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Abstract. The increasing intensification of dairy farming in Europe has sparked an 
interest in studying the economic consequences of this process. However, empirical-
ly classifying farms as extensive or intensive is not a straightforward task. In recent 
papers, Latent Class Models (LCM) have been used to avoid an ad-hoc split of the 
sample into intensive and extensive dairy farms. A limitation of current specifications 
of LCM is that they do not allow farms to switch between different productive sys-
tems over time. This feature of the model is at odds with the process of intensifica-
tion of the European dairy industry in recent decades. We allow for changes of pro-
duction system over time by estimating a single LCM model but splitting the original 
panel into two periods, and find that the probability of using the intensive technology 
increases over time. Our estimation proposal opens up the possibility of studying the 
effects of intensification not only across farms but also over time. 
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1. Introduction

The number of dairy farms in the European Union has fallen dramatically in recent 
decades and continues to decline. Given that farm output remains roughly at quota level, 
over the same period the average size of dairy herds has increased steadily. At the same 
time, genetic and management improvements in dairy cattle have permitted large increas-
es in milk production per cow. These structural changes have provided the basis for the 
propagation of intensive systems of production in the dairy sector. In fact, intensification is 
often mentioned as a feature of structural change, reinforcing the interest in the analysis of 
the impact of intensification on productivity and efficiency. The relationship between struc-
tural change and intensification has an interesting aspect in our empirical example since 
institutional and geographical reasons make it difficult to grow by accruing more land. 
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Some of the farms are small, with fragmented land and located in hilly areas (del Corral et 
al., 2011). Obviously, the cessation of these farms does not increase the land available for 
the farms that stay in production and that are mainly located in flatter coastal areas. 

Extensive dairy farming, on the other hand, consists of producing milk using mainly 
on-farm produced forage with low stocking rates. Fostering production using extensive 
systems has often been an explicit goal of agricultural policy, justified by factors such as 
environmental soundness, improved animal welfare, or use of abundant land in some are-
as. In contrast to this, many dairy farms in Europe have gone in the opposite direction, 
adopting more intensive production systems. 

Despite the importance of the intensification process and the intense policy debates 
it has generated, few papers have studied the intensification of dairy farming using eco-
nomic analysis. Most articles have adopted a technical perspective, describing the physical 
changes of the process (e.g., Simpson and Conrad, 1993), while very few have analyzed 
the economic consequences of this process (some exceptions are Alvarez et al., 2008, 2010, 
and Nehring et al., 2011). 

From an empirical point of view, the coexistence of both extensive and intensive 
farms implies that there are two different technologies in the sector. This runs contrary to 
the assumption of a common technology for all farms which is the most frequent in the 
production literature. However, there is also awareness among researchers of the estima-
tion bias that arises if such an assumption is unrealistic. For this reason, several approach-
es have been followed in dairy sector studies in order to account for the likely existence of 
different technologies. The most basic one is to drop a number of farms from the sample 
on the grounds that they may operate under a different technology (Tauer and Belbase, 
1987). A second approach is to split the sample into several groups based on some observ-
able farm characteristics. For example, Hoch (1962) divided the sample into two groups 
based on the location of farms, while Newman and Matthews (2006) considered two dif-
ferent technologies depending on the number of outputs each farm produces.

Classifying farms as intensive or extensive is not as straightforward as it might appear. 
For example, Nehring et al. (2011) used the number of cows per hectare in order to split 
the sample. However, the stocking rate partition does not fully describe the production 
system as other aspects such as the productivity of cows or the share of concentrates in 
the feed ration could also be taken into account. In this paper we avoid an ex-ante clas-
sification of farms as extensive or intensive by estimating a Latent Class Model (LCM). 
This model assumes that several unknown technologies (classes) have generated the sam-
ple, and allows for the estimation of the parameters of the different technologies plus the 
probability that each observation has been generated by a specific technology. 

To the best of our knowledge, the starting point of previous models in the literature is a 
set-up and estimation proposal that assumes that the probability of each observation belong-
ing to a class (i.e. using an intensive or extensive technology) is constant over time. This 
implies that changes during the period of analysis, no matter how dramatic, do not lead to a 
farm being labeled as belonging to a different class (use of a different technology). Such an 
assumption becomes increasingly untenable as the number of observed periods gets larger.

The objective of the present paper is twofold. First, we wish to determine whether 
the intensification process that has been taking place in recent decades has come to an 
end or whether dairy farms are still switching from extensive to more intensive produc-
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tion systems. For this purpose, we make a simple methodological proposal to circumvent 
the assumption of class probability being constant over time. Second, we are interested in 
analyzing the effects of intensification on farms’ efficiency. In particular, for given inputs 
we would like to know whether intensive farms have the potential to produce more output 
than extensive farms, and if so, the degree to which intensive farms achieve such potential.

In order to fulfill these two objectives, in the empirical section of the paper we use 
a panel of dairy farms in Northern Spain to illustrate the feasibility of estimating a LCM 
with time-varying probabilities. Our objectives are firstly to measure the changes over 
time in the probability of belonging to a class (technology) and secondly to analyze the 
effects on production potential and efficiency of dairy farm intensification1. Unlike previ-
ous studies, our methodological proposal allows us to look specifically at the farms that 
might have tilted towards a more intensive production system in the period of analysis. 

The organization of the paper is the following. In the next section we describe the 
model. In section 3, we present the data and the empirical model. In section 4 we show 
the econometric estimation of the latent class models. In section 5 there is a discussion of 
the empirical results. The paper ends with some conclusions. 

2. The Model

We use a LCM to analyze the extent of intensification in our dataset. The initial step is 
to check whether the LCM identifies different technologies and if those technologies rep-
resent different degrees of intensification. The starting point is a log-linear stochastic pro-
duction frontier (Orea and Kumbhakar, 2004) such as: 

( )= + −y f x v uln ln | | |it it j it j it j � (1)

where x is a vector of inputs, y a single output, v a symmetric random disturbance, and u 
a one-sided random disturbance that measures technical inefficiency. Subscript i (i=1,…
,N) denotes firms, t (t=1,…,T) denotes time, and subscript j (j=1,…,J) indicates a technol-
ogy in a finite set. The vertical bar means that there is a different production function 
(different parameters) for each class j. We assume that, conditional on each class, the ran-
dom disturbances v and u follow a normal and a truncated normal random distribution 
respectively. 

In a latent class model we need to consider three likelihood functions. The first is the 
likelihood function of a firm i at time t belonging to class j:

( )= ΘLF g y x, ,ijt it it j � (2)

where Θj represents the set of parameters of technology (class) j, and g denotes the likeli-
hood function of a production frontier (Kumbhakar and Lovell, 2000). The second is the 
likelihood function of a firm i conditional on class j, obtained as the product of the likeli-

1 The present paper is related with a strand of literature linking technological choices with efficiency. As an 
example, Kompas and Nhu Che (2006) studied the effect of different technologies on the efficiency of dairy 
farms by including in the inefficiency model a set of variables reflecting technological choices.
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hood functions in each period.
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Finally, the unconditional likelihood function of firm i is calculated averaging the 
likelihood conditional on each class using the prior probabilities of class membership Pij 
as weights: 
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Prior probabilities can be interpreted as the probabilities attached to class j member-
ship (Greene, 2005). These prior probabilities can be parameterized using a multinomial 
logit model:
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where zi is a vector of “separating variables” and δj a vector of parameters to be estimated. 
The “separating variables” are related to the adoption of a technology and, as a result, can 
be used as explanatory variables of the prior probability of using that technology. 

After estimation of the model in (1) by maximum likelihood a “posterior probability” 
can be computed as:
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As equation (6) shows, the prior probability of class membership for each farm is 
weighted by the empirical likelihood that the farm belongs to that class. This implies that 
the ability of each technology to explain the observed production of a farm is incorpo-
rated in the calculation of the posterior probability. In a sense, the estimates obtained 
with the parsimonious parametric model of the prior probability are complemented with 
information on individual fit to provide a more accurate evaluation of the probability of 
class membership. In fact, the posterior probability is considered the best estimate of class 
membership (Greene, 2005), and as such, the value of this probability is the criterion that 
we will use for determining whether a farm is using a particular technology.

As mentioned above, a subtle feature of the LCM for panel data is that prior probabil-
ities are modeled as time invariant. In practical terms, time-invariant probabilities amount 
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to assuming that changes in farms over time do not affect the classification of a farm as 
intensive or extensive. However, we expect some farms to change the use of inputs during 
the period of analysis in ways that suggest tilting towards intensive farming. 

Our aim, therefore, is to circumvent the assumption of time-invariant probabilities in 
the empirical analysis. For that purpose, we estimate a single LCM model for the whole 
period of analysis but split the observations for each farm into two periods, where the 
first period roughly corresponds to (t=1,…,T/2) and the second period to (t=T/2+1,...,T). 
In this approach, farm i is considered to be a different farm in each of the two periods. 
As a result, the probability of class membership is constant for a given farm during each 
of the two periods but can change from the first period to the second. Alvarez and del 
Corral (2010) report time-varying probabilities of class membership in the conventional 
Panel LCM through a slight modification of equation (6). They use as weighting factor of 
prior probabilities the likelihood function of each observation in each year (LFijt in equa-
tion 2) instead of the likelihood function of each farm (LFij in equation 3). This compu-
tational choice allows them to report time variation of a feature of the model, latent class 
probability, assumed to be constant over time for estimation purposes. Therefore, the time 
variation of probability reported is akin to variation around a constant mean. Instead, our 
estimation proposal avoids such problems by allowing class probability to change from the 
first sub period to the second while being constant in each sub period. 

In principle, it is possible to divide the original sample in three or more sub periods. 
However, the time length of the panel shortens accordingly, causing econometric and 
numerical problems. In fact, the limit of this increasingly finer division in sub periods 
would be to estimate a pooled model. This amounts to treating the dataset as a cross sec-
tion of farms instead of taking into account the existence of a panel. In this case, in each 
observation farm i is treated as a different farm, thereby allowing probabilities of class 
membership to vary freely over time. The downside is that we disregard the information 
provided by observing the same farm in several periods and that the computed probabili-
ties of class membership are not necessarily parsimonious. Indeed, it would be possible to 
observe some farms moving repeatedly from one class to the other. All in all, this approach 
seems prone to numerical problems and to difficulties in interpreting the results. In fact, in 
the empirical application that we propose the LCM with pooled data failed to converge. 

3. Data and empirical model

The data used in the empirical analysis consist of a balanced panel of 128 Spanish dairy 
farms observed over the 12 year period from 1999 to 2010. In general, the units in the sam-
ple are small to medium-sized family farms. In Table 1, we show the evolution of the aver-
age value of a set of variables related to intensification such as milk, number of cows, land, 
stocking rate, milk yield per cow, milk per hectare and purchased concentrate per cow. 

Table 1 shows that, on average, farm output has grown during the sample period 
(64%) through an increase in the number of cows (44%) but much less so in land (16%). 
The stocking rate (23%), milk yield per cow (13%), milk per hectare (41%) and purchased 
concentrate per cow (6%) all grow in the period analyzed. In summary, these descriptive 
statistics depict a process of farm growth with intensification. 
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Table 1. Evolution of intensification features (sample means).

Year Milk (l) Cows Land (ha) Cows per 
hectare

Milk per 
cow (l)

Milk per 
hectare (l)

Purchased 
concentrate 

per cow (kg)

1999 233250 33 18 1,97 6823 13657 3291
2000 253326 35 18 2,02 7005 14365 3266
2001 279077 37 18 2,17 7200 15896 3370
2002 312127 40 18 2,35 7419 17783 3434
2003 313470 41 18 2,38 7292 17675 3451
2004 332461 43 18 2,41 7501 18420 3465
2005 348243 43 19 2,42 7729 19027 3483
2006 361358 44 19 2,41 7877 19323 3470
2007 360131 45 19 2,41 7841 19089 3554
2008 362113 45 20 2,39 7661 18765 3557
2009 363012 46 20 2,40 7591 18912 3537
2010 383172 47 21 2,43 7699 19304 3489

% increase 
1999-2010 64% 44% 16% 23% 13% 41% 6%

The empirical specification of the production function is translog. We have chosen a 
flexible functional form in order to avoid imposing unnecessary a priori restrictions on 
the technologies to be estimated. The empirical counterpart of equation (1) is the follow-
ing translog production frontier:
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The dependent variable (y) is the production of milk (liters). We have considered 
only one output since these farms are highly specialized (more than 90% of farm income 
comes from dairy sales). Five inputs are included: (x1) number of cows, (x2) purchased 
feed (kilograms), (x3) ‘farm expenses’ (includes expenditure on inputs used to produce 
forage crops, namely seeds, sprays, fertilizers, fuel, and machinery depreciation), (x4) ‘ani-
mal expenses’, such as veterinary, medicines, milking and other expenses, and (x5) land. 
All monetary variables are expressed in constant euros of 2004. Additionally, 11 time 
dummy variables (TDm=1 if t=m, TDm=0 otherwise ) were introduced to control for fac-
tors that affect all farms in the same way in a particular year but which vary over time, 
such as weather (the excluded period is 1999). 

Prior to estimation each input was divided by its geometric mean. In this way, the 
first order coefficients of the Translog production function βk

j  can be interpreted as out-
put elasticities evaluated at the geometric mean of the inputs.

The prior probabilities of class membership are assumed to be a function of two 
“separating variables”: the natural logarithm of the stocking rate (cows per hectare) and 
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the natural logarithm of purchased concentrate feed per cow. Since prior probabilities are 
modeled as time-invariant in each sub period, the separating variables are averaged over 
time within each period.

4. Econometric estimation

In this section, we report the main results of the estimation of two latent class models 
by maximum likelihood: 
a)	 Panel model, i.e. using panel data and time-invariant class membership probabilities.
b)	 Split-panel model, i.e., estimating a single LCM model but allowing the probabilities 

of class membership to differ over time. This is achieved by splitting the sample into 
two periods where the probability of class membership is constant within each peri-
od but can change for the ‘same’ farm from the first period to the second. In other 
words, the estimation proceeds by treating each farm in the second period as a differ-
ent farm. 

In both models two latent classes were found.2 As mentioned above, we make the pri-
or probability of belonging to a latent class a function of two variables: ‘cows per hectare 
of land’ and ‘purchased concentrate per cow’. Since these variables measure the degree of 
intensification of a dairy operation, we have labeled as “intensive” the latent class which 
shows positive estimates of the coefficients of both ‘separating’ variables in the prior prob-
ability equation. The estimates of the prior probability function of the intensive class for 
both models are shown in Table 2. 

Table 2. Prior probability equation for the intensive class.

Panel model Split-panel model

Constant -11.906* -13.112**
ln(cows/land)  1.7919** .8632*
ln(concentrate/cows) 1.3510* 1.5513**

*, **, Significantly different from zero at 0.05 and 0.01 significance levels respectively
Standard errors reported in Tables A1 and A2 in the Appendix

Next, the farms were classified as Intensive using the highest (greater than 0.5) esti-
mated posterior probabilities (equation 6) since these provide the best estimates of class 
membership for an individual (Greene, 2005). In Table 3 we show descriptive statistics of 
the two groups (intensive and extensive) for the two models estimated.

The descriptive statistics of each group roughly agree with the labels we gave to the 
classes based on the effects of intensification variables on the probability of being in each 

2 We also tried to fit a model with three classes but it did not converge. 
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class. As expected, intensive farms have larger values of key variables such as milk per 
cow, milk per hectare and feed per cow. Intensive farms are also larger in terms of milk 
production but are rather similar to extensive farms in terms of land. In our view, the 
explanation for this result is that marginal increases of land are unlikely to be an option 
for farmers due to the fact that most abandonments take place in less favoured (moun-
tainous) areas while remaining farms are mainly located in the coastal plain, so that the 
land available after some farms shut down cannot be used by the remaining farms. For 
this reason, farmers who wish to increase production need to use more feed per cow and 
in some cases buy more productive cows, thereby becoming more intensive.

In Table 4 we report the output elasticities for the two groups evaluated at the geo-
metric mean of the sample. The differences in the elasticities across groups can be seen as 
evidence of different technological characteristics. The complete set of estimated param-
eters of the production functions are reported in Tables A1 and A2 in the Appendix. 

All elasticities, with one exception, are significantly different from zero at conven-
tional levels of significance. Despite the different assumptions behind the two models, the 

Table 3. Characteristics of the estimated production classes (sample means).

Panel model Split-panel model

Intensive Extensive Intensive Extensive

Observations 804 732 798 738
Milk (l) 365442 280884 371525 274994
Cows 42.7 40.3 43.2 39.9
Land (ha) 18.0 19.8 18.3 19.6
Cows per hectare 2.45 2.16 2.4 2.1
Milk per cow (l) 8129 6745 8202 6677
Milk per hectare (l) 20329 14779 20428 14718
Purchased 
concentrate per cow 
(Kg)

3533 3352 3579 3304

Table 4. Output elasticities evaluated at the geometric mean of the sample.

Panel model Split-panel model

Intensive Extensive Intensive Extensive

Cows .7176** .4626** .7491** .4553** 
Feed .2969** .3623** .2737** .3685** 
Farm expenses .0405** .0718** .0508 ** .0767** 
Animal expenses .0296** .0964** .0206 * .0789** 
Land .0368** .0339** .0214 .0295* 

*, **, Significantly different from zero at 0.05 and 0.01significance level, respectively
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output elasticities evaluated at the sample geometric mean are similar between them. The 
similarity between the estimates and farm classifications obtained suggests that the differ-
ences between the two models (time varying versus constant latent class probability) are a 
significant but moderate feature of the sample. 

On the other hand, it is interesting to note that there are wide differences between the 
parameters of the two latent classes (within each model). For example, the output elastic-
ity with respect to cows is almost twice as large in the intensive group as it is in the exten-
sive group. On the other hand, the output elasticity of feed is always larger in the exten-
sive group. These different elasticities imply large differences in marginal productivity of 
inputs across technologies (extensive or intensive), especially for cows and feed. 

5. Empirical analysis of intensification and efficiency

In this section we use the results of the estimation of the LCM to analyze a set of 
issues with important policy implications. First, we are interested in studying the evolu-
tion of the intensification process over time. Second, we want to analyze the differences in 
technical efficiency between intensive and extensive farms.

5.1. Evolution of intensification over time

We want to check if the probability of adopting the intensive technology increases 
over time. We should note that this analysis is only possible in the split-panel model pro-
posed in the present paper and not in the conventional panel LCM.

For this purpose, we regress the posterior probabilities of being in the intensive class 
against individual dummies (fixed effects) and a binary variable (dt) that takes the value 
zero for the first half of the period analyzed and one for the second half. This is an uncon-
ditional analysis over time and is clearly different from the conditional analysis of prior 
probabilities that could be achieved by including a time trend in equation (5). In the con-
ditional analysis, prior probabilities can change over time, keeping input use and separat-
ing variables constant. In the unconditional analysis performed here, the posterior prob-
ability varies over time due to changes in the use of key inputs such as feed, cows or land. 

The equation to be estimated is the following:

= + +a b d wPr | | |ijt i j j t it j � (8) 

where j denotes the latent class and w is a random disturbance assumed to follow a nor-
mal distribution with zero mean and constant variance. In each class, we have estimated 
the posterior probability for each individual (i=1,…,128) and for each period (t=1,..,12). 
Expression (8) represents a general proposal with J different classes. In this case, there 
would only be J-1 free equations since the dependent variable, the posterior probability, 
adds up to one. As we are considering only two latent classes (Intensive and Extensive) in 
our setting, we only have one relevant equation. We choose to estimate the equation cor-
responding to the posterior probability of the Intensive Class. 
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Table 5 shows the estimated coefficient of the time binary variable (b|j) for the Pos-
terior probability of Intensive Class in the Split-panel model. This coefficient is positive 
and significantly different from zero, indicating that the probability of being classified as 
an intensive farm is larger in the second period. We interpret this result as evidence of 
“intensification” of dairy production in our sample over the period analyzed.

In our view, the average change over time of the probability of belonging to the inten-
sive class provides evidence of farms in the sample tilting towards an intensive produc-
tion system. Additionally, the change in class probability between the two periods allows 
for some descriptive analysis of the subset of farms that have switched production sys-
tem in the conventional sense of crossing the threshold defined by a class probability of 
0.5. In particular, 13 extensive farms became intensive in the second period, while 8 farms 
switched from intensive to extensive. In Table 6 we show the characteristics of the farms 
that changed to a different production system.

The farms that become intensive in the second period reflect the typical transforma-
tion pattern: increase in the stocking rate and feed per cow, resulting in higher milk per 
cow and per hectare. On the other hand, the farms that switch from the intensive to the 
extensive class keep the stocking rate unchanged but reduce the amount of feed per cow, 
lowering milk per cow and per hectare. We would like to stress two features of this exer-
cise: first, its descriptive and exploratory nature since the 0.5 probability cut-off point that 
defines intensive or extensive farms is arbitrary; second, the intensification measured by 
the increase in the probability of being in a latent class is an average effect compatible 
with farms moving in both directions. 

Table 5. Analysis of the evolution over time of posterior probabilities.

Coefficient (b|intensive) Standard Error t-statistic

.0363 .0099 3.28

Fixed effects not shown

Table 6. Characteristics of the farms that switch production system over time.

From extensive to intensive From intensive to extensive

Period 1 
Extensive

Period 2  
Intensive

Period 1  
Intensive

Period 2  
Extensive

Farms 13 13 8 8
Milk (l) 279777 383108 269831 301237
Cows 37.2 42.9 35.3 42.5
Land (ha) 16.5 16.6 14.8 17.7
Cows per hectare 2.1 2.4 2.4 2.4
Milk per cow (l) 7061 8381 7456 7004
Milk per hectare (l) 15796 21242 18246 17191
Feed per cow (Kg) 3483 3824 3307 3204
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5.2. The effect of intensification on dairy farm efficiency

In this section, we want to explore the effect of intensification on production efficien-
cy. Two questions are addressed. First, are intensive farms more efficient than extensive 
farms? Second, which technology is more productive (i.e., does one of the two frontiers lie 
above the other one)? 

The level of technical efficiency can be calculated as the ratio between current output 
and potential output, as defined by the technological frontier. An output-oriented index of 
technical efficiency can be computed as:

( )= −TE u| exp |it j it j � (9)

Subscript j in equation (9) indicates that the technical efficiency index can be calcu-
lated with respect to each of the Latent Class frontiers (Orea and Kumbhakar, 2004). In 
our case, we can thus consider two different frontiers. Table 7 shows the average technical 
efficiency for the two technologies. 

Table 7. Average efficiency of the estimated classes (intensive/extensive).

Panel Model Split-Panel Model

Intensive Frontier Extensive Frontier Intensive Frontier Extensive Frontier

Full sample .92 .92 .91 .93
Intensive farms .94 .96 .94 .96
Extensive farms .88 .89 .87 .89

As can be seen, for the full sample the average level of technical efficiency is quite 
similar both between models (Panel vs. Split-Panel) and between latent technologies 
(Intensive frontier vs. Extensive frontier). However, if we consider the two groups of farms 
separately, a very interesting result is found: intensive farms have a higher level of techni-
cal efficiency in all the four frontiers. Additionally, the average technical efficiency is high-
er in the extensive frontier than in the intensive one.

This last result seems to indicate that the latent frontier of the Intensive Group dom-
inates the other, that is, for any given set of inputs it is possible to produce more out-
put with the intensive technology. We try to shed some light on this issue by calculating 
the difference in frontier output between the two frontiers using the actual inputs of the 
farms:

= −D y yln ˆ ln ˆit it
I

it
E � (10)

where yln ˆit
I  yln ˆit

E  is the (log of) frontier output of farm i at time t evaluated at the inten-
sive (extensive) technology. Table 8 shows the average value of the differences between the 
frontiers (Dit) calculated using the actual inputs of the farms for the full sample as well as 
for the two classes. 
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As the differences between the frontiers are calculated using natural logs, Dit can be 
interpreted approximately as the percentage difference of potential output between both 
frontiers. The intensive frontier is, on average, 9.6% above the extensive frontier in the 
panel model, while this difference is 10.8% in the split-panel model. 

The relationship between technical efficiency and intensification can be explored 
further by analyzing the correlation between the estimated indexes of efficiency and the 
probability of being in the intensive class. As technical efficiency is time-varying and so 
is the probability in the split-panel model, we have included a time dummy as a control 
variable in the regression. By doing so, we avoid confounding the effect of the change of 
probability over time with the effect of time.

Table 8. Average difference between the frontier output of the two technologies.

Panel model Split-panel model

Full sample .0962 .1080
Intensive farms .0883 .0988
Extensive farms .1049 .1180

Table 9. Relationship between technical efficiency and intensification.

Panel model Split-panel model

OLS OLS OLS with farm 
dummies

Intensive 
frontier

Extensive 
frontier

Intensive 
frontier

Extensive 
frontier

Intensive 
frontier

Extensive 
frontier

Probability of 
intensive class 0.0607** 0.0658** 0.0786** 0.0752** 0.0545** 0.0439**

Time dummy -0.0010** 0.0009** -0.0014** 0.0007* -0.0013** 0.0008**

*, **, Significantly different from zero at 0.05 and 0.01significance level, respectively

In Table 9, we show the results of regressing the level of technical efficiency against 
the probability of being in the intensive class and a time dummy that takes the value 1 for 
the second period. We show the results for both models (Panel and Split-panel) and for 
both frontiers (Intensive and Extensive). In the Split-panel model we perform two different 
estimations: standard OLS and OLS with farm dummy variables. The inclusion of individ-
ual effects is not possible in the conventional Panel model because the probability of class 
membership is constant over time. 

We find common patterns of results for both models and estimators. The probabil-
ity of being in the intensive class increases the level of technical efficiency with respect 
to both frontiers in the two models and for both estimation methods. The coefficient of 
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the time dummy indicates that the index of technical efficiency estimated using the exten-
sive frontier increases over time while the index of technical efficiency estimated using 
the intensive frontier decreases over time. This result is probably due to different patterns 
across frontiers of the yearly shifts of the production frontier measured by the coeffi-
cients of the time dummy variables. The time dummy coefficients of the intensive frontier 
(Tables A1 and A2 in the appendix) show a clear upward trend at the beginning of the 
period followed by a fall in the final years. The upward shift of the production frontier 
over time is compatible with decreasing technical efficiency if the movements of the fron-
tier are due to productive improvements of a subset of leading farms while other farms do 
not move immediately towards the shifted frontier. On the other hand, the extensive fron-
tier features smaller and erratic shifts over time. In our view, it is not surprising to observe 
farms approaching, on average, a production frontier with no sudden upward shifts. 

Additionally, the Split-panel model provides a subtle result: the probability of being 
in the intensive class changes across farms and increases over time (on average). In oth-
er words, there are two sources of variation. The coefficient of the probability using plain 
OLS is estimated using both sources of variation. However, the coefficient of the probabil-
ity using OLS with farm dummy variables is estimated using only the over time variabil-
ity. The results show that the estimates of the coefficient of probability are 0.0545 (inten-
sive) and 0.0439 (extensive) when using only changes over time, while the same estimates 
increase to 0.0786 (intensive) and 0.0752 (extensive) when using both cross-section and 
time variation of the posterior probability. In summary, it seems that the bulk of the 
change in efficiency caused by changes in the probability of being in the intensive class 
can be attributed to changes over time of this probability.

4. Conclusions

The assumption of time-invariant prior probability of a latent class can be circumvent-
ed by estimating a single LCM but splitting the original panel into two or more periods. 
This proposal allows for the estimation of the technology of different production systems 
without an assumption that becomes increasingly untenable as the period of years ana-
lyzed increases. On the positive side, our proposal is simple and straightforward. On the 
negative side, it is not part of a formal model. As a result, there is no clear rationale for 
choosing the number of periods in which the original panel should be split. 

By splitting the original panel into two periods, we find in our empirical application 
that the probability of being in the “intensive dairy” class increases over time. This result 
can be interpreted as evidence of dairy farming intensification over the sample period. 

We find differences in technical efficiency if we split the sample in terms of the pro-
duction system using the posterior probability of each latent class. More precisely, the 
average technical efficiency is higher for farms that belong to the intensive latent class. 
Additionally, the intensive frontier dominates the extensive frontier, indicating that the 
intensive technology is more productive that the extensive one. This result can be seen as 
an economic rationale for the observed trend towards the intensification of dairy farms.

What are the policy implications of these findings? Given that the intensive technol-
ogy is more productive and that intensive farms are more efficient, i.e. produce closer to 
their frontier than extensive farms, it seems that the trend towards intensification will 
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continue in the near future. This trend can be seen as a problem if the environmental con-
sequences of intensification are taken into account. 

The new reform of the Common Agricultural Policy may also affect farmers’ technol-
ogy choices. On the one hand, the phasing out of milk quotas may result in higher pro-
duction. In this sense, intensive farms will find it easier to boost production since they do 
not depend heavily on forage. At the same time, productivity and efficiency gains associ-
ated with intensification can be a plus on a more competitive environment. On the other 
hand, the new direct payment scheme which will move towards a uniform payment per 
hectare may lower the incentives to adopt intensive systems.
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Appendix 

Table A.1. Estimation of the Panel Model.

Variable
Class 1 Class 2

Coefficient Std. Error Coefficient Std. Error

Constant 12.5724 .0158   12.542     .0152
Cows (lnx1) .7176 .0213    .4626     .0241
Feed (lnx2) .2969 .0137    .3623     .0152
Crop (lnx3) .0405 .0067    .0718     .0080
Animal (lnx4) .0296 .0091    .0964     .0110
Land (lnx5) .0368 .0104    .0339     .0125
(lnx1)2 .2030 .1445   -.0854     .1096
(lnx2)2 .0257 .0486   -.1737     .0612
(lnx3)2 .0575 .0152    .0523     .0149
(lnx4)2 -.0731 .0247    .0069     .0320
(lnx5)2 .2857 .0398   -.0624     .0542
lnx1lnx2 -.3277 .0641    .0663     .0732
lnx1lnx3 -.0999 .0395    .0103     .0301
lnx1lnx4 .3738 .0532   -.0394     .0561
lnx1lnx5 -.2055 .0584   -.0263     .0657
lnx2lnx3 .1055 .0238   -.0608     .0219
lnx2lnx4 -.0960 .0321    .0827     .0369
lnx2lnx5 .1288 .0405   -.0160     .0413
lnx3lnx4 -.0307 .0149    .0025     .0164
lnx3lnx5 -.0426 .0196    .0196     .0231
lnx4lnx5 -.0619 .0275    .0138     .0282
TD00 .0206 .0129    .0072     .0172
TD01 .0366 .0131   -.0046     .0173
TD02 .0358 .0130    .0243     .0175
TD03 .0313 .0131   -.0181     .0173
TD04 .0519 .0131    .0038     .0171
TD05 .0707 .0132    .0359     .0172
TD06 .0952 .0132    .0366     .0173
TD07 .0839 .0132    .0378     .0175
TD08 .0529 .0134   -.0156     .0175
TD09 .0559 .0134   -.0275     .0177
TD10 .0661 .0139    .0032     .0172
Sigma .0909 .0078    .1537     .0064
Lambda 1.0506 .3484   2.7329     .3866

Prior probability equation
Constant -11.906 5.2881
Ln(cows/land) 1.7919 .6078
Ln(concentrate/
cows) 1.3510 .6600
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Table A.2. Estimation of the Split-Panel Model.

Variable
Class 1 Class 2

Coefficient Std. Error Coefficient Std. Error

Constant 12.5754 .0135 12.536 .0146
Cows (lnx1) .7491 .0203 .4553 .0211
Feed (lnx2) .2737 .0148 .3685 .0149
Crop (lnx3) .0508 .0068 .0767 .0078
Animal (lnx4) .0206 .0093 .0789 .0118
Land (lnx5) .0214 .0115 .0295 .0136
(lnx1)2 .2943 .1448 -.0405 .1092
(lnx2)2 .0121 .0460 -.0964 .0645
(lnx3)2 .0732 .0147 .0410 .0134
(lnx4)2 -.0530 .0263 -.0447 .0331
(lnx5)2 .2786 .0400 .0407 .0609
lnx1lnx2 -.3067 .0613 -.0549 .0693
lnx1lnx3 -.1158 .0375 -.0217 .0316
lnx1lnx4 .2953 .0530 .0704 .0591
lnx1lnx5 -.2457 .0563 .0135 .0596
lnx2lnx3 .0825 .0226 -.0131 .0217
lnx2lnx4 -.0526 .0331 .0418 .0396
lnx2lnx5 .1130 .0410 -.0562 .0452
lnx3lnx4 -.0275 .0151 .0003 .0160
lnx3lnx5 -.0263 .0199 -.0053 .0224
lnx4lnx5 -.0350 .0274 .0306 .0289
TD00 .0201 .0126 -.0013 .0162
TD01 .0376 .0129 -.0108 .0174
TD02 .0351 .0133 .0238 .0188
TD03 .0283 .0130 -.0151 .0166
TD04 .0471 .0132 .0099 .0165
TD05 .0660 .0128 .0408 .0167
TD06 .0917 .0130 .0457 .0167
TD07 .0790 .0129 .0463 .0172
TD08 .0531 .0131 -.0143 .0171
TD09 .0563 .0131 -.0292 .0172
TD10 .0697 .0134 .0007 .0170
Sigma .0883 .0067 .1497 .0060
Lambda 1.1750 .3155 3.0344 .4630

Prior probability equation
Constant -13.112 4.2444
Ln(cows/land) .8632 .3943
Ln(concentrate/
cows) 1.5513 .5247


