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ABSTRACT: Simulation models of crops are referred as an efficient complement for the experimental study. 

Also crop simulation models can be useful for making appropriate decisions on agricultural systems. So this study aimed 
to simulate the growth of maize under different sowing times and deficit irrigation conditions, using the Decision Support 
System for Agrotechnology Transfer (DSSAT) model in 2014 year. This study was conducted in the research field of 
Islamic Azad University of Karaj in 2013 year. The experiment was designed in a split-block with four replications. 
Treatments included four sowing times of April 30 (S1), May 20 (S2), June 10 (S3), and June 27 (S4) in the main plots 
and three irrigation levels of 40% available water depletion (W1), 60% available water depletion (W2), and 80% available 
water depletion in the sub-plots. Root Mean Square Error (RMSE) of grain yield for all four sowing times on three levels 
of irrigation in Karaj region varied from 581.43 to 1,990.81 kg per hectare. It was also calculated the model efficiency 
coefficient (d) ranged 0.87-0.98 for the trait. The RMSE of the total dry matter was determined 861.88-2,173.66 kg per 
hectare; that was while R2 (1:1) of total dry weight varied 0.89-0.98. The results indicate that the model’s ability to predict 
dry matter yield of maize is good enough.  
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INTRODUCTION  
 

Today, an important part of studies in 
agricultural sciences are aimed to find agricultural 
strategies reducing water use. The strategies allow 
plant environment and soil moisture to maintain 
maximum. Note that the yield of any crop in an 
environment depends mainly on irrigation, and so if 
the water would not be managed properly, it 
exposed the crop at risk of losses. Thus, there is 
significant interest in technologies that increase 
water use efficiency and consequently, production 
and productivity (SINGH et al., 2008). In arid and 
semi-arid areas, water shortage has always been one 
of the main constraints to agricultural development, 
and thus, improving water use efficiency is very 
important in these areas. In recent decades, many 
models to simulate crop growth and soil water 
management have been developed by researchers in 
the field of agriculture. The crop simulation models 
(CSMs) have been applied to study crops, including 
the selection of plant and cultivars suitable for 
planting, determining the best crop management, 
estimating regional production capacity, policy for 
breeding, research priority setting, technology 
transfer, agro-ecological classification and 
predicting the effects of climate change (SOLTANI; 
HOOGENBOOM, 2007). 

CSM-CERES-Maize model is considered as 
the most widely used crop simulation models of 

daily growth of corn, and a part of the DSSAT 
software package, which is the result of more than 
30 years worldwide research. CERES-Maize model 
might simulate the effects of plant species, plant 
density, weather, sowing time, and soil water and 
nitrogen on growth, development and grain yield 
(HOOGENBOOM et al., 1999). This model has 
been used in many studies, including evaluating the 
crop yield in the semi-arid Mediterranean climate 
(NOUNA et al., 2003), simulating nitrate leaching 
and water efficiency strategies (LOPEZ-CEDRON 
et al., 2008), and its strength and performance have 
been proven.  

This is a relatively simple model, which 
simulates development, growth and yield of corn. 
After its first edition released in 1986, it has been 
faced with little changes in the model by different 
researchers, while it is proposed to present an 
integration of formal or informal versions of 
CERES - Maize (LOPEZ- CEDRON et al., 2008). 
In this field, it has been already applied the CERES-
Maize model for predicting the yield of dryland corn 
in the state of Delaware, US (QUIRING; 
LEGATES; 2008), RZWQM-CERES-Maize model 
to evaluate the production of hybrid maize (MA et 
al., 2006) and CSM-CERES-Maize model to predict 
sowing time and crop yield out of the growing 
season in a subtropical environment (SOLER et al., 
2007).  
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Further, Bert et al. (2007) studied the 
sensitivity of yields simulated by CERES - Maize to 
the uncertainty of soil properties and daily solar 
radiation. The performance of CERES-Maize model 
was evaluated in semi-arid Mediterranean climate 
during the two years under three soil water levels 
(normal irrigation and  two drought stress regimes) 
(NOUNA et al., 2000). The results showed that the 
difference between simulated and observed values 
for maximum leaf area index, biomass and grain 
yield in the full-irrigation treatment was less than 
10%. However, in terms of water stress, the 
difference between simulated and observed values 
for indicators presented varied from 15% to 46%. 
Paknejad et al. (2012) also examined the simulation 
of grain yield of five wheat varieties in drought 
stress conditions at the end of the season by 
CERES-Wheat model, and reported positive results. 
Nouna et al. (2000) suggested that the water stress 
functions of CERES-Maize model should be 
adjusted in accordance with the weather conditions 
under study. Asadi and Clemente (2003) evaluated 
the CERES-Maize model of DSSAT v3.5 to 
simulating nitrate leaching, crop yield and soil 
moisture capacity in humid climates. The results 
showed that the grain yield was overestimated at 
some treatments. Overall, the nitrogen absorption 
was simulated above the actual value, while the 
model determined the leached nitrogen and soil 
moisture lower. It was also concluded that nitrate 
leaching was underestimated due to poor drainage 
of the soil. 

So this study aimed to simulate the growth 
of maize under different sowing times and deficit 
irrigation conditions, using the Decision Support 
System for Agrotechnology Transfer (DSSAT) 
model in 2014 year. 
 
MATERIAL AND METHODS 
 

The experiment was conducted in the 
research field (Mahdasht area) of Islamic Azad 
University of Karaj, Iran in 2014 year, located at 
35°5’ latitude and 50°54’ longitude and an altitude 
of 1,313m. Mahdasht area of Karaj has a semi-arid 
climate with average annual precipitation of 243 
mm. With a 180-150 and sometimes 200 days of 
drought, and cold-wet winters and hot-dry summer, 
the region is semi-arid (PAKNEJAD et al., 2014). 
The distribution of rainfall in this area is usually 
from late October to mid-spring. The experiment 
was conducted in a split-block design with four 
replications. Treatments included four sowing times 
of April 30 (S1), May 20 (S2), June 10 (S3), and 
June 27 (S4) in the main plots and three irrigation 
levels of 40% available water depletion (W1), 60% 
available water depletion (W2), and 80% available 
water depletion in the sub-plots. In total, it was 
implemented 12 treatments in four replications (48 
plots). Each plot contained six rows with a length of 
5 m, and inter row spacing of 0.6 m, where the 
plants were planted at the interval of 0.13 m (10 
plants per square meter). It was considered 
interspacing of 150 cm and 0.75 m respectively, for 
main plots and the subplots. The SC 704 corn 
cultivar was selected for the purpose of this study, 
which was seeded on 5/31/2014, and irrigated 
immediately.  Urea fertilizer was applied in two 
stages (half of the 6-8 leaf stage and the rest at the 
emergence of male inflorescence (tassel)), with the 
amount of 140 kg per hectare in each plot, which 
was completely dispersed. For weed control, it was 
carried out weeding four times between and within 
the rows. 

Soil physical parameters, including 
saturation water content, field capacity, permanent 
wilting point (PWP) and saturated soil hydraulic 
conductivity, were estimated by testing the soil at 
depths of 0 to 0.3 m, and entered into the model 
(Table 1).  

 
Table 1. The soil physical parameters 

Saturation 
Percentage 

cm3/cm3  

Field 
Capacity 

(FC) 
cm3/cm3  

Permanent 
wilting point 

(PWP) 
cm3/cm3  

Hydraulic 
Conductivity 

cm day-1 

Sand 
Content 
kg/kg  

Silt 
Content 
kg/kg  

Clay 
Content 
kg/kg  

Texture 

32  22  11  18.11  0.56  0.26  0.18  
Sandy 
loam  

  
To determine the physical and chemical 

properties of soil, it was soil samples randomly 
taken at the depths of 0-0.3 m at 20 sites. Then, the 
samples were pooled into a single sample, which 

was transferred to the lab. The soil properties were 
determined as shown in Table 2. 
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Table 2. The results of soil test 
Total 

Nitrogen 
Content  
N (g/kg) 

Available 
Phosphorus   

P(ppm) 

Available 
Potassium  
K(ppm)  

Organic 
Carbon  

OC (g/kg) 
pH  

Salinity   
ds/m 

  
CaCo3 

(g/kg) 

0.4  8  185  4  7.6  0.9  170  
  

DSSAT software needs to input the 
information related to weather, soil, crop 
management and cultivars. Before running the 
model, the inputs to the model are necessary. 

Weather data: daily minimum and 
maximum temperatures, solar radiation and 
precipitation. 
Soil data: Soil texture, soil structure, number and 
depth of soil layers, bulk density, nutrients, field 
capacity, wilting point, depth of root penetration, the 
electrical conductivity and pH of each layer. 

Crop management: cultivar and types of 
spring or autumn, sowing time, sowing depth, inter 
row spacing, density, irrigation dates and amount.   

Genetic Coefficients of Maize:  
The model has been calibrated for different 

corn varieties in different regions of the world, and 

the genetic coefficients obtained is available in its 
database. To use the CERES-Maize model for 
Single-Cross (SC) 704 corn in a new area like Karaj 
city, it is necessary to initially estimate the genetic 
coefficients of this cultivar. So, the model was 
calibrated using six genetic coefficients, which were 
extracted using field data (Table 3). 

With inputs, the model performs the 
calculations from sowing to maturity, while 
simulating phonological stages, accumulation and 
partitioning the dry matter (DM), leaf area index 
(LAI), growth of the root, stem, leaves, and seeds, 
and also soil moisture and nitrogen contents, the 
water and nitrogen use of plant and the effect of 
water stress on plant growth and development.  

 
Table 3. The genetic coefficients obtained for SC 704 grain maize 

Maize 
Variety 

P1 P2  P5  G2  G3  PHINT  

SC 704  236  0.400  790  833  8.5  55  
P1: Growing Degree Days (GDD) (based on the basic temperature of 8 ° C) from seedling emergence to end of juvenile phase (days°C), 
P2: photoperiod sensitivity coefficient (day per hour), P5: photoperiod from silking stage to physiological maturity (°C), G2: maximum 
kernel number (kernels/plant), G3: the potential kernel growth rate at grain filling stage (mg per day), and PHINT: interval between the 
emergence of two successive leaves (° C) 
 
Comparison of observed and simulated date: 
To evaluate the model, predicted yield was 
evaluated by calculating the agreement index “d” 

(Willmott, 1982), coefficient of determination (R2) 
and root mean square error (RMSE). These 
measures of model accuracy are defined as follows:  

                                                                                                                         
                                                                                                                            (1) 
 
 
                                                                                                                           
                                                                                                                            (2) 
 
 
 
                                                                                                                            (3) 
 
 
where Pi and Oi are the predicted and observed values for the data pair, respectively, n is the number of observation, and Oiavg is the 
average of the observed values.  
 
RESULTS  
 

The coefficient of determination (R2), which 
was obtained by the linear regression analysis of the 

functions between measured and simulated values of 
biomass for the maize, ranged 0.95-0.98, which 
indicates the accuracy of the model to simulate the 
crop biomass at the second sowing time (May 20). 
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In the Karaj region, simulated biomass trends of all 
four sowing times by CERES-Maize model (Table 
4) with the model efficiency coefficient (d) varied 
0.85-0.98 shows that the model successfully 
predicted the biomass variation under the irrigation. 
Further, the coefficient of determination (R2), which 
was obtained by the linear regression analysis of the 
functions between measured and simulated values of 
biomass for the maize, ranged 0.87-0.98, which 
indicates the accuracy of the model to simulate the 

crop biomass at the first sowing time (April 30). As 
indicated in Table 4, the model was good at 
evaluating the biomass production trend of all four 
sowing times, while the RMSE was calculated 
respectively 945-1,709, 861-1,872, 969-2,173, and 
867-1,809 kg per hectare. However, RMSE was less 
than 20% of the average observed data in each 
sowing times. Bannayan et al. (2003) reported the 
yield with RMSE of 3.2 close to 20% of the average 
observed data (1.76 tons per hectare). 

 
Table 4. The simulation results of biomass (kg/ha) at four sowing times and three irrigation levels 

Planting Dates  
Irrigation 

Level 
Oi 

)kg/ha(  

Pi 

)kg/ha(  
d  R2 RMSE 

)kg/ha(  

April 30 
)S1(  

W1 8,686  7,211  0.92 0.94 986.81  
W2 7,071  7,617  0.98  0.95 945.91  
W3 4,572  6,965  0.87  0.90 1,709.94  

May 20 
)S2(  

W1 13,057  11,375  0.90  0.95 1,872.22  
W2 7,801  8,443  0.98  0.98 861.88  
W3 5,599  6,465  0.93  0.95 916.82  

June 10 
)S3(  

W1 9,457  8,472  0.90  0.96 1,007.14  
W2 6,827  6,389  0.98  0.96 969.75  
W3 5,004  7,221  0.85  0.89 2,173.66  

June 27 
)S4(  

W1 8,020  7,589  0.91  0.95 1,809.19  
W2 5,442 5,827 0.98 0.94 867.46 
W3 4,982 6,737 0.90 0.95 953.53 

Pi and Oi: Predicted and Observed Values, d: Willmott’s index of agreement, R2: Coefficient of Determination, and RMSE: Root-Mean-
Square-Error 

 
 
As shown in Table 5, in the first sowing 

time (April 30), the root mean square error (RMSE) 
of grain yield varied 869-1,003.5, while the model 
efficiency coefficient (d) has ranged 0.87-0.93. The 
highest model efficiency coefficient was calculated 
0.98, and RMSE was determined 581 for the sowing 
time of May 20 with the irrigation level 2. In fact, 
the model predicated the grain yield of this 
treatment with the highest accuracy. As shown in 
Table 5, it is generally found that the model 
simulated the grain yield with acceptable accuracy 
for the four sowing times. Lowest accuracy was 
associated with the simulation of grain yield for the 
sowing time of May 20 with the irrigation level 1. 
The RMSE and d of this treatment were determined 
respectively, 1,990.8 and 0.79. In general, the 
coefficient of determination varied 0.85-0.98 for all 
cultivars at four sowing times, indicating that there 
was an acceptable correlation between simulated 
and measured values of the trait in the Karaj region. 
The model, which was assessed at four sowing 

times, the RMSE of grain yield ranged 599-1,990.5 
kg per hectare. This was less than 20% of the 
average observed data.  

Timsina et al. (2006) suggested that the 
simulation of crop growth by CERES-Wheat model 
under no nitrogen and water stress in semi-humid 
regions of India, Nepal, Bangladesh and Australia 
led to the yield variation coefficient ranged 7%-
17%. Ghaffari et al. (2001) evaluated different 
management strategies and determined optimal 
strategies using CERES-Wheat model. They 
reported that the grain yield was simulated between 
6.9-7.8 tons per hectare depending on the different 
strategies, while and difference between simulated 
and observed values was 0.24 tons per hectare 
(which was less than 10% of the average observed 
yields). Further, they predicated the yield in six 
regions by the model CERES-Wheat model, and 
showed that wheat yield varied 8,985-9,884 kg per 
hectare depending on the region in different years. 
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Table 5. The simulation results of grain yield (kg/ha) at four sowing times and three irrigation levels 

Planting Dates  
Irrigation 

Level 
Oi 

)kg/ha(  

Pi 

)kg/ha(  
d  R2 RMSE 

)kg/ha(  

April 30 
)S1(  

W1 3,817  2,007  0.91 0.90 869.074  
W2 2,113  2,618  0.93  0.86 941.641  
W3 1,737  2,742  0.87  0.86 1,003.514  

May 20 
)S2(  

W1 7,121  5,684  0.79  0.85 1,990.808  
W2 3,067  2,642  0.98  0.98 581.429  
W3 2,669  3,119  0.97  0.97 671.983  

June 10 
)S3(  

W1 5,144  4,033  0.86  0.84 1,036.531  
W2 3,200  2,879  0.92  0.93 770.575  
W3 1,527  2,562  0.85  0.91 916.496  

June 27 
)S4(  

W1 3,819  3,380  0.90  0.91 599.2361  
W2 2,141 2,400 0.92 0.90 946.353 
W3 1,807 1,499 0.90 0.91 613.001 

Pi and Oi: Predicted and Observed Values, d: Willmott’s index of agreement, R2: Coefficient of Determination, and RMSE: Root-Mean-
Square-Error 
 

As shown in Table 6, in the first sowing 
time (April 30), the root mean square error (RMSE) 
of leaf area index varied 869-1,003.5, while the 
model efficiency coefficient (d) was determined 
0.94-0.98. Further, the coefficient of determination 
(R2), which was obtained by the linear regression 
analysis of the functions between measured and 
simulated values of leaf area index for the maize, 
ranged 0.84-0.94, which indicates the accuracy of 
the model to simulate the leaf area index at four 
sowing times. Although there was low correlation in 
some treatments, like sowing time of 6/24/2014 with 
irrigation level 3 (0.87), but the model simulated 
accurately the variation of leaf area index. In the 

Karaj region, simulated leaf area index trends of all 
four sowing times by CERES-Maize model (Table 
6) with the model efficiency coefficient (d) varied 
0.89-0.98 shows that the model successfully 
predicted the leaf area index variation. In addition, 
the RMSE value was equal to 35% of the average 
observed data. This is consistent with Arora et al. 
(2007), who determined RMSE value of 0.5 m2/m2 
with 35% of the average observed data and 
correlation coefficient of 0.88 associated with the 
simulation of wheat’s leaf area index during the 
growing season.  

 

  

Table 6. The simulation results of leaf area index (kg/ha) at four sowing times and three irrigation levels 

Planting Dates  
Irrigation 

Level 
Oi 

)kg/ha(  

Pi 

)kg/ha(  
d  R2 RMSE 

)kg/ha(  

April 30 
)S1(  

W1 3.21  2.81  0.96 0.92 0.686  
W2 3.12  3.21  0.944  0.83 0.823  
W3 2.73  2.75  0.981  0.94 0.518  

May 20 
)S2(  

W1 3.16  3.37  0.957  0.92 0.791  
W2 3.15  3.56  0.964  0.93 0.836  
W3 3.53  3.17  0.898  0.87 1.126  

June 10 
)S3(  

W1 3.62  3.26  0.96  0.9 0.86  
W2 3.1  3.59  0.948  0.86 0.847  
W3 2.94  3.44  0.951  0.87 0.837  

June 27 
)S4(  

W1 3.15  3.55  0.961  0.91 0.785  
W2 3.12  3.71  0.93  0.84 1.06  
W3 2.58  3.46  0.935  0.87 1.09  

Pi and Oi: Predicted and Observed Values, d: Willmott’s index of agreement, R2: Coefficient of Determination, and RMSE: Root-Mean-
Square-Error 

 
The simulated and observed LAIs show 

different distribution (Table 6). This deviation 
might be caused by the difference between dates of 
model and measurement, as the leaf area index 
simulated by the model was exactly recorded at the 

pollination, while it was measured one or several 
days later or sooner in the field. In other side, such 
deviation might be result of inaccuracy in the 
measurement of leaf area index by the laboratory. 
In fact, when the leaves are yellow or folded, the 
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light would pass their edges, which leads to an 
error in measuring the leaf area index. These 
reasons, and probably the method used in the model 
to simulate the leaf area index might lead the lack 
of higher accuracy of the model to predict LAI 
during pollination. 

As shown in Table 7, in the second sowing 
time (May 20), the root mean square error (RMSE) 
of harvest index varied 0.066-0.086, while the 
model efficiency coefficient (d) ranged 0.90-0.97. 
The highest d and lowest RMSE values were 
calculated respectively, 0.99 and 0.015 for the 
sowing time of May 20 with the Irrigation level 2. 
Additionally, the coefficient of determination (R2), 
which was obtained by the linear regression 
analysis of the functions between measured and 
simulated values of harvest index for the maize, 
ranged 0.78-0.99, which indicates the accuracy of 

the model to simulate the harvest index at four 
sowing times. In the Karaj region, simulated 
harvest index trends of all four sowing times by 
CERES-Maize model (Table 7) with the model 
efficiency coefficient (d) of various cultivars varied 
0.82-0.99 shows that the model successfully 
predicted the harvest index variation, while it 
simulated accurately the harvest index variation 
even with a low coefficient of determination. Note 
that the lowest accuracy of simulation was 
associated with the treatment of fourth sowing time 
(2014/6/27) and irrigation level 1. In addition, the 
RMSE and coefficient of determination values 
were calculated respectively, 0.186 and 0.78%, 
meaning that the simulation accuracy of this 
treatment was lower than others, which could be 
referred to the model’s inability to simulate the 
harvest index.  

 
Table 7. The simulation results of harvest index (kg/ha) at four sowing times and three irrigation levels 

Planting Dates  
Irrigation 

Level 
Oi 

)kg/ha(  
Pi 

)kg/ha(  
d  R2 RMSE 

)kg/ha(  

April 30 
)S1(  

W1 0.223  0.177  0.90 0.74 0.086 
W2 0.231  0.214  0.97  0.92 0.066  
W3 0.253  0.214  0.95  0.88 0.08  

May 20 
)S2(  

W1 0.27  0.183  0.93  0.97 0.104  
W2 0.198  0.183  0.99  0.99 0.015  
W3 0.341  0.234  0.91  0.98 0.116  

June 10 
)S3(  

W1 0.341  0.105  0.91  0.86 0.177  
W2 0.198  0.125  0.84  0.85 0.118  
W3 0.202  0.119  0.85  0.8 0.208  

June 27 
)S4(  

W1 0.27  0.145  0.87  0.78 0.186  
W2 0.223  0.157  0.88  0.90 0.107  
W3 0.231  0.129  0.82  0.86 0.112  

Pi and Oi: Predicted and Observed Values, d: Willmott’s index of agreement, R2: Coefficient of Determination, and RMSE: Root-Mean-
Square-Error 

 

DISCUSSION  
 

At first, this study provides a satisfactory 
calibration of the model applied to different water 
levels and sowing times. Other authors also 
calibrated the CERES-Maize model for 
conventional local varieties under full-irrigation 
(NOUNA et al., 2000), or evaluated only different 
levels of nitrogen fertilizer (ASADI; CLEMENTE, 
2003). The present study compares the RMSE and r2 
values associated with SC 704 maize. Table 3 shows 
the genetic coefficients of SC 704, obtained by 
GENCALC application. In an extensive research on 
corn in different regions of the world, the genetic 
coefficients of maize have been calculated in 
different ranges, as follows: P1:  100-400 ° C/day; 
P2: 0-4 hr/day; P5: 600-900 GDD; PHINT: 45-55 
GDD at each leaf emergence; G2: max. 1,000 grains 

weight; and G3: 5-12 mg. GENCALC is an 
effective tool to determine the plant genetic 
coefficients, especially when the number of 
treatments used to calibrate the model is high. It is 
more efficient, more accurate, and time-saving in 
calibration. In general, the model evaluated 
accurately the different irrigation levels and sowing 
times; that is while, with the genetic coefficients 
presented in this study, it was successfully used to 
determine various ware management strategies and 
sowing times for SC 704 maize in the Karaj region. 
Panda et al. (2004) studied the effects of drought 
stress on maize. They suggested that the CERES-
Maize model efficiently simulate the corn grain 
yield and dry matter. 

Also, Yang et al. (2009) applied the 
CERES-Maize model on 49 different hybrids in 
North Carolina. He found that the model simulated 
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grain yield accurately. However, Nouna et al. (2000) 
reported that the CERES-Maize model did not 
provide satisfactory results in predicting leaf area 
index, biomass and crop yield under soil water 
stress in semi-arid Mediterranean climate. Xevi et 
al. (1996) suggested that the CERES-Maize model 
simulated the soil water content, leaf area index, and 
biomass above ground level with confidence of 95% 
compared to observed field data. Carberry (1991) 
noted that the CERES-Maize model might simulate 
the yield under normal conditions, but it would 
provide higher performance for simulating the 
period (days) during tasseling to physiological 
maturity for corn compared to the number of days 
from germination to the final stage of germination, 
and grain yield.  

Ghaffari et al. (2001) evaluated the optimal 
management strategies using CERES-Wheat model. 
He reported that the grain yield varied 6.9-7.8 tons 
per hectare depending on the different strategies, 
while the difference between simulated and 
measured values was determined 0.24 tons per 
hectare (less than 10% of the average observed 
yields). They also used the CERES-Wheat model to 
predict yield potential of six areas predicted. Later, 
they reported that wheat yield depending on the 
region varied 8,985-9,884 kg per hectare during 
different years. 

The simulated and measured dry matter 
accumulation were similar, which indicates a high 
correlation between the two variables of leaf area 
index and dry matter accumulation. A study by 
Singh et al. (2008) evaluated CERES-Wheat model 

to simulate biomass under different treatments of 
fertilizer and irrigation regimes, he reported that 
there was calculated RMSE value of 1,940 kg per 
hectare between observed and simulated biomass at 
the maturity stage.  

The reduced simulation accuracy might be 
due to lack of potential conditions during growing 
phase, measurement errors, and lack of relevance 
between the values of model-defined parameters and 
studied region. Therefore, it is necessary to manage 
and reduce the error factors. However, the model 
overestimated dry matter in some cases, and 
underestimated it in some other cases, though the 
differences were acceptable. In general, the model 
simulated dry matter production at an acceptable 
level. The results indicate that LAI was 
overestimated, perhaps because there were some 
constraints in the field, which were inputted in the 
model; that was while the leaf area index was 
simulated below the observed values at early stages 
of the growth. In addition, such error might be 
resulted from the lack of accuracy during 
measurement of LAI by the Lab. In fact, when the 
leaves are yellow or folded, the light would pass 
their edges, which leads to an error in measuring the 
leaf area index. In general, a model’s ability to 
predict variation in leaf area index is important, and 
in turn, to estimate the amount of radiation received, 
and dry matter production. It is also needed to 
determine the ratio of evaporation to 
evapotranspiration (SOLTANI et al., 2006). 

The results indicate that the model’s ability 
to predict dry matter yield of maize is good enough.  

 
 

RESUMO: Os modelos de simulação de culturas são referidos como um complemento eficaz para o estudo 
experimental. Os modelos de simulação de culturas também podem ser úteis para a tomada de decisões adequadas em 
sistemas agrícolas. Portanto, este estudo teve como objetivo simular o crescimento do milho sob diferentes épocas de 
semeadura e condições de déficit de irrigação, utilizando o Sistema de Apoio à Decisão para o modelo de Transferência de 
Agrotecnologia (DSSAT) no ano de 2014. Este estudo foi realizado no campo experimental da Islâmica Azad 
Universidade de Karaj no ano de 2013. O experimento foi desenvolvido com delineamento em faixas com 4 repetições. Os 
tratamentos incluíram quatro épocas de semeaduras de 30 de Abril (S1), 20 de maio (S2), 10 de junho (S3), e 27 de junho 
(S4) nas parcelas principais e três níveis de irrigação de esgotamento de 40% de água disponível (W1), 60% depleção de 
água disponível (W2), e 80% esgotamento da água disponível nos sub-parcelas. O erro da raiz do quadrado médio (RMSE) 
do rendimento de grãos para todas as quatro épocas de semeadura nos três níveis de irrigação na região Karaj variou de 
581,43 a 1,990,81 kg por hectare. Também foi calculado o coeficiente de eficiência do modelo (d) que variou de 0,87 a 
0,98 para a característica. O RMSE da matéria seca total foi determinada entre 861.88 e 2,173.66 kg por hectare; enquanto 
R2 (1:1) da massa total variou de 0,89 a 0,98. Os resultados indicam que a capacidade do modelo para prever a produção 
de matéria seca de milho é suficientemente boa. 
 

PALAVRAS-CHAVE: Milho. CERES-Maize model. Produtividade. Simulação. 
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