z0〉 + βn〈xn − z0, xn+1 − z0〉 + γn〈zn − z0, xn+1 − z0〉 ≤ αnα‖xn − z0‖‖xn+1 − z0‖ + βn‖xn − z0‖‖xn+1 − z0‖ + γn‖xn − z0‖‖xn+1 − z0‖ + αn〈f(z0) − z0, xn+1 − z0〉 = (αnα + βn + γn)‖|xn − z0‖‖xn+1 − z0‖ + αn〈f(z0) − z0, xn+1 − z0〉 ≤ (αnα + 1 − αn) 1 2 (‖xn − z0‖ 2 + ‖xn+1 − z0‖ 2) + αn〈f(z0) − z0, xn+1 − z0〉 = ( ααn + 1 − αn 2 ) ‖xn − z0‖ 2 + ( ααn + 1 − αn 2 ) ‖xn+1 − z0‖ 2 + αn〈f(z0) − z0, xn+1 − z0〉 = ( 1 − 2(1 − α)αn 1 + (1 − α)αn ) ‖xn − z0‖ 2 + ( 2(1 − α)αn 1 + (1 − α)αn ) ( 1 1 − α ) 〈f(z0) − z0, xn+1 − z0〉.(3.28) Also, we have lim n→∞ ‖zn − xn+1‖ ≤ lim n→∞ (‖zn − xn‖ + ‖xn+1 − xn‖) = 0.(3.29) Then lim sup n→∞ 〈f(z0) − z0, xn+1 − z0〉 ≤ 0.(3.30) Since ∑ ∞ n=1 αn = ∞, by Lemma 2.3 we conclude that xn → z0 as n → ∞. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 354 Convergence theorems for finding the split common null point Case 2. Suppose that there exists a subsequence {Γni} of the sequence {Γni} such that Γni ≤ Γni+1 for all i ∈ N. In this case, we define τ : N → N by τ(n) = max{k ≤ n : Γk < Γk+1}.(3.31) Then by Lemma 2.6 we have Γτ(n) < Γτ(n)+1. Thus by (3.16) we have for all n ∈ N, γτ(n)(1 − γτ(n))‖zτ(n) − xτ(n)‖ 2 ≤ α2τ(n)‖f(xτ(n)) − xτ(n)‖ 2 + 2ατ(n)γτ(n)(‖f(xτ(n)) − xτ(n)‖ × ‖zτ(n) − xτ(n)‖) + 2ατ(n)〈f(xτ(n)) − z0, xτ(n) − z0〉 − 2ατ(n)‖xτ(n) − z0‖ 2 .(3.32) Using limn→∞ αn = 0 and 0 < c ≤ γn ≤ d < 1, we have lim n→∞ ‖zτ(n) − xτ(n)‖ = 0.(3.33) As in the proof of Case 1, we can show that lim n→∞ ‖xτ(n)+1 − xτ(n)‖ = 0.(3.34) This gives lim n→∞ ‖zτ(n) − xτ(n)+1‖ = 0.(3.35) We next show that lim supn→∞〈f(z0) − z0, xτ(n)+1 − z0〉 ≤ 0. Put l = lim sup n→∞ 〈f(z0) − z0, xτ(n)+1 − z0〉.(3.36) So we have l = lim sup n→∞ 〈f(z0) − z0, zτ(n) − z0〉.(3.37) Without loss of generality, there exists a subsequence {zτ(ni)} of {zτ(n)} such that l = lim i→∞ 〈f(z0) − z0, zτ(ni) − z0〉(3.38) and {zτ(ni)} converges weakly to some point w ∈ H. As in the proof of Case 1, we can show that w ∈ A−10 ∩ T −1(B−10). Then it follows that l = lim i→∞ 〈f(z0) − z0, zτ(ni) − z0〉 = 〈f(z0) − z0, w − z0〉 ≤ 0.(3.39) As in the proof of Case 1, we also obtain ‖xτ(n)+1 − z0‖ 2 ≤ ( 1 − 2(1 − α)ατ(n) 1 + (1 − α)ατ(n) ) ‖xτ(n) − z0‖ 2 + ( 2(1 − α)αn 1 + (1 − α)αn ) ( 1 1 − α ) 〈f(z0) − z0, xτ(n)+1 − z0〉.(3.40) c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 355 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak Since Γτ(n) ≤ Γτ(n)+1, ( 2(1 − α)ατ(n) 1 + (1 − α)ατ(n) ) ‖xτ(n) − z0‖ 2 ≤ ( 2(1 − α)αn 1 + (1 − α)αn ) × ( 1 1 − α ) 〈f(z0) − z0, xτ(n)+1 − z0〉.(3.41) It is easily seen that ( 2(1−α)ατ(n) 1+(1−α)ατ(n) ) > 0. Then we have ‖xτ(n) − z0‖ 2 ≤ ( 1 1 − α ) 〈f(z0) − z0, xτ(n)+1 − z0〉.(3.42) This shows that lim sup n→∞ ‖xτ(n) − z0‖ 2 ≤ 0(3.43) and hence ‖xτ(n) − z0‖ → 0 as n → ∞. Thus ‖xτ(n)+1 − z0‖ → 0 as n → ∞. By Lemma 2.6, we obtain ‖xn − z0‖ ≤ ‖xτ(n)+1 − z0‖ → 0(3.44) as n → ∞. This completes the proof. � 4. Examples and numerical results In this section, we give examples including its numerical results for support- ing our main theorem. Example 4.1. Let H = R. For x ∈ R, we define G : R → R by G(x) = { ωx if x ≥ 0, +∞ otherwise. Let F : R → R be defined by F(x) = ω|x| − ln(1 + ω|x|). Choose x1 = 2, ω = 1, αn = 1 2n+1 , βn = n 2n+1 , γn = n 2n+1 for all n ∈ N. Let f(x) = x 2 and T x = x . We aim to find the minimizers of F and G. Using algorithm (3.1), we have the following numerical results: c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 356 Convergence theorems for finding the split common null point n xn | xn+1 − xn | 1 1.471404251 5.2859547 × 10−1 2 1.265727840 7.8045565 × 10−1 3 0.527004926 7.8045565 × 10−1 4 0.250611252 1.3092799 × 10−1 5 0.160205803 7.9460312 × 10−2 6 0.114183169 5.3450423 × 10−2 7 0.083166153 3.7671482 × 10−2 8 0.061057394 2.7173989 × 10−2 9 0.045012810 1.9840027 × 10−2 10 0.033265124 1.4579710 × 10−2 11 0.024621382 1.0752746 × 10−2 12 0.018243176 7.9469695 × 10−3 ... ... ... 50 0.000000260 1.1017075 × 10−7 Table 1 Numerical results of Example 4.1 for iteration process (3.1) 0 5 10 15 20 25 30 35 40 45 50 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Number of iterations X n Figure 1: Convergence behavior of {xn} in Table 1. 5 10 15 20 25 30 35 40 45 50 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 Number of iterations E rr o r Figure 2: Error plots for all sequences {xn} in Table 1. Example 4.2. Let H = R3. For x ∈ R3, define G : R3 → R by G(x) = ‖Lx − y‖2, where L =   1 2 2 3 0 1 2 1 −1  , y =   2 −3 1   and F : R3 → R by F(x) = 5‖x‖2 + (15, 6, −7)x + 10. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 357 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak Let T =   1 0 1 0 −1 2 1 2 3   . Find x ∈ R3 such that x is a minimizer of F and T x also is a minimizer of G. Choose x1=   1 −1 −1  , αn = 1 2n+1 , βn = n 2n+1 , γn = n 2n+1 for all n ∈ N and let f(x) = x 2 . Using algorithm (3.1), we have the following numerical results: n xn ‖xn+1 − xn‖ 1 (0.1527,-0.6014,0.8512) 20.745517681470 ×10−1 2 (-0.5968,-0.6646,-0.0706) 11.896884171498 ×10−1 3 (-0.8523,-0.5312,0.7977) 9.149067074771 ×10−1 4 (-1.1354,-0.6011,0.3222) 5.577239966457 ×10−1 5 (-1.2027,-0.5415,0.7430) 4.302752764182 ×10−1 6 (-1.3156,-0.5838,0.4941) 2.766128927383 ×10−1 7 (-1.3323,-0.5554,0.7039) 2.124210254520 ×10−1 8 (-1.3822,-0.5792,0.5747) 1.406007674047 ×10−1 9 (-1.3869,-0.5656,0.6815) 1.078492388367 ×10−1 10 (-1.4115,-0.5788,0.6150) 7.214423578793 ×10−2 11 (-1.4139,-0.5724,0.6703) 5.574083184995 ×10−2 12 (-1.4273,-0.5798,0.6365) 3.720017649222 ×10−2 13 (-1.4295,-0.5769,0.6655) 2.926886211227 ×10−2 14 (-1.4375,-0.5811,0.6485) 1.930348053252 ×10−2 15 (-1.4397,-0.5800.0.6640) 1.568794063595 ×10−2 ... ... ... 100 (-1.4790,-0.5913,0.6743) 8.809288634531 ×10−5 Table 2 Numerical results of Example 4.2 for iteration process (3.1) 0 10 20 30 40 50 60 70 80 90 100 −1.5 −1 −0.5 0 0.5 1 Number of iterations X n Figure 3: Convergence behavior of {xn} in Table 2 . c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 358 Convergence theorems for finding the split common null point 0 5 10 15 20 25 0 0.5 1 1.5 2 2.5 Number of iterations E rr o r Figure 4: Error plots for all sequences {xn} in Table 2 . From Table 2, we see that   −1.5 −0.6 0.7   is a minimizer of F such that T   −1.5 −0.6 0.7   =   −0.8 2 −0.6   is a minimizer of G. Acknowledgements. S. Suantai wish to thank Chiang Mai University for financial supports. P. Cholamjiak was supported by the Thailand Research Fund and the Commission on Higher Education under Grant MRG5980248. References [1] A. S. Alofi, M. Alsulami and W. Takahashi, Strongly convergent iterative method for the split common null point problem in Banach spaces, J. Nonlinear Convex Anal. 2 (2016), 311–324. [2] S. M. Alsulami and W. Takahashi, Iterative methods for the split feasibility problem in Banach spaces, J. Nonlinear Convex Anal. 16 (2015), 585–596. [3] K. Aoyama, Y. Yasunori, W. Takahashi and M. Toyoda, On a strongly nonexpansive sequence in a Hilbert space, J. Nonlinear Convex Anal. 8 (2007), 471–489. [4] F. E. Browder, Nonlinear maximal monotone operators in Banach spaces, Math. Ann. 175 (1968), 89–113. [5] C. Byrne, Iterative oblique projection onto convex sets and the split feasibility problem, Inverse Prob. 18 (2002), 441–453. [6] C. Byrne, Y. Censor, A. Gibili and S. Reich, The split common null point problem, J. Nonlinear Convex Anal. 13 (2012), 759–775. [7] B. Halpern, Fixed point of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 506-9-61. [8] Y. Censor and T. Elfving, A multiprojection algorithm using Bregman projections in product space, Numer. Algor. 8 (1994), 221–239 [9] P. E. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal. 16 (2008), 899–912. [10] W. R. Mann, Mean value methods in it iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510. [11] A. Moudafi, Split monotone variational inclusions, J. Optim. Theory Appl. 150 (2011), 275–283. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 359 S. Suantai, K. Srisap, N. Naprang, M. Mamat, Y. Yundon and P. Cholamjiak [12] A. Moudafi, Viscosity approximation method for fixed-points problems, J. Math. Anal. Appl. 241 (2000), 46–55. [13] A. Moudafi and B. S. Thakur, Solving proximal split feasibility problems without prior knowledge of operator norms, Optim. Lett. 8 (2014), 2099–2110. [14] W. Takahashi, Convex Analysis and Approximation of Fixed Point, Yokohama Publish- ers, Yokohama, 2009. [15] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, 2009. [16] W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000. [17] F. Wang, A new algorithm for solving the multiple-sets split feasibility problem in certain Banach spaces, Numer. Funct. Anal. Optim. 35 (2014), 99–110. [18] H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, Bull. Austral. Math. Soc. 65 (2002), 109–113. c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 2 360