Microsoft Word - 15-Agra_36713


1249 
Original Article 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

SEEDS INOCULATION AND NITROGEN FERTILIZATION FOR 
COWPEA PRODUCTION ON LATOSOL IN THE WESTERN AMAZON 

 
PRODUTIVIDADE DE FEIJÃO-CAUPI COM INOCULANTE E FONTE MINERAL 

NITROGENADA EM LATOSSOLO DA AMAZÔNIA OCIDENTAL 
 

Vladis Barreto MOREIRA
1
; Emmerson Rodrigues de MORAES

2
;  

Rafaella Ferreira Batista BERNARDES
3
; Joicy Vitória Miranda PEIXOTO

4
;  

Brenda Ventura de LIMA
5 

1. Graduando em Agronomia, Universidade Estadual de Roaraima - UERR, Rorainópolis, RR, Brazil; 2. Professor, Mestre, 
Instituto Federal Goiano, Morrinhos, GO, Brazil; 3. Mestre, Universidade Federal de Uberlândia - UFU, Uberlândia, MG, 

Brazil . rafaellaferreiraagro@gmail.com; 4. Doutoranda, Universidade Federal de Uberlândia – UFU, Uberlândia, MG, 
Brazil; 5. Técnica Administrativa, mestre, Instituto Federal Goiano, Morrinhos, GO, Brazil. 

 

ABSTRACT: The cowpea is an important food crop in the North and Northeast regions of Brazil, where the 
beans are consumed either green or ripe. Yet, considering its socio-economic importance and its tropical origin, cowpea 
yields are low in those regions, due to inadequate cultivation practices and incorrect soil management. Therefore, the 
objective of this study was to study the development of cowpea crop inoculated and fertilized with two different nitrogen 
(N) sources. The experiment was conducted in the municipality of Rorainópolis (RR). The experimental design was 
randomized blocks with four treatments and five replications. The plant material was ‘BRS Guariba’ cowpea cultivar, and 
the treatments were: (i) control (no nitrogen fertilization), (ii) seeds inoculated with Bradyrhizobium elkanii, (iii) urea as N 
source (60 kg N ha-1), and (iv) ammonium sulphate as N source (60 kg N ha-1). The following crop traits were evaluated: 
foliar macronutrients (N, P, K, Ca, Mg and S), green and dry weight of shoots, dry beans per plant, pod yield and bean 
yield. Urea and ammonium sulphate promoted high accumulation of nutrients in leaves. Ammonium sulphate also stood 
out regarding productivity traits, thus proving to be a viable N source for cowpea in the Amazon region. The nodulation 
with Bradyrhizobium elkanii wasn’t efficient to replace the fertilization with nitrogen fertilizers for cowpea BRS Guariba. 

 
KEYWORDS: Fertilization. Bradyrhizobium elkanii. Vigna unguiculata. 

 
INTRODUCTION 

 
The cowpea (Vigna unguiculata) plays a 

major social and economic role for the population in 
the North and Northeast regions of Brazil (FREIRE 
FILHO et al., 2005), where it is the main low-cost 
protein source and offers various employment 
opportunities (CHAGAS JUNIOR et al., 2010). 

According to the fifth Conab (2016) survey, 
an estimated cowpea yield in Brazil for the 2015/16 
production season was 570 kg ha-1, and total 
production 224,900 t. In the North, the estimated 
yield for the same season was 655 kg ha-1, and total 
production 2,500 t. 

The cowpea is considered a tropical crop, 
adaptable to soil and weather conditions in the 
Amazon region, but it does not produce good yields 
there. Among various factors that contribute to this 
state, the management of soil fertility, particularly 
low supply of nitrogen (BRITO et al., 2011), and 
also the use of low-yielding traditional crops play a 
major role.  

In the Amazon region, one major obstacle 
for agricultural production is low availability of 
nitrogen in the soil, which is further aggravated by 
high mineralization rates of organic matter due to 

high humidity and temperature (NOVAIS, 2007). 
Low fertility of soils may lead to incorrect and 
indiscriminate use of chemical fertilizers by farmers 
(VALE JÚNIOR et al., 2011). Alternatives, such as 
sustainable soil management with no-till, minimum 
tillage, split doses of nitrogen fertilizers, different 
nitrogen inoculants, and plant coverage may be 
adopted to diminish these problems 
(TAGLIAFERRE et al., 2013).  

Therefore, due to weather conditions in the 
Amazon region and physical and chemical 
characteristics of soils, which are mostly sandy with 
low fertility, adequate soil fertility management 
practices—nitrogen in particular—for the cowpea 
crop are necessary. 

Considering the importance of nitrogen 
fertilization, as well as the environmental and socio-
economic conditions in the region, the objective of 
this study was to evaluate two fertilizers N sources 
and Bradyrhizobium elkani as a seed inoculant for 
the production of cowpea BRS Guariba. 

 
MATERIAL AND METHODS 

 
The experiment was carried on the rural 

property “Alvorada” (01º14'56"N and 60º9'02"W), 

Received: 02/12/16 
Accepted: 05/05/17 



1250 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

located in Rorainópolis, RR, in the southern region 
of Roraima  at an altitude of 80 m, The average 
annual rainfall in the local is 2,500 mm and the 
average annual temperature 25ºC. According to the 
Köppen-Geige climatic classification, the weather is 
classified as Af— equatorial, hot and humid. 
Chemical and physical analysis of soil from layer 0–
20 cm revealed the following characteristics: pH 
(H2O) 5.15; P (mg dm

-3) 1.3; K (mg dm-3) 54; Ca 
(cmolc dm

-3) 1.7; Mg (cmolc dm
-3) 0.6; Al (cmolc 

dm-3) 0.02; H+Al (cmolc dm
-3) 2.54; m (%) 1.3; V 

(%) 49.6; MO (dag kg-1) 19.6; sand (g kg-1) 520; silt 
(g kg-1) 303; and clay (g kg-1) 177. The soil was 
classified as dystrophic yellow latosol. 

The experimental design was randomized 
blocks with four treatments and five replications. 
The treatments were: control (no nitrogen 
fertilization), inoculant (Bradyrhizobium elkanii), 
urea (60 kg ha-1 N), and ammonium sulphate (60 kg 
ha-1 N). The plots consisted of four rows, each 5-m-
long, 2-m-wide, and 0.5 m apart. The total area of 
each plot was 10 m2, on which 4.0 m2 was the 
experimental area with two central lines, 
disregarding 0.5 m from both ends.  

Soil, which was left fallow after corn, was 
prepared before planting by disc harrowing. Soil 
fertilization (350 kg ha-1 superphosphate and 66.66 
kg ha-1 potassium chloride) was based on soil 
analysis, second Embrapa Roraima (2009). Sowing 
was carried out on September 13, 2012 using a 4-
row planter and a conventional system with row 
spacing of 0.5 m and 12 seeds per meter. Rows were 
thinned out down to 8 plants per meter, or 160.000 
plants ha-1, 10 days after emergence (days after plant 
emergence). 

The plant material was cowpea cultivar 
BRS Guariba, which is characterized by semi-erect 
posture, white beans, black hilum, and good 
adaptability to the conditions in the North regions 
(GONÇALVES et al., 2009). Cowpea seeds were 
inoculated with Bradyrhizobium elkanii strain BR 
3262 at concentration 108 cells g-1. Inoculant dosage 
was 500 g per 50 kg of seeds. Inoculation was 
carried out after wetting the seeds with 6 ml kg-1 of 
sugar solution (10% pv-1) (HUNGRIA et al., 2001). 
Nitrogen sources used in this experiment were urea 
(46% N) and ammonium sulphate (20% N + 22% 
S). Nitrogen sources used in this experiment were 
urea (46% N) and ammonium sulphate (20% N + 
22% S). Nitrogen dose was split into two equal 
applications, one 12 days after plant emergence and 
the other 25 days after plant emergence. To 

compensate for the lack of S in urea, elemental S 
was applied in 2 equal applications. 

The volume of accumulated rainfall 
between planting and harvest (65-day cycle) was 
440 mm. Weed control was done by spraying 50 g 
of fenoxaprop-p-ethyl + 50 g of clethodim per 
hectare 15 days after plant emergence, and cucurbit 
beetle and aphids control by spraying 30 g ha-1 of 
cypermethrin. Diseases control was not necessary 
due to low levels of severity. 

Macronutrient status was measured in 
leaves collected in two central lines on each plot at 
the beginning of flowering 35 days after plant 
emergence. The third trifoliate leaf of the apical tuft 
was collected from 30 plants on all plots, according 
to recommendations by Ambrosano et al. (1997) and 
metodology according to Malavolta et al. (1997). 
Also, green pods per plant were counted and 
collected 45, 49 and 53 days after plant emergence. 
The first time, the pods were collected from 10 
plants chosen at random per plot, later the pods were 
collected from the same plants. Dry pods were 
harvested from ten plants chosen at random from 
two central rows to obtain the number of dry beans 
per plant 60 days after plant emergence. Beans from 
100 pods were also counted. One hundred beans 
with 20% humidity were weighed. The yield of dry 
beans was expressed in kg ha-1. Ten plants were 
collected at random during flowering to evaluate dry 
matter production of shoots (kg ha-1). 

The results were submitted to analysis of 
variance by F test at 5% probability. Later, they 
were compared by Tukey test at 5% significance 
using SISVAR 5.3 software (FERREIRA, 2011). 
 
RESULTS AND DISCUSSION 

 
Accumulation of macronutrients varied 

depending on N source (Table 1). Ammonium 
sulphate caused the highest N accumulation. Both 
urea and ammonium sulphate promoted high 
accumulation of K relative to the control, but didn’t 
differ from B.elkanii. Regarding Mg, all treatments 
promoted higher accumulation than the control. 
Also, urea and ammonium sulphate promoted high S 
accumulation relative to the inoculant, but didn’t 
differ from the control. For P and Ca, there wasn’t 
difference among the treatments. 

 
 
 
 
 

 
 



1251 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

Table 1. Mean values of nutrient accumulation in cowpea for different N sources. 

Nutrient source Nitrogen 
Phospho
rus 

Potassiu
m Calcium 

Magnesiu
m Sulphur 

 ------------------------------------g kg-1 -------------------------------- 
Urea 40,78 b 2,24 a 18,92 a 10,90 a 2,12 a 22,58 a 
Ammonium sulphate 44,38 a 2,52 a 20,84 a 12,02 a 2,26 a 22,64 a 
Bradyrhizobium elkanii 37,46 c 2,60 a 18,70 ab 10,86 a 2,18 a 14,70 b 
Control 37,66 bc 2,60 a 14,76 b 11,44 a 1,82 b 19,34 ab 

CV (%) 4,44 8,64 12,34 9,75 7,88 14,60 
DMS 3,21 0,39 4,09 1,99 0,30 5,24 

Means followed different letters in the column differ by Tukey test at 5% propability. 
 
The availability of nutrients for plant uptake 

depends on various physical, chemical and 
biological processes. Several mechanisms in the soil 
and in the plant may influence nutritional 
composition of the plant, such as ionic interactions, 
which can be classified as inhibition when the 
presence of one ion inhibits or decreases the 
absorption of another ion, or synergism when one 
ion increases the absorption of another ion. 

Data in table 1 show that N status was 
higher in the treatment with ammonium sulphate. As 
this fertilizes contains S, this increase demonstrates 
the interaction between N and S. Nitrogen uptake 
may be affected by the presence of other nutrients, 
including S. According to Malavolta and Moraes 
(2007), N and S demonstrate synergism, thus 
affecting the quality of the final product. In plant 
physiology, the union of the metabolic pathways of 
assimilation of N and S is represented by the 
incorporation of sulfide in the O-acetylserine by the 
OAS-thiol lyase enzyme in the formation of 
cysteine (CRAWFORD et al., 2000). A nutritional 
imbalance of these nutrients affects protein 
synthesis. 

Urea was amended with elemental sulfur 
(S0) to compensate for S present in ammonium 
sulphate. However, more N was found in the 
treatment with ammonium sulphate. This is 
probably due to the fact that elemental sulfur is 
absorbed by plants only after its oxidation to 
sulphate by means of reactions catalyzed mainly by 
microorganisms (HOROWITZ; MEURER, 2006). 
Sulfur is absorbed by plants in the form of SO4

2-; 
therefore, the uptake of SO4

2-
 by plants from 

ammonium sulphate might have been higher than 
elemental sulfur. 

In cowpea, K is extracted and exported in 
large quantities. Potassium has many functions in 
the plant, mainly the activation of several enzymatic 

systems, many of which participate in the processes 
of photosynthesis and respiration. Deficient plants 
show slow growth, poorly developed roots, weak 
and very flexible stems, susceptibility to disease, 
and poor formation of seeds and fruits which are 
usually smaller and rather faintly colored (SOUZA 
et al., 2012 ). 

Viana and Kiel (2010), evaluating N and K 
in wheat, reported that high N doses associated with 
K increased dry matter production of shoots. Also, 
Panaullah et al. (2006), evaluating K uptake in rice 
and wheat in succession, found that N fertilization 
increased K uptake in wheat. This demonstrates that 
there is an interaction between N and K. In this 
study urea and ammonium sulphate increased K 
content relative to the control, but didn’t differ from 
the treatment with seed inoculation. 

Variations were observed regarding plant 
production traits (Table 2). Ammonium sulphate 
promoted high production of fresh weight of shoots 
(FWS) relative to the inoculant, but didn’t differ 
from the other treatments. Ammonium sulphate also 
increased dry weight of shoots (DWS), more than 
urea and the inoculant; however, the results didn’t 
differ from the control treatment. No difference 
among the treatments was observed for the number 
of green pods per plant (GPP) and dry beans per 
plant (DBP). Pod yield (PY) in treatments with urea 
and ammonium sulphate was higher than with the 
inoculant, but didn’t differ from the control. And for 
the bean yield (BY), ammonium sulphate promoted 
higher production than the inoculant and the control, 
but didn’t differ from urea. 

 
 
 
 
 

 
 



1252 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

Table 2. Yield components evaluated in cowpea crop for different treatments with N fertilization 
 

Nutrient source FWS DWS GPP DBP PY BY 

 -------g plant-1------ --Unit. plant-1--- --------kg ha-1-------- 
Urea 46,9 ab 6,88 b 3,92 a 48,0 a 6624,0 a 872,6 ab 
Ammonium sulphate 65,9 a 9,67 a 4,46 a 60,0 a 6300,0 a 1064,0 a 
Bradyrhizobium elkanii 33,6 b 4,93 b 3,72 a 40,0 a 4920,0 b 660,0 b 
Control 45,9 ab 6,73 ab 3,92 a 52,0 a 5408,0 ab 650,0 b 

CV (%) 29,12 29,14 14,37 29,83 12,80 20,92 
DMS 25,34 3,72 1,04 26,99 1346,4 307,42 

FWS = fresh weight of shoots; DWS = dry weight of shoots; GPP = number of green pods per plant; DBP = number of dry beans per 
plant; PY = pod yield; BY = bean yield. Means followed different letters in the column differ by Tukey test at 5% probability. 

 
These results confirm that ammonium 

sulphate is an ideal N source for cowpea in that 
region, and can replace urea. Nitrogen fertilization 
of this crop in soil should also be maintained to 
ensure high yield of beans and pods. Reduced 
amount of N (maximum 20 kg ha-1) promoted 
nodulation and crop yield, according to Xavier et 
al., 2008. 

Cowpea has the ability to establish efficient 
symbiotic relationship with rhizobia. However, 
some factors, such as competition with other 
microorganisms and inhibition by chemicals present 
in soil, may undermine the effectiveness of 
inoculants in regions different from their origin 
(NEVES; RUMJANEK, 1997). Soil pH is one of the 
main limiting factors for nodulation and nitrogen 
fixation (HUNGARY AND VARGAS, 2000; 
RAZA et al., 2001). Some species may tolerate 
acidity better than others, and this tolerance may 
vary between strains of the same species 
(HUNGARY et al., 1997). Bacterial fixation grow 
in an ideal pH range between 6.0 and 7.0, and few 
grow well at pH below 5.0 (RODRIGUES et al., 
2006; Ali et al., 2009). To maximize the 
contribution of biological nitrogen fixation (BNF) to 
common bean in acid soils, it is necessary that the 
strains used in the inoculants be adapted to this 
condition, competitive and efficient in the infection 
process. In general, treatment with B. elkanii 
inoculant did not yield satisfactory results. One of 
the possible explanations may be low adaptability of 
the strain used in the inoculation to the 
environmental conditions of the experiment site, 
such as the low pH value in water (5.15), which may 
have reduce B. elkanii inoculation and fixation. 

In general, B. elkanii didn’t produce 
satisfactory results. One possible explanation may 
be low adaptability of the strain to the 
environmental conditions of the experimental site. 
The B. elkanii BR 3262 is one of the isolates which 

have potential for biological nitrogen fixation 
(BNF). It comes from the Atlantic Forest region, 
demonstrates excellent adaptability to the region of 
Piauí Savanah, and interacts very well with BRS 
Guariba (GUALTER et al., 2007; ZILLI et al., 
2006). 

BRS Guariba did nodulate; however, the 
effect wasn’t any better than for ammonium 
sulphate. Therefore, if the goal is to replace 
chemical fertilizers, a possible solution would be to 
establish appropriate inoculum density for the 
region (SILVA JÚNIOR et al., 2014). Another 
alternative would be to study the behavior of 
different cowpea inoculated with different strains of 
nitrogen fixing bacteria in the Amazon region. 
Similar work for a semi-arid region was carried out 
by Marinho et al. (2014), in which several 
inoculated cultivars showed bean yield similar to 
plants fertilized with urea.  

The table 3 presents arrays of simple linear 
correlations between leaf macronutrient levels, dry 
matter, and yield components of cowpea. The 
following correlations were significant and positive: 
FWS x DWS (r = 0.99 **), FWS x GPP (r = 0.94 *), 
DWS x GPP (r = 0.94 *) for urea; FWS x DWS (r = 
0.99 **) for ammonium sulphate; FWS x DWS (r = 
0.99 **) Mg x S (r = 0.88 *) for B. elkanii; and FWS 
x DWS (r = 0.99 **) for the control. The correlation 
between FWS and DWS becomes evident where in 
dry matter increases with green matter 
(RODRIGUES et al., 2012). The positive 
correlation between Mg x S may be associated with 
higher levels of aminoacid (cystine, cysteine and 
methionine), favoring production of chlorophyll, in 
which Mg is present (NEVES et al., 2008).  

However, the following correlations were 
negative: P x Mg (r = -0.90*), K x DBP (r = -0.92*), 
Ca x Mg (r = -0.95*), S x BY (r = -0.96**) for urea; 
Ca x S (r = -0.92*), S x PY (r = -0.90*) for 
ammonium sulphate; N x FWS (r = -0.98**), N x 



1253 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

DWS (r = -0.98**), S x DBP (r = -0.91*) for B. 
elkanii; and N x PY (r = -0.92*), K x Ca (r = -
0.90*), Ca x FWS (r = -0.94*), Ca x DWS (r = -
0.94*) for the control. Magnesium uptake may 
suffer competition with others cations due to low 
affinity with binding sites on the plasma membrane 
(NETO et al., 2014). Pegoraro et al. (2014), 

studying uptake of nutrients by common bean 36 
days after plant emergence, observed high 
translocation of nutrients from leaves to beans in the 
following order: P> N> Mg> S> K> Ca. Thus, 
reduction of P, K, Mg and S may be related to 
translocation to flowers and fruits when entering the 
reproductive stage 35 days after plant emergence.

 
Table 3. Simple linear correlation between nitrogen, phosphorus, potassium, calcium, magnesium and foliar 

sulfur, fresh weight of shoots (FWS), dry weight of shoots (DWS), green pods per plant (GPP), dry 
beans per plant (DBP); pod yield (PY); and bean yield (BY) for each treatment, Rorainópolis - RR, 
2013. 

Variables Ca Mg S FWS DWS GPP DBP PY BY 
Urea 

P 0,78 -0,90* -0,21 -0,44 -0,44 -0,14 0,20 -0,01 0,30 
K -0,23 0,50 -0,64 -0,40 -0,40 -0,67 -0,92* 0,35 0,50 
Ca 1 -0,95* -0,44 -0,33 -0,33 -0,17 -0,09 0,51 0,41 
S - - 1 0,68 0,68 0,73 0,79 -0,61 -0,96** 
FWS - - - 1 0,99** 0,94* 0,68 0,08 -0,62 
DWS - - - - 1 0,94* 0,68 0,08 -0,62 

Ammonium sulphate 
Ca 1 -0,44 -0,92* 0,11 0,11 0,38 0,38 0,68 0,36 
S - 0,41 1 0,01 0,01 -0,51 -0,51 -0,90* -0,27 
FWS - -0,01 - 1 0,99** 0,40 0,41 0,01 0,54 

Inoculant (Bradyrhizobium elkanii) 
N 0,41 0,48 0,71 -0,98** -0,98** -0,44 -0,80 -0,50 -0,61 
Mg 0,86 1 0,88* -0,61 -0,61 0,10 -0,63 -0,30 -0,31 
S 0,73 - 1 -0,81 -0,81 -0,29 -0,91* -0,67 -0,56 
FWS -0,50 - - 1 0,99** 0,37 0,85 0,53 0,64 

Control 
N 0,11 -0,58 -0,02 0,01 0,01 0,59 0,80 -0,92* 0,23 
K -0,90* 0,73 0,47 0,78 0,78 0,64 -0,21 0,27 0,08 
Ca 1 -0,44 -0,05 -0,94* -0,94* -0,45 -0,07 -0,17 -0,30 
FWS - 0,23 -0,14 1 0,99** 0,42 0,19 0,13 0,56 

* significant at 5% probability by T test; ** significant at 1% probability by T test 
 

CONCLUSIONS 
 

Urea and ammonium sulphate promote 
accumulation of macronutrients in leaves and the 
development of cowpea. 

Ammonium sulphate increases yield of 
beans and pods, and it is a viable nitrogen and sulfur 
source for cowpea production in the Amazon region. 

The nodulation with Bradyrhizobium elkanii 
wasn’t efficient to replace the fertilization with 
nitrogen fertilizers for cowpea BRS Guariba. 

 
 
RESUMO: O feijão-caupi é uma das principais alternativas alimentares para as populações das regiões norte e 

nordeste do Brasil, sendo consumido na forma de grãos verdes ou maduros. Apesar da importância social e da origem 
tropical, a espécie apresenta baixa produtividade na região amazônica, incluindo o estado de Roraima, devido à baixa 
qualidade agronômica e manejo incorreto do solo. O objetivo do trabalho foi caracterizar o desenvolvimento da cultura do 
feijão-de-corda com duas diferentes fontes de nitrogênio (N) tratadas com inoculante. O experimento foi realizado no 
município de Rorainópolis (RR). O delineamento foi em blocos casualizados, com quatro tratamentos e cinco repetições. 
Foi utilizada a cultivar de feijão-caupi ‘BRS Guariba’. Os tratamentos foram: testemunha (ausência de adubação 
nitrogenada), inoculante Bradyrhizobium elkanii, 60 kg ha-1 de N provenientes da uréia e 60 kg ha-1 de N da fonte sulfato 
de amônio. Foram avaliados os teores foliares de macronutientes (N, P, K, Ca, Mg e S), peso da massa verde e seca da 
parte aérea, número de grãos secos por planta, produção de vagens e produção de grãos. Em relação ao acúmulo de 
nutrientes a uréia e sulfato de amônio foram as fontes que apresentaram desempenho superior. Em relação as 



1254 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

características produtivas, o sulfato de amônio foi o que mais se destacou, sendo uma fonte viável de suprimento de N para 
o feijão-caupi na região amazônica. A nodulação com Bradyrhizobium elkanii não foi eficiente para substituir a adubação 
com fertilizantes nitrogenados para o feijão-caupi BRS Guariba. 

 

PALAVRAS-CHAVE: Adubação. Bradyrhizobium elkanii. Vigna unguiculata. 
 
 

REFERENCES 
 
ALI, S. F.; RAWAT, L. S.; MEGHVANSI, M. K.; MAHNA, S. K. Selection of stress-tolerant rhizobial isolates 
of wild legumes growing in dry regions of Rajasthan, India. Journal of Agricultural and Biological Science, 
v. 4, p. 13-18, 2009. 
 
AMBROSANO, E. J.; TANAKA, R. T.; MASCARENHAS, H. A. A.; RAIJ, B. van; QUAGGIO, J. A.; 
CANTARELLA, H. Leguminosas e oleaginosas. In: RAIJ, B. van; CANTARELA, H.; QUAGGIO, J. A.; 
FURLANI, A. M. C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. rev. 
Campinas: IAC, 1997. p. 189-203. 
 
BRITO, M. M. P.; MURAOKA, T.; SILVA, E. C. Contribuição da fixação biológica de nitrogênio, fertilizante 
nitrogenado e nitrogênio do solo no desenvolvimento de feijão e caupi. Bragantia. Instituto Agronômico da 
Agência Paulista de Tecnologia dos Agronegócios, Campinas, v. 70, n. 1, p. 206-215, 2011. 
 
CHAGAS-JUNIOR, A. F.; RAHMEIER, W.; FIDELIS, R. R.; SANTOS, G. R.; CHAGAS, L. F. B. Eficiência 
agronômica de estirpes de rizóbio inoculadas em feijãocaupi no Cerrado, Gurupi-TO1. Revista Ciência 
Agronômica. Universidade Federal do Ceará, Fortaleza, v. 41, n. 4, p. 709-714, dez. 2010.  
 
CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra Brasileira: grãos, quinto 
levantamento, fevereiro de 2016. available in: www.conab.gov.br. Access: 25 fev. 2016. 
 
CRAWFORD, N. M.; KAHN, M. L.; LEUSTEK, T.; LONG, S. R. Nitrogen and sulphur. In: BUCHANAN, 
B.B.; GRUISSEM, W.; JONES, R. L. (Ed). Biochemistry and molecular biology of plants. Rockville: 
American Society of Plant Phusiologists, 2000. chap. 16, p. 786-849. 
 
FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia. Univ. Fed. De 
Lavras, Lavras, v. 35, n. 6, p. 1039-1042. 2011. 
 
FREIRE FILHO, F. R.; LIMA, J. A. A.; RIBEIRO, V. Q. Feijão-caupi: avanços tecnológicos: Embrapa 
Informação Tecnológica, Brasília, p. 191-210, 2005. 
 
GONÇALVES, J. R. P.; FONTES, J. R. A.; DIAS, M. C.; ROCHA, M. M.; FREIRE FILHO, F. R. BRS 
Guariba – Nova Cultivar de Feijão-caupi para o Estado do Amazonas. Embrapa Amazônia Ocidental, 
Comunicado Técnico, 76, 2009. 
 
GUALTER, R. M. R.; LEITE, L. F. C; ALCANTARA, R. M. C. M.; COSTA, D. B.; LIMA, S. S. Avaliação 
dos efeitos da inoculação de Feijão-caupi (Vigna unguiculata Walp) com Bradyrhizobium elkanii. Revista 
Brasileira de Agroecologia. Iniv. Fed. Do Rio Grande do Sul, v. 2, n. 2, p. 637 – 640, 2007. 
 
HOROWITZ, N.; MEURER, E. J. Oxidação do enxofre elementar em solos tropicais. Ciência Rural. Univ. Fed. 
De Santa Maria, Santa Maria, v. 36, p. 822-828, 2006. https://doi.org/10.1590/S0103-84782006000300015 
 
HUNGRIA, M.; CAMPO, R. J.; MENDES, I. C. Fixação biológica do nitrogênio na cultura da soja. Londrina: 
Embrapa Soja. Circular técnica, n. 35. 2001. 48p. https://doi.org/10.1016/S0378-4290(99)00084-2 
 
HUNGRIA, M.; VARGAS, M. A. T. Environmental factors affecting N2 fixation in grain legumes in the 
tropics, with an emphasis on Brazil. Field Crops Research, v. 65, p. 151-164, 2000. 



1255 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

 
MALAVOLTA, E.; MORAES, M. F. Fundamentos do nitrogênio e do enxofre na nutrição mineral das plantas 
cultivadas. In: YAMADA, T.; ABDALLA, S. R. S.; TITTI, G. C. (Org). Nitrogênio e enxofre na agricultura 
brasileira. Piracicaba: IPNI, 2007. p. 189-238. 
 
MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. (Ed.). Avaliação do estado nutricional de plantas: 
princípios e aplicações. 2.ed. Piracicaba: Potafós, 1997. 319p. 
 
MARINHO, R. C. N.; NÓBREGA, R. S. A.; ZILLI, J. E.;  XAVIER, G. R.; CARLOS ANTÔNIO 
FERNANDES SANTOS; AIDAR, S. T.;  MARTINS, L. M. V.; FERNANDES JÚNIOR, P. I. Field 
performance of new cowpea cultivars inoculated with efficient nitrogen-fixing rhizobial strains in the Brazilian 
Semiarid. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 5, p. 395-402, 2014. 
https://doi.org/10.1590/S0100-204X2014000500009 
 
NETO, J. D.; SANTOS, M. A. dos; SOARES, A. C.; NETO, F. da C. M.; SOUZA, C. M. de. Avaliação do 
sistema radicular e eficiência nutricional de cálcio e magnésio em mudas de Coffea arabica e Coffea 
canephora. Revista Verde, v. 9 , n. 3 , p. 307 - 312, 2014. 
 
NEVES, M. C. P.; RUMJANEK, N. G. Diversity and adaptability of soybean and cowpea rhizobia in tropical 
soils. Soil Biology and Biochemistry, v. 29, n. 5/6, p. 889-895, 1997. https://doi.org/10.1016/S0038-
0717(96)00205-2 
 
NEVES, O. S. C.; CARVALHO, J. G. de; FERREIRA, E. V. de O.; ASSIS, R. P. de. Nutrição mineral, 
crescimento e níveis críticos foliares de cálcio e magnésio em mudas de umbuzeiro, em função da calagem. 
Revista Ceres, Viçosa, v. 55, n. 6, p. 575-583, 2008. 
 
NOVAIS, R. F.; VENEGAS, V. H. A.; BARROS, N. F.; FONTES, R. L. F.; CANTARUTTI, R. B.; NEVES, J. 
C. L. (Ed.) Fertilidade do Solo. Viçosa: SBCS, 2007. 1017p. 
 
PANAULLAH, G. M.; TIMSINA, J.; SALEQUE, M. A.; ISHAQUE, M.; PATHAN, A. B. M. B. U.; 
CONNOR, D. J.; SAHA, P. K.; QUAYYUM, M. A.; HUMPHREYS, E.; MEISNER, C. A. Nutrient uptake and 
apparent balances for rice-wheat sequences. III. Potassium. Journal of Plant Nutrition, v. 29, p. 173-187, 
2006. https://doi.org/10.1080/01904160500416554 
 
PEGORARO, R. F.; OLIVEIRA, D.; MOREIRA, C. G.; KONDO, M. K.; PORTUGAL, A. F. Partição de 
biomassa e absorção de nutrientes pelo feijoeiro comum. Revista Caatinga, Mossoró, v. 27, n. 3, p. 41 – 52, 
2014. 
 
RAZA, S.; JORNSGARD, B.; ABOU-TALEB, H.; CHRISTIANSEN, J. L. Tolerance of Bradyrhizobium sp. 
(Lupini) strains to salinity, pH, CaCO3 and antibiotics. The Society for Applied Microbiology, Letters in 
Applied Microbiology, v. 32, p. 379-383, 2001. https://doi.org/10.1046/j.1472-765X.2001.00925.x 
 
RODRIGUES, C. S.; LARANJO, M.; OLIVEIRA, S. Effect of heat and pH stress in the growth of chickpea 
mesorhizobia. Current Microbiology, v. 53, p. 1-7, 2006. https://doi.org/10.1007/s00284-005-4515-8 
 
RODRIGUES, G. B.; SÁ, M. E. de; VALÉRIO FILHO, W. V.; BUZETTI, S. BERTOLIN, D. C.; PINA, T. P. 
Matéria e nutrientes da parte aérea de adubos verdes em cultivos exclusivo e consorciado. Revista Ceres, 
Viçosa, v. 59, n. 3, p. 380-385, 2012. 
 
SILVA JÚNIOR, E. B.; SILVA, K.; OLIVEIRA, S. S.; OLIVEIRA, P. J.; BODDEY, R. M.; ZILLI, J. E.; 
XAVIER, G. R. Nodulação e produção de feijão caupi em resposta à inoculação com diferentes densidades 
rizobianas. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 10, p. 804-812, out. 2014. 
https://doi.org/10.1590/S0100-204X2014001000007 
 



1256 
Seeds inoculation and nitrogen fertilization…  MOREIRA, V. B. et al. 

Biosci. J., Uberlândia, v. 33, n. 5, p. 1249-1256, Sept./Oct. 2017 

SOUZA, M. D. M.; CARVALHO, C. M.; SABINO, R. K.; LOPES, P. H.; ALCÂNTARA, V. S.; SILVESTRE, 
A. C. A. Efeito da adubação potássica no crescimento do feijão de corda preto. Rev. Bras. Agric. Irrigada.   
Fortaleza, v. 7, n. 1, p. 66 – 73. 
 
TAGLIAFERRE, C.; SANTOS, T. J.; SANTOS, L. da C.; SANTOS NETO, I. J. dos; ROCHA, F. A.; PAULA, 
A. de. Características agronômicas do feijão-caupi inoculado em função de lâminas de irrigação e de níveis de 
nitrogênio. Revista Ceres, Viçosa, v. 60, n. 2, p. 242-248, 2013. 
 
VALE JÚNIOR , J. F.; SOUZA, M. I. L.; NASCIMENTO, P. P. R. R.; CRUZ, D. L .S. Solos da Amazônia: 
etnopedologia e desenvolvimento sustentável. Revista Agro@mbiente On-line, Roraima, v. 5, n. 2, p.158-
165, agos, 2011. 
 
VIANA, E. M.; KIEHL, J. C. Doses de nitrogênio e potássio no crescimento do trigo. Bragantia, Campinas, v. 
69, n. 4, p. 975-982, 2010. 
 
XAVIER, T. F.; ARAÚJO, A. S. F.; SANTOS, V. B.; CAMPOS, F. L. Inoculação e adubação nitrogenada 
sobre a nodulação e a produtividade de grãos de feijão-caupi. Ciência Rural, Santa Maria, v. 38, n. 7, p. 2037 - 
2041, 2008. https://doi.org/10.1590/S0103-84782008000700038 
 
ZILLI, J. E.; VILARINHO, A. A.; ALVES, J. M. A. A Cultura do Feijão - Caupi na Amazônia Brasileira. 
Embrapa Roraima, RR, 356 p. 2009. 
 
ZILLI, J. E.; VALICHESKI, R. R.; RUMJANEK, N .G.; SIMÕES-ARAÚJO, J. L.; FREIRE FILHO, F. R.; 
NEVES, M. C. P. Eficiência simbiótica de estirpes de Bradyrhizobium isoladas de solo do cerrado em feijão-
caupi. Pesquisa Agropecuária Brasileira, Brasília, v. 41, n. 5, p. 811-818, 2006. 
https://doi.org/10.1590/S0100-204X2006000500013