Microsoft Word - 6-Agra_36735


1452 
Original Article 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

INFLUENCE OF CLIMATE VARIABLES IN THE INITIAL GROWTH OF 
Corymbia citriodora AND DIFFERENT SPECIES OF EUCALYPTUS 

 
INFLUÊNCIA DAS VARIÁVEIS CLIMÁTICAS NO CRESCIMENTO INICIAL DE 

Corymbia citriodora E DIFERENTES ESPÉCIES DE EUCALIPTO 
 

Nerison Luís POERSCH1; Luiz Roberto Terra FRANÇA FILHO2; Eder Pereira MIGUEL3; 
Gustavo Henrique Miguel da CRUZ4; Karine Letícia FRANCISQUETTE5;  

Sâmela Beutinger CAVALHEIRO6 
1. Professor Adjunto da Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, MS, Chapadão do Sul, MS, Brasil. 

nerisonp@yahoo.com.br; 2. Acadêmico do Curso de Agronomia da Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do 
Sul, Chapadão do Sul, MS, Brasil; 3. Professor Adjunto da Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, DF, 
Brasil; 4. Acadêmico do Curso de Engenharia Florestal da Universidade Federal de Mato Grosso do Sul, Campus de Chapadão do Sul, 

Chapadão do Sul, MS, Brasil; 5. Acadêmica do Curso de Engenharia Florestal da Universidade Federal de Mato Grosso do Sul, Campus de 
Chapadão do Sul, Chapadão do Sul, MS, Brasil; 6. Acadêmica do Curso de Mestrado em Agronomia da Universidade Federal de Mato 

Grosso do Sul, Campus de Chapadão do Sul, Chapadão do Sul, MS, Brasil. 
 

ABSTRACT: This work aimed to analyze possible differences in growth patterns on Eucalyptus species and to 
identify the determinants climatic variables on the growth. We evaluated six Eucalyptus species (Eucalyptus camaldulensis, 
Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus saligna, Corymbia citriodora and Eucalyptus globulus) and a Clone 
(GG100) implanted in an experimental arrangement of randomized blocks. We collected the collar diameter and height of all 
plants monthly in the course of a year, in addition to climate data (minimum temperature, maximum and rainfall). Sequentially, 
we obtained the correlations between the current monthly increments (collar diameter and height) and climatic variables 
(minimum temperature, maximum and rainfall). The Current Monthly Increment of the Collar diameter (CMI D) was not 
correlated to the climatic variables evaluated and the Current Monthly Increment of the Height (CMI H) was strongly 
correlated to the minimum temperature for the species E. camaldulensis, C. citriodora, E. saligna, E. urophylla, E. grandis and 
the GG100 Clone. The Rainfall showed positive correlations regarding the CMI H only for the Clone (GG100) and E. 
urophylla. Finally, the species E. camaldulensis, E. urophylla, E. grandis, E. saligna presented a mortality rate under 10% 
which is recommended according to the silvicultural criteria. 
 

KEYWORDS: Forestry populations. Collar diameter. Plant height. Cerrado. 
 
INTRODUCTION 

 
Eucalypts originate in Australia, Indonesia, 

and New Guinea. Eucalyptus spp. were introduced to 
Brazil in the nineteenth century. The first eucalypts 
may have been planted in the Botanical Gardens of 
Rio de Janeiro in 1825 as ornamentals and wind 
breaks (PEREIRA et al., 2000). 
 As of 2013, 7.60 million ha were used for 
agriculture in Brazil. The forestry sector contributed 
$56 billion to the gross national product (GNP) of 
Brazil. This value represents 1.2% of the total national 
income and 24% of the GNP derived from the 
agricultural sector. As of 2013, every hectare of trees 
planted in Brazil added $7.4 million annually to the 
GNP. By comparison, soybean, an important crop, 
added $4.8 million/y/ha and cattle raising contributed 
$2.5 million/y. Eucalyptus plantations constitute 
approximately 70% of the total forestry GNP (IBÁ, 
2014).  

Eucalyptus is the most commonly planted tree 
in the tropics (EPRON et al., 2013) because of its 
rapid growth, productivity, adaptability, diversity, and 
wide range of uses. In Brazil, the total area planted 
with Eucalyptus is 5.1 million ha. The states of Minas 
Gerais, São Paulo, Bahia, Mato Grosso do Sul, Rio 
Grande do Sul, Espirito Santo, and Paraná have 83.6% 
of the eucalyptus plantations (ANUÁRIO 
ESTATÍSTICO DA ABRAF, 2013).  
 The Cerrado is the second largest biome in 
Brazil. The largest is the Amazon Forest. The Cerrado 
is found in the states of Goias, Mato Grosso, Mato 
Grosso do Sul, Minas Gerais, Tocantins, Bahia, 
Maranhao, Piaui, Rondonia, Paraná, São Paulo, 
Distrito Federal, and in parts of Amapa, Roraima, and 
Amazonas. It is characterized by nutrient-poor soil 
and seasonal water deficits (MINISTÉRIO DO MEIO 
AMBIENTE, 2015). 
 The climate of Chapadão do Sul is mainly 
seasonal tropical with dry winters. The annual average 

Received: 17/01/17 
Accepted: 05/07/17 



1453 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

temperature range is 22-23 ºC. The maximum 
temperature is > 40 °C throughout the year. The 
minimum temperatures vary frequently and descend to 
≤ 0 °C in May, June, and July. The average rainfall 
ranges from 1200-1800 mm during the wet season 
(October to March). Short drought periods known as 
“Indian summers” may occur in the middle of the wet 
season and are problematic for agriculture. Between 
May to September, monthly rainfall decreases 
significantly and may decline to zero. The relative 
humidity falls to 15% (MARCUZZO et al., 2012). 

There is little information concerning 
eucalyptus adaptation to the Cerrado environment. 
The eucalyptus species introduced in Brazil have high 
genetic variability and are amenable to genetic 
improvement programs (FONSECA et al., 2010). 
Advances have been made in terms of species 
characterization, cultivation methods, product quality, 
propagation, hybridization, and cloning. It is now 
possible to generate hybrids in both the greenhouse 
and the field via floral induction on grafted genitors 
(ROCHA et al., 2007). Although more than seven 
hundred Eucalyptus species have been identified, only 
a few with particular traits and target uses are being 
raised on the plantations. Among these are Corymbia 
citriodora (formerly, Eucalyptus citriodora), E. 
grandis, E. saligna, E. urophylla, E. camaldulensis, 
and E. globulus.  

Species selection is the first step in 
reforestation and is determined by the end use of the 
trees (wood, coal, cellulose) and the edaphoclimatic 
(soil and climate) conditions of the region. It is 
necessary to investigate how different genotypes 
derived from seed or vegetative propagation adapt to 
various environments (ALCANTRA et al., 2015). 
Therefore, an objective of this study was to determine 
empirically the conditions required to optimize new 
eucalyptus plantations in this region. Although several 
eucalyptus species have not yet been assessed, some 
of them could nonetheless be productive in the 
Brazilian Cerrado. Another goal was to identify 
seasonal differences in the growth patterns and 
adaptability of eucalyptus and the climatic conditions 
that determine tree growth. 

 
MATERIAL AND METHODS 

 
The experiment began in January 2014 in the 

experimental area of the University of Mato Grosso 
do Sul, Chapadão do Sul Campus, located in the town 
of Chapadão do Sul. The altitude is 820 m. The soil is 

classified as a red latosol (average texture). According 
to the Köppen classification system (1936), the 
climate is tropical humid (Aw) with a wet season from 
October to April and a dry season between May and 
September. The average rainfall ranges from 750-
1,800 mm/y, and the annual average temperature 
ranges from 20-25 ºC. 
 Measurements started in August 2014, seven 
months after the installation of the experiment. All 
specimens passed the seedling, development, and 
hardening stages over a four-month period in a 
nursery/greenhouse. Six eucalyptus species were used: 
Eucalyptus camaldulensis, E. grandis, E. urophylla, 
E. saligna, Corymbia citriodora, E. globulus, and a 
clone designated GG100, which is a hybrid of E. 
urophylla obtained by vegetative propagation. A 
randomized block design was used with four 
replicates. There were 3-m gaps between rows and 2-
m intervals between plants. Each plot consisted of 
four rows of seven trees each, for a total of 28 trees 
per plot.  
 We collected both dendrometric and climatic 
data. The dendrometric data included the collar 
diameter (sD) and the plant height (Ht). 
Measurements were made on all trees in each plot on 
the fifteenth day of every month between August 2014 
and July 2015 inclusive. A digital caliper with 
millimeter precision (ZaaS Precision, Brazil) was used 
to measure stem diameters. Readings were then 
converted to centimeters. Plant heights in meters were 
obtained using a 15-m telescopic ruler. All climate 
data were collected daily. A max-min thermometer 
was installed in a white shelter and used for 
temperature measurements, and rainfall was measured 
using a pluviometer installed near the experimental 
site. 
 All fertilization requirements were 
determined from chemical analyses of the soil. The 
following results were obtained: pH (CaCl2), 4.9; 
organic matter, 31.5 g dm-3; phosphorus, 13.6 mg dm-
3; hydrogen + aluminum ratio (H + Al), 5.4; 
potassium, 0.29 cmol-dm-3; calcium, 2.8 cmolc dm-3; 
magnesium, 0.5 cmolc dm-3; cation exchange capacity 
(CEC), 9.0 cmolc dm-3; and percentage saturation per 
base (V), 39,9. The proportions of clay, sand, and silt 
were 46%, 46%, and 8%, respectively. Crowning, 
hoeing, ant control and herbicide (glyphosate) 
application were performed when necessary.  
 The data was tabulated in Microsoft Excel. 
ANOVA was performed to identify any significant 
differences in the average increases in collar diameter 



1454 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

and plant height during the evaluation period. 
ANOVA and Tukey’s test were run to determine 
survival rates in the final month (July 2015). Pearson 
correlation coefficients (r) were calculated to verify 
the influence of temperature and rainfall on the 
increases in collar diameter and plant height. They can 
also be evaluated qualitatively on the basis of intensity 
according to the criteria proposed by Callegari-
Jacques (2003). All statistical analyses were 
performed with the Genes Computer Software 
(CRUZ, 2006). Linear correlations were rated as 
follows: 
-- 0.00 < r < 0.30: weak;  
-- 0.30 ≤ r < 0.60: moderate;  
-- 0.60 ≤ r < 0.90: strong;  
-- 0.90 ≤ r < 1.00: very strong. 

 
RESULTS AND DISCUSSION 
 
Monthly Growth of the Eucalyptus species/clone 

Average collar diameters and plant heights 
were determined from the data collected over a 
twelve-month period (Table 1). As of August 2014 
(dry season), E. urophylla, E. camaldulensis, E 
grandis, and E. saligna had the largest average collar 
diameters. The clone (GG100), E. globulus, and C. 
Citriodora had the smallest average collar diameters. 

As of January 2015 (wet season), E. 
urophylla, E. camaldulensis, E. grandis, and E. 
saligna had the highest collar diameter increase rates. 
Therefore, there was no significant difference in the 
data between the two seasons. In the wet season, C. 
citriodora, E. globulus, and GG100 had the largest 
collar diameters.  

In July 2015, one year after the first 
evaluation, E. urophylla, GG100, E. grandis, E. 
camaldulensis, and E. saligna had the largest collar 
diameters. E. globulus and C. citriodora had the 
smallest average collar diameters. Therefore, there 
were no significant changes in collar diameter among 
the species evaluated during the period August 2014 
(dry season)--January 2015 (wet season)--July 2015 
(dry season). Only GG100 had significantly increased 
in average collar diameter by the last evaluation (July 
2015).  
As for the growth averages of plant height (Table 1), 
it is observed that on August of 2014 (Dry season), 
the species/clone that obtained the best averages were 

E. camaldulensis, E. urophylla and E. grandis. In 
other hand, the Clone (GG100) obtained the lower 
rate for height of the plants, not differing from the E. 
globulus. On January of 2015 (six months after the 
first evaluation – Wet season), the higher rates for 
plant height were for the E. camaldulensis, E. 
urophylla, E. grandis, Clone (GG100), E. saligna and 
C. citriodora species, highlighting the Clone (GG100) 
that presented a quick growth, as expected. The best 
averages for the plant height were verified for E. 
globulus and C. citriodora. 

In July 2015, E. grandis, E. saligna, GG100, 
E. urophylla, and E. camaldulensis had the highest 
average plant heights, and E. globulus, C. Citriodora, 
and E. camaldulensis had the lowest (Table 1). 

Quiqui et al. (2001) evaluated twelve 
Eucalyptus species in Paraná (Brazil) over a one-year 
period. E. grandis had the largest diameter, height, 
and volume, and Corymbia citriodora had the lowest 
collar diameter growth rate. Silva et al. (1992) studied 
five Eucalyptus species in Lassance (Minas Gerais, 
Brazil) and found that E. camaldulensis had the 
greatest height increase rate. Azevedo et al., (2015) 
reported that E. calmaldulensis adapted well to the 
Cerrado soils in the state of Mato Grosso.  

According to the collar diameter and plant 
height data, after twelve months, the best-adapted 
species were E. urophylla, E. camaldulensis, E. 
grandis, E. saligna, and GG100. 
 
Current Monthly Increment (CMI) for collar 
diameter and plant height  

The current monthly increment (CMI) is a 
measure of the monthly growth rate of the tree 
species. It indicates their responses to the climatic and 
edaphic conditions of their environment. The average 
CMI was calculated for the collar diameter and the 
plant height (Figures 1A and 1B). 

Figure 1A represents the current monthly 
increments for collar diameter (CMI D) over twelve 
months. Maximum increases in collar diameter 
growth were observed in December 2014 and January 
2015. In both April and May 2015, CMI D decreased 
then increased once again in June and July 2015. Fig. 
1B illustrates the current monthly increments for plant 
height (CMI H). The plant height growth rate reached 
a maximum in April 2015 then decreased in June and 
July 2015. 

 
 



1455 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

Table 1. Averages obtained for the species/clone evaluated during 12 months, regarding collar diameter (cm) and plant height (m), in Chapadão do Sul, 
Mato Grosso do Sul, Brazil.  

*Averages followed by the same letter do not differ by the Tukey test 5% of error probability.  
  
 

 Diameter (cm) 
Species/Clone Aug/14 Sep/14 Oct/14 Nov/14 Dec/14 Jan/15 Feb/15 Mar/15 Apr/15 May/15 Jun/15 Jul/15 
E. urophylla 3,35 a* 3,82 a 4,48 a 5,20 a 6,31 a 7,48 a 8,21 a 8,82 a 9,07 a 9,62 a 10,31 a 10,98 a 
E. camaldulensis 3,35 a  3,92 a 4,48 a 5,07 a 5,79 ab 6,82 ab  7,45 ab 7,90 abc 8,34 ab 8,97 a 9,59   a 10,27 a 
E. grandis 2,57 ab 3,45 ab 4,09 a 4,70 ab 5,70 ab 6,87 ab 7,67 ab 8,19 ab 8,71 a 9,31 a 9,94   a  10,69 a 
E. saligna 2,43 ab 2,96   bc  3,62 ab 4,27 abc 5,30 abc 6,54 abc 7,13 abc 7,66 abc 8,16 abc 8,73 ab 9,36   a 9,99   a 
E. globulus 1,86   bc 2,36    cd 3,01   bc 3,68   bc 4,74   bc 5,62  bc 6,36   bc 6,83   bc 7,02   bc 7,46   bc 7,79    b 8,40   b 
C. citriodora 1,72   bc  2,14    cd 2,75   bc 3,39    c 4,21     c 5,25    c 5,82     c 6,64     c 6,98     c 7,22     c 7,80    b 8,54   b    
Clone GG100 1,41     c 1,81     d 2,51     c 3,16    c 4,42     c 5,81  bc 6,60   bc 7,54 abc 8,05 abc 8,90 a 9,75   a 10,78 a 
 Height (m) 
E. camaldulensis 2,15 a 2,43 a 2,78 a 3,08 ab 3,54 a 4,02 a 4,54 ab 5,00 ab 5,72 ab 6,02 abc 6,33 abc 6,56abc 
E. urophylla 1,81 ab 2,07 ab 2,47 ab 2,85 abc 3,49 ab 4,05 a 4,65 ab 5,22 ab 5,97 ab 6,33 ab 6,69 ab 6,96 ab 
E. grandis 1,77 ab 2,18 ab 2,74 a 3,21 a 3,69 a 4,27 a 5,03 a 5,68 a 6,62 a 6,99 a 7,34 a 7,62 a 
E. saligna 1,44   bc 1,88   bc 2,36 ab 2,81 abc 3,29 ab 3,88 a 4,57 ab 5,17 ab 6,15 ab 6,85 a 7,10 a 7,29 ab 
C. citriodora 1,36     c 1,64  bcd   2,07 ab 2,42 abc 2,95 ab 3,63 ab 4,23   bc 4,58   bc 5,16   bc 5,38   bc 5,70   bc 5,99 bc   
E. globulus 1,24     cd 1,48    cd     1,83   b 2,13     c 2,54   b 3,05   b 3,57     c 3,92     c 4,37     c 4,95     c 5,22     c 5,45 c    
Clone GG100 0,89      d 1,21     d 1,78   b 2,33   bc 3,14 ab 3,91 a 4,78 ab 5,40 ab 6,32 a 6,74 a 6,98 ab 7,24 ab 



1456 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

Figure 1. Current Monthly Increments (CMI). A: collar diameter, and B: plant height of the eucalyptus species 
evaluated over twelve months, in Chapadão do Sul, Mato Grosso do Sul, Brazil. 

 
Machado et al., (2014) studied juvenile Pinus 

taeda and Araucaria angustifolia and found that for 
both species, growth rates decreased with temperature 
and were lowest in the coldest months. 
 Collar diameter and plant height increase rates 
vary between seasons and are inversely proportional 
to each other. According to Charrier et al. (2015), 
plant height is more affected by climate than collar 
diameter. The apical meristems are more exposed to 
the environment than the lateral meristems, and the 
latter are protected by relatively thick layers of bark.  
 
Survival Rate 

To determine how well the species adapted to 
the environment, their survival rates were determined 
at the end of the twelve-month evaluation period. 

Table 2 shows that according to Tukey’s test, 
E. camaldulensis, E. urophylla, E. grandis, E. saligna, 
and GG100 did not differ statistically in terms of 

survival rate. Nevertheless, E. camaldulensis, E. 
urophylla, and E. grandis (mortality rates < 5%) and 
E. saligna (mortality rate < 9%) were adequately 
adapted to the environment. Queiroz et al. (2007) 
reported survival rates of 98.43%, 96.9%, and 96.6% 
for E. grandis, E. camaldulensis, and the hybrid E. 
grandis x E. urophylla, respectively, two months after 
transplantation. Matos et al. (2012) indicated low 
mortality rates for juvenile E. calmaldulensis and E. 
grandis in northeastern Pará, Brazil.  
 According to Silva and Angeli (2006), 
mortality rates < 10% are preferable for silviculture. 
Mortality rates > 10% result in lost productivity and 
call for reforestation techniques if detected within 
thirty days. Clone GG100 presented mortality rates > 
16%, so it was moderately adapted to the 
environment. Neither C. citriodora nor E. globulus 
adapted to the environment. 

 
Table 2. Average eucalyptus survival rates (%) at the end of twelve months evaluation in Chapadão do Sul, Mato 

Grosso do Sul, Brazil.  

* Averages followed by the same letter do not significantly differ at the 5% probability level according to Tukey’s test. 
 
Relation between the Current Monthly 
Increments (CMI) and the climatic variables 

Figure 2 lists the CMI D and the CMI H with 
temperature (A) and rainfall (B) for the species 
evaluated.  

Species/Clone Survival Rate (%) 
E. camaldulensis   96,43  a* 
E. urophylla 96,43  a 
E. grandis 96,43  a 
E. saligna 91,96  a 
Clone GG100 83,03  a 
C. citriodora 52,68  b 
E. globulus 41,96  b 



1457 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

 
 

 
 

Figure 2. Current monthly increments for collar diameter (CMI D) and height (CMI H) as functions of temperature (A) and rainfall (B) for E. 
camaldulensis and E. globulus in Chapadão do Sul.   



1458 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

 
 

 
 

 
Figure 2. Continuation... Current monthly increments for collar diameter (CMI D) and height (CMI H) as functions of temperature (A) and rainfall (B) for 

C. citriodora and GG100 in Chapadão do Sul. 
 



1459 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

 
 

 

 
 

 
Figure 2. Continuation... Current monthly increments for collar diameter (CMI D) and height (CMI H) as functions of temperature (A) and rainfall (B) for 

E. saligna and E. urophylla in Chapadão do Sul.  
 
 



1460 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

 

 Figure 2. Continuation... Current monthly increments for collar diameter (CMI D) and height (CMI H) as functions of temperature (A) and rainfall (B) for 
E. grandis in Chapadão do Sul. 



1461 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

There were collar diameter growth rate 
maxima for all species in December 2014 and 
January 2015, possibly due to high soil moisture 
levels. Rainfall was elevated in the preceding 
months (November 2014 and December 2014), and 
the average minimum temperatures were relatively 
high in January 2015. Therefore, both rainfall and 
temperature may be positively correlated with collar 
diameter. 

The collar diameter growth peaks in 
December and January are associated with high 
precipitation levels and minimal average 
temperature increases (DREW et al., 2009). The 
collar diameter growth rate is highly temperature-
regulated (DREW et al., 2008, SETTE JR et al., 
2010). In the present study, it was observed that the 
number of photosynthesis was higher than that of 
the other species. 

In March and April 2015, CMI D decreased 
significantly, but CMI H reached their maxima (Fig. 
2). Therefore, collar diameter growth rates increased 
before those of plant height. Lower collar diameter 
increments were noted during plant height growth 

peaks for E. camaldulensis, GG100, E. saligna, E. 
urophylla, and E. grandis. Conversely, plant height 
growth rates were not necessarily at their lowest 
when collar diameter increments were at a 
maximum (Figure 2). 

After the onset of the dry season/winter in 
May 2015, the collar diameter increments increased 
and the plant height increments decreased. 
Apparently, the reductions in rainfall and 
temperature negatively influenced plant growth. In 
this study, the correlations between the climatic 
variables and the growth rate changes (CMI D and 
CMI H) were estimated.  

The current monthly increment of the collar 
diameter (CMI D) was only weakly correlated with 
the four climatic variables (not significant) (Table 
3). None of them significantly affected collar 
diameter growth rates during the experiment. Sette 
Junior et al. (2012) obtained similar results when 
correlating climatic variables and diameter growth 
rate increments of eucalypts in the state of São 
Paulo.

 
Table 3. Pearson correlation matrix of the average current monthly increments (CMI) for the collar diameter 

and plant height and the climatic variables. 
Species/Clone Variables CMI H1 Min. T.  Max. T.  Ave. T.  Rain. 

E. camaldulensis 
ICM D 0,45 0,35 -0,27 0,11 0,10 
ICM H  0,65* 0,05 0,48 0,54 

E. globulus 
ICM D 0,51 0,56 -0,08 0,35 0,35 
ICM H  0,38 -0,25 0,14 0,37 

C. citriodora 
ICM D 0,66* 0,56 -0,12 0,33 0,31 
ICM H  0,76** 0,06 0,56 0,39 

Clone (GG100) 
ICM D 0,49 0,31 -0,43 0,01 0,22 
ICM H  0,80** 0,12 0,62* 0,65* 

E. saligna 
ICM D 0,38 0,48 -0,14 0,27 0,21 
ICM H  0,60* 0,11 0,47 0,53 

E. urophylla 
ICM D 0,48 0,44 -0,29 0,16 0,26 
ICM H  0,67* -0,03 0,45 0,62* 

E. grandis 
ICM D 0,38 0,48 -0,12 0,28 0,13 
ICM H  0,70* 0,19 0,58* 0,56 

1 CMI D= current monthly increment for collar diameter (cm); CMI H = current monthly increment for height; Min. T. = monthly 
average minimum temperature (ºC); Max. T. = monthly average maximum temperature (ºC); Ave. T. = monthly average temperature 
(ºC); Rain. = rainfall (mm).;** and *= significant at 1% and 5% probability, respectively, according to the t-test.  

 
The current monthly increments for plant 

height (CMI H) had strong positive correlations 
with the minimum temperature for E. camaldulensis 
(0.65), C. citriodora (0.76), E. saligna (0.60), E. 
urophylla (0.67), E. grandis (0.70), and GG100 
(0.80) (Table 3). Only E. globulus was not 
significantly influenced by the minimum 
temperature. Bamberg (2014) obtained similar 
results for Acacia mearnsii, Mimosa scabrella, 
Eucalyptus grandis, and Ateleia glazioveana. For 

these forestry species, minimum temperature was 
strongly correlated with annual collar diameter 
growth, diameter at chest height (DCH), and plant 
height. Therefore, climatic variables influence plant 
development. 

The CMI H for GG100 and E. grandis was 
positively and significantly correlated with the 
average temperature. Rainfall had strong positive 
correlations with the CMI H only for GG100 (0.65) 
and E. urophylla (0.62). For E. urograndis, Ferreira 



1462 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

(2009) obtained the strongest linear correlation 
estimates between the annual growth rate increases 
and monthly rainfall, hydric deficit and hydric 
excess (Table 3).  
 A positive correlation (0.66) was obtained 
between the CMI D and the CMI H for C. 
citriodora. Therefore, height increase follows 
diametric growth in this species (Table 3). The 
interactions between climate variables and 
meristematic growth rates in forest species are 
complex (SETTE JÚNIOR et al., 2016). The 
correlations between these variables must be 
examined at the level of the individual tree in order 
to understand them properly.  

This research is important because the 
information derived from it could be useful for 
cellulose processors and eucalyptus growers in the 
state of Mato Grosso do Sul, where much of this 
crop is produced (ANUÁRIO ESTATÍSTICO DA 
ABRAF, 2013). Therefore, the present study and 
others like it may guide forestry producers in their 
tree species selection. 
 
CONCLUSIONS 
 

The species/clone presented, initially, a 
greater growth in collar diameter, then, in plant 
height.  

The reduction of the rain and temperatures 
influences negatively the plant height.  

The Current Monthly Increment for Collar 
diameter (CMI D) did not correlate significantly to 
the climatic variables evaluated.  

The Current Monthly Increment for Plant 
Height (CMI H) is strongly correlated to the 
minimum temperature for the following species E. 
camaldulensis, C. citriodora, E. saligna, E. 
urophylla, E. grandis and Clone (GG100). 

Rainfall had a strong positive correlation 
with the CMI H for GG100 and E. urophylla. 

The species best adapted to the geographical 
region of the study (during its initial phases) were E. 
urophylla, E. camaldulensis, E. grandis, and E. 
saligna. All of them presented mortality rates < 
10%.  
 
ACKNOWLEDGMENTS 

 
We thank the National Council for 

Scientific and Technological Development (CNPq) 
for their support through the Scientific Initiation 
Scholarship, and the University of Mato Grosso do 
Sul for the use of their facilities. 

 
 

RESUMO: Objetivou neste trabalho analisar possíveis diferenças nos padrões de crescimento em espécies de 
eucalipto e identificar as variáveis climáticas determinantes no crescimento. Foram avaliadas seis espécies de eucalipto 
(Eucalyptus camaldulensis, Eucalyptus grandis, Eucalyptus urophylla, Eucalyptus saligna, Corymbia citriodora e 
Eucalyptus globulus) e um Clone (GG100) implantados em arranjo experimental de blocos casualizados. Foram coletados 
o diâmetro do colo e altura de todas as plantas mensalmente no decorrer de um ano, além dos dados climáticos 
(temperatura mínima, máxima e precipitação). Sequencialmente foram obtidas correlações entre os incrementos correntes 
mensais (diâmetro do colo e altura) e as variáveis climáticas (temperatura mínima, máxima e precipitações). O Incremento 
Corrente Mensal do Diâmetro do Colo não apresentou correlação com as variáveis climáticas avaliadas e o Incremento 
Corrente Mensal em Altura (ICM H) é fortemente correlacionado com a temperatura mínima para as espécies E. 
camaldulensis, C. citriodora, E. saligna, E. urophylla, E. grandis e o Clone GG100. A precipitação apresentou correlações 
positiva com o ICM H somente para o Clone (GG100) e para E. urophylla. Por fim, as espécies E. camaldulensis, E. 
urophylla, E. grandis, E. saligna apresentaram taxa de mortalidade inferior a 10%, valor este recomendável de acordo com 
critérios silviculturais. 
 

PALAVRAS-CHAVE: Povoamentos florestais, Diâmetro do colo, Altura de planta, Cerrado. 
 
 
REFERENCES 
 
AZEVEDO, L. P. A.; COSTA, R. B.; MARTINEZ, D. T.; TSUKAMOTO FILHO, A. A.; BRONDANI, G. E.; 
BARRETA, M. C.; AJALA, W. V.  Seleção genética em progênies de Eucalyptus camaldulensis em área de 
cerrado matogrossense. Ciência Florestal, Santa Maria, v. 45, n. 11, p. 2001- 2006. 2015. 
https://doi.org/10.1590/0103-8478cr20131557 
 



1463 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

ALCÂNTRA, B. K.; PIZZAIA, D.; PIOTTO, F. A.; BORGO, L.; BRONDANI, G. E.; AZEVEDO, R. A. 
Temporal dynamics of the response to Al stress in Eucalyptus grandis × Eucalyptus camaldulensis. Anais da 
Academia Brasileira de Ciências, Rio de Janeiro, v. 87, n. 2, p. 1063-1070. 2015. 
 
ANUÁRIO ESTATÍSTICO ABRAF 2013: ano base 2012. Brasília, DF, 2013. Disponível em: 
<http://www.abraflor.org.br/estatisticas/ABRAF13/ABRAF13_BR.pdf>. Acesso em: 16 set. 2015.     
 
BAMBERG, R. Análise da influência das variáveis meteorológicas no crescimento em diâmetro e altura de 
quatro espécies florestais. 2014. 56 f. Dissertação (Mestrado em Engenharia Florestal) – Programa de Pós-
Graduação em Engenharia Florestal, Universidade Federal do Paraná, Curitiba, 2014. 
 
CALLEGARI-JACQUES, S. M. Bioestatística: princípios e aplicações. Porto Alegre: Artmed, 2003. 264 p. 
 
CHARRIER, G.; NGAO, J.; SAUDREAU, M.; AMÉGLIO, T. Effects of environmental factors and 
management practices on microclimate, winter physiology, and frost resistance in trees. Frontiers in Plant 
Science, Lausanne, v. 6, n. 259, p. 1-19. 2015. https://doi.org/10.3389/fpls.2015.00259 
 
CRUZ, C. D. Programa GENES: Biometria. Viçosa: UFV, 2006. 382 p. 
 
DREW, D. M.; GRADY, A. P.; DOWNES, G. M.; READ, J.; WORLEDGE, D. Daily patterns of stem size 
variation in irrigated and nonirrigated Eucalyptus globulus. Tree Physiology, Oxford, v.28, n. 10, p.1573-1581, 
2008. https://doi.org/10.1093/treephys/28.10.1573 
 
DREW, D. M.; GEOFFRE, Y. M.; DOWNES, G. M.; GRADY, A. P.; READ, J.; WORLEDGE, D. High 
resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globules. Annals of 
Forest Science, Paris, v.66, n. 4, p.1-10, 2009. 
 
EPRON, D.; NOUVELLON, Y.; MARESCHAL, L.; MOREIRA, R. M. E.; KOUTIKA, L. S.; GENESTE, B.; 
DELGADO-ROJAS, J. S.; LACLAU, J. P.; SOLA, G.; GONÇALVES, J. L. D. M.; BOUILLET, J. P. 
Partitioning of net primary production in Eucalyptus and Acacia stands and in mixed-species plantations: Two 
case-studies in contrasting tropical environments. Forest Ecology and Management, Murroe, v. 301, p.102-
111. 2013. https://doi.org/10.1016/j.foreco.2012.10.034 
 
FERREIRA, M. Z. Modelagem da influência de variáveis no crescimento e na produção de Eucalyptus sp. 
2009. 101 f. Tese (Doutorado em Engenharia Florestal) – Programa de Pós-Graduação em Engenharia 
Florestal, Universidade Federal de Lavras, Lavras, 2009.   
 
FONSECA, S. M., RESENDE, M. D. V., ALFENAS, A. C., GUIMARÃES, L. M. S., ASSIS, T. F. 
GRATTAPAGLIA, D. Manual Prático de Melhoramento Genético do Eucalipto. Viçosa: UFV, 2010, 
 200 p.  
 
IBÁ. Indústria brasileira de árvores, 2014. Disponível em: 
http://www.iba.org/images/shared/iba_2014_pt.pdf. Acesso em: 01 set. 2015. 
 
KÖPPEN, W. Das geographische system der klimate. In: W. KÖPPEN; R. GEIGER. (Ed.). Verlag von 
Gebrüder Borntraeger. Berlin: Gebrüder Borntraeger, 1936. p. 1-44. 
 
MACHADO, S. A.; ZAMIN, N. T.; NASCIMNETO, R. G. M.; SANTOS, A. A. P. Efeito de Variáveis 
Climáticas no Crescimento Mensal de Pinus taeda e Araucaria angustifolia em Fase Juvenil. Floresta e 
Ambiente, Rio de Janeiro, v. 21, n. 2, p. 170-181. 2014. 
 
MARCUZZO, F. F. N.; CARDOSO, M. R. D.; FARIA, T. G. Chuvas no cerrado da região centro-oeste do 
Brasil: análise histórica e tendência futura. Ateliê Geográfico, Goiânia, v. 6, n. 2, p.112-130. 2012.  
 



1464 
Influence of climate variables…  POERSCH, N. L. et al. 

Biosci. J., Uberlândia, v. 33, n. 6, p. 1452-1464, Nov./Dec. 2017 

MATOS, G. S. B.; SILVA, G. R.; GAMA, M. A. P.; VALE, R. S.; ROCHA, J. E. C. Desenvolvimento inicial e 
estado nutricional de clones de eucalipto no nordeste do Pará. Acta Amazonica, Manaus, v. 42. n. 4, p. 491-
500. 2012. https://doi.org/10.1590/S0044-59672012000400006 
 
MINISTÉRIO DO MEIO AMBIENTE. Bioma Cerrado. Disponível em: 
<http://www.mma.gov.br/biomas/cerrado>. Acesso em: 10 de setembro de 2015. 
 
PEREIRA, J. C. D.; STURION, J. A.; HIGA, A. R.; HIGA, R. C. V.; SHIMIZU, J. Y. Características da 
madeira de algumas espécies de eucalipto plantadas no Brasil. Colombo: Embrapa Florestas, 2000. 113 p.     
 
QUEIROZ, M. M.; LELES, P. M. S.; OLIVEIRA NETO, S. N.; FERREIRA, M. A. Comportamento de 
materiais genéticos de eucalipto em Paty do Alferes, RJ. Floresta e Ambiente, Rio de janeiro, v. 16, n. 1, p. 1-
10, 2009. 
 
QUIQUI, E. M. D.; MARTINS, S. S.; SHIMUZU, J. Y. Avaliação de espécies e procedências de Eucalyptus 
para o Noroeste do Estado do Paraná. Acta Scientiarum Agronomy, Maringá, v. 23, n. 5, p. 1173-1177, 2001. 
 
ROCHA, M. G. B.; PIRES, I. E.; ROCHA, R. B.; XAVIER, A.; CRUZ, C. D. Seleção de genitores 
de Eucalyptus grandis e de Eucalyptus urophylla para produção de híbridos interespecíficos utilizando 
REML/BLUP e informação de divergência genética. Revista Árvore, Viçosa, v. 31, n. 6, p.977-987. 2007. 
https://doi.org/10.1590/S0100-67622007000600001 
 
SETTE JÚNIOR, C. R; TOMAZELLO FILHO, M.; DIAS, C. T. S., LACLAU, J. P. Crescimento em diâmetro 
do tronco das árvores de Eucalyptus grandis e relação com as variáveis climáticas e fertilização mineral. 
Revista Árvore, Viçosa, v. 22, n. 4, p. 771-783, 2010. 
 
SETTE JUNIOR, C. R., TOMAZELLO FILHO, M., LOUSADA, J. L.; LACLAU, J. P. Sazonalidade do 
incremento em diâmetro do tronco de árvores de Eucalyptus grandis pelo uso de dendrômetros. Ciência 
Florestal, Santa Maria, v. 22, n. 4, p. 771-783. 2012. 
 
SETTE JUNIOR, C. R., TOMAZELLO FILHO, M., LOUSADA, J. L.; LOPES, D.; LACLAU, J. P. 
Relationship between climate variables, trunk growth rate and wood density of Eucalyptus grandis w. mill ex 
maiden trees. Revista Árvore, Viçosa, v. 40, n. 2, p. 337-346. 2016. 
 
SILVA, H. D.; PIRES, I. E.; ARAÚJO, F. D. Comportamento silvicultural e aptidão para produção de carvão 
de cinco espécies de Eucalyptus, na região dos cerrados de Minas Gerais. Boletim de Pesquisa Florestal, 
Colombo, n. 24/25, p. 71-78, 1992. 
 
SILVA, P. H. M.; ANGELI, A. Implantação e manejo de florestas comerciais. Documentos florestais, nº 18. 
São Paulo: IPEF, 2006, 13 p.