Microsoft Word - 24-Bio_37420
1332
Original Article
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
CARBON MONOXIDE TREND IN THE CITY OF RIO DE JANEIRO VIA
MANN-KENDALL AND CUSUM TESTS
TENDÊNCIAS DE MONÓXIDO DE CARBONO NA CIDADE DO RIO DE JANEIRO
VIA TESTES DE MANN-KENDALL E SOCOM
Givanildo de GOIS
1
; José Francisco de OLIVEIRA-JUNIOR
2
; Elania Barros Da SILVA
3
;
Juliana Lúcio Motta MAIA
4
; Indira Sueline Silva ALELUIA
5
; Paulo Eduardo TEODORO
6*
1. Escola de Engenharia Industrial Metalúrgica de Volta Redonda, Centro Tecnológico, Universidade Federal Fluminense, Volta
Redonda, RJ, Brasil; 2. Instituto de Ciências Atmosféricas (ICAT), Universidade Federal de Alagoas, Maceió, AL, Brasil; 3. Secretaria
Municipal de Saúde de Capela, Capela, AL, Brasil; 4. Universidade Federal Fluminense, Niterói, RJ, Brasil; 5. Instituto de Matemática
(IM), Universidade Federal de Alagoas, Maceió, AL, Brasil; Universidade Federal de Mato Grosso do Sul, Chapadão do Sul, MS,
Brasil. eduteodoro@hotmail.com
ABSTRACT: Hourly mean concentrations of carbon monoxide trend (CO) in the city of Rio de Janeiro (CRJ)
was evaluated based on statistical tests. Air quality stations used were: Central, Copacabana, São Cristóvão and Tijuca
from 2010 to 2014. The results of the CO trend based on the Mann-Kendall (MK) test showed an inverse correlation with
time, with significant decrease in all seasons. Significant increase trend (Z > 0) and p-value < 0.05 were recorded in Centro
and Tijuca in 2010 and 2012 with magnitude between 0.0224 and 0.0067 ppm/year. Insignificant increase occurred only in
São Cristóvão (2011) for positive values (Z > 0) and p-value > 0.05. CUSUM test showed that Q magnitude did not
exceed the critical value at 1% and 5% probability levels. Cumulative Sum Test (CUSUM) showed homogeneous and
significant CO concentrations. Significant abrupt changes occurred in the months of May, June, July, August and
September and insignificant in January, February, June, August and November at 1% and 5% probability. CO
concentrations occurred in the predominant directions North-Northwest (NNW), South-Southwest (SSW) and South-west
(SW). Both sectors are influenced by the main synoptic systems (Frontal System and South Atlantic Subtropical High) that
act on CRJ. MK and CUSUM tests proved to be efficient in evaluating trends and abrupt changes in CO concentrations
and air quality stations in the CRJ.
KEYWORDS: Emissions. Pollutants. Statistical tests. Air quality.
INTRODUCTION
In the last decades, air pollution and air
quality in large urban and industrial centers are a
serious social and environmental problem around
the world (GUERRERO et al. 2012; ZERI et al.,
2016). Atmospheric pollutants are influenced
directly by meteorological conditions, topographic
features along with local, mesoscale and synoptic
meteorological systems (OLIVEIRA JÚNIOR et al.,
2010; ZERI et al., 2011).
In Brazil, important advances have been
made in environmental legislation through federal
resolutions, such as the CONAMA nº03/90
resolution (CONAMA 03/90, 1990). It aims to
regulate the levels of air pollutants that can be
monitored and controlled in the country and have
contributed to minimize the effects of air pollution
and air quality in metropolitan regions (MR)
(FREITAS et al, 2009; ZERI et al, 2016), mainly
environmental degradation (GOULART et al.,
2015) and respiratory and cardiac problems faced by
society (CARVALHO et al., 2015).
MR of the Rio de Janeiro (MRRJ) daily
record high levels of carbon monoxide (CO)
concentration, caused by emissions from motor
vehicles (CONAMA 08/90, 1990 resolution)
associated with conditions of thermal inversion,
periods of calm and droughts (FREITAS et al.,
2009; OLIVEIRA JÚNIOR et al., 2010;
PIMENTEL et al., 2014). Currently, the MRRJ has
been facing several problems related to high CO
concentrations that have been routinely detected
through air quality stations (INEA, 2010; LYRA et
al., 2011; ZERI et al., 2011) and/or by the
application of analytical models of atmospheric
diffusion or air quality regulators (GUERRERO et
al. 2012; CUNHA et al., 2009; SOARES et al.,
2014).
Recently, several studies have been carried
out in the CRJ and MRRJ. Soares et al. (2014)
carried out a study comparing the main regulatory
models in the literature, AERMOD (American
Meteorology Society-Environmental Protection
Agency Regulatory Model) and CALPUFF
(California Puff Model) in the Air Basin III with
emphasis on sulfur dioxide (S02). Lyra et al. (2011)
evaluated particulate matter (PM10) in CRJ based on
the application of linear models. However, until
now no study has been performed based on
Received: 30/12/16
Accepted: 05/05/17
1333
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
parametric and nonparametric tests applied in a time
series of a pollutant concentration in the CRJ.
Thus, the study aimed to evaluate increase
or decrease trends of CO concentration in CRJ
based on non-parametric (Mann-Kendall-MK) and
parametric tests (CUSUM) and meteorological data.
MATERIAL AND METHODS
The city of Rio de Janeiro (CRJ) is located
in the southeast region of Brazil, between latitudes
22°45’05”S and 23°04’10”S and longitudes
43°06’30”W and 43°47’40”W. According to the
Köppen’s classification, the city’s climate is of the
kind “Aw”, characterized by dry and cool winters
and wet and rainy summers. Air temperature ranges
from 21.1°C (average minimum temperatures)
during winter to 27.3°C (average maximum
temperatures) during summer. The annual average
temperature is 23.9°C, rainfall is approximately
1,258 mm year-1 and the average number of days
with rainfall is 124 (ZERI et al., 2011).
CRJ presents remnants areas of the Atlantic
Forest domain, mostly protected by laws, mainly
under Conservation Units (UC) (GOULART et al.,
2015). In the last decades, we observed a territorial
and urban expansion in the CRJ, accompanied by
the increased number of formal and informal civil
buildings. According to IBGE (2016), the city had
an increase of approximately 840,000 inhabitants
between 1991 and 2010, which represented 15% in
this period.
Hourly mean carbon monoxide (CO) and
meteorological (wind) concentrations belonging to
the Municipal Environmental Department (SMAC)
from 2010 to 2014 were used to determine the
increase or decrease trend in the CO concentration
at some air quality stations (Central, Copacabana,
São Cristóvão and Tijuca) existing in CRJ (INEA,
2010). From R software version 3.1.2 (R Core
Team, 2015), Mann-Kendall (MK) non-parametric
test (MANN, 1945; KENDALL, 1975) was applied
to CO concentrations from the respective air quality
stations.
The test considers that, in the case of
stability of a time series, the values succession
occurs independently and the probability
distribution must always remain the same (simple
random series). Back (2001) states that the MK test
is the most appropriate method for the location and
approximate detection of the starting point of a
given trend. MK test is widely used based on the
interdependence between two variables, in the case
of time series (rainfall, air temperature, hot spots
among others), in one of them, the time is known
(LÁZARO et al., 2001; CAÚLA et al., 2016).
In a second step, we calculated estimates of
the trend magnitudes of CO concentrations in the
four air quality seasons by Se curvature inclination,
in which it is more robust than the angular
coefficient of the equation of the line obtained using
the linear regression method, since it can deviate
much from the true value of the line inclination
(Ferrari et al., 2012) if there are extreme values of
CO concentration.
Then, we applied the Cumulative Sums test
(CUSUM) proposed by Buishand (1982) and
suggested by the World Meteorological
Organization (WMO). CUSUM is a parametric test
that allows identifying the period (month or year) of
the beginning a probable abrupt change in the
carbon monoxide (CO) concentration. This method
tests whether the means in two parts from a data
record are different (for an unknown change time),
assuming that the data is normally distributed.
CO emissions violations were assessed
according to CONAMA nº03/90 resolution (Table
1). Finally, pollution roses of the CO concentration
were made through the WRPLOT software version
7.0.0 (WRPLOT, 2015), based on the CUSUM test
result.
Table 1. Air Quality Standards according to CONAMA nº 03/90 Resolution.
Pollutant Sampling Time Primary/Secondary Standards (µ g/m3)
CO
1 hour 40000 (35 ppm)
8 hours 10000 (9 ppm)
Source: INEA (2010).
1334
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
RESULTS AND DISCUSSION
The results for the trend and detection of the
abrupt changes periods in CO concentration in the
air quality stations in the CRJ are shown in Table 2.
MK test showed that the CO concentration is
inversely correlated with time. There is a significant
decrease trend with the Se magnitude sometimes
significant now insignificant to Z < 0 and p-value <
or > 0.05, this is, over the years passed the CO
concentration decreased significantly in all the air
quality stations in the CRJ from -0,0000 to -0,0162
ppm/year
The Program for the Control of Air
Pollution by Automotive Vehicles (PROCONVE),
created in 1986, aims to reduce atmospheric
pollution caused by mobile sources, by means of
staggered fixing the maximum emission limits for
light new vehicles (Otto and Diesel cycles) and
heavy vehicles (buses and trucks of the Diesel
cycle) besides specification of fuel quality
(CONAMA nº 08/90 resolution, 1990; FEEMA,
2004). It is noteworthy that in this study period there
was a reduction in the CO concentration, followed
by the increased vehicular fleet in Brazil, which in
turn underwent a series of transformations, mainly
in the change of the motors of the automobiles that
happened to be flex, interfering in the CO pollutant
concentrations.
Table 2. Statistical analysis (Z, MK, p-value, Se, CUSUM and Q) of the CO concentrations at air quality
stations (Central, Copacabana, São Cristóvão and Tijuca) in the CRJ from 2010-2014.
Stations Years Z MK (ppm/year) P-value e
S
(ppm/year)
CUSUM Q
CENTRAL
2010 7.19 0.25 0.0000 0.0224 S JUN 0.16 S
2011 -0.65 -0.02 0.5149 -0.0014 I JAN 0.13 S
2012 -3.76 -0.13 0.0002 -0.0102 S SEP 0.09 S
2013 -2.84 -0.10 0.0045 -0.0057 S AUG 0.10 S
2014 -8.58 -0.30 0.0000 -0.0162 S AUG 0.09 S
COPACABANA
2010 -6.57 -0.23 0.0000 -0.0122 S SEP 0.09 S
2011 -1.63 -0.06 0.1043 -0.0025 I AUG 0.09 S
2012 -0.04 0.00 0.9644 0.0000 I NOV 0.10 S
2013 -2.85 -0.10 0.0044 -0.0037 S SEP 0.12 S
2014 -0.75 -0.03 0.4537 -0.0011 I FEB 0.10 S
SÃO CRISTOVÃO
2010 -5.08 -0.18 0.0000 -0.0091 S MAY 0.14 S
2011 0.98 0.03 0.3262 0.0016 I AUG 0.09 S
2012 -0.08 0.00 0.9364 -0.0001 S JUL 0.11 S
2013 -0.55 -0.02 0.5862 -0.0003 I JUN 0.11 S
2014 -5.62 -0.20 0.0000 -0.0107 S MAY 0.09 S
TIJUCA
2010 10.14 0.39 0.0000 0.0067 S JUL 0.11 S
2011 -2.21 -0.08 0.0273 -0.0024 S AUG 0.13 S
2012 10.05 0.35 0.0000 0.0288 S JUL 0.08 S
2013 -2.26 -0.08 0.0241 -0.0036 S AUG 0.08 S
2014 -4.65 -0.16 0.0000 -0.0078 S MAY 0.07 S
S-Significant for P-value ≤ 0.05 and I-Insignificant for P-value ≥ 0.05.
There was a significant increase trend in the
CO concentration, for positive values (Z > 0) and P-
value < 0.05 recorded at stations Central and Tijuca
in the years 2010 and 2012 with significant Se
magnitude from 0.0224 ppm/year to 0.0067
ppm/year. Unlike, at São Cristóvão station, where
there was an insignificant increase in CO
concentration, only in 2011 to positive values (Z >
0) and P-value > 0.05 followed by a Se magnitude of
-0.0016 ppm/year. However, the Copacabana station
was the one that presented a significant decrease
trend in CO concentration, to negative values (Z <
0) and P-value < 0.05 from 2010 to 2014 with
significant to insignificant Se trend from -0.0122
ppm/year to -0.0011 ppm/year.
CUSUM test showed that Q magnitude did
not exceed the critical value for 1% and 5%
probability levels, which indicated that the time
series of CO was homogeneous and significant.
CUSUM test showed a good agreement with the
MK test, which identified significant abrupt changes
in the months of May (end of autumn), June, July,
August (winter) and September (early spring) and
insignificant in January, February (summer), June,
1335
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
August (beginning and end of winter) and
November (end of spring) and 5% probability for
the mean CO concentration in most stations of the
CRJ.
These months are influenced by
meteorological systems of several scales and that
interfere drastically in the pollutants concentration
of the CRJ (LYRA et al., 2010; ZERI et al., 2011).
The main conditions for increased pollutants
concentrations in CRJ are associated with
orographic complexity, turbulence levels, prevailing
winds regime, mesoscale circulation and the South
Atlantic Subtropical High (SASH) positioning,
associated to the displacement of frontal systems
(FS) (ZERI et al., 2011; PIMENTEL et al., 2014
and SOARES et al., 2014).
Table 3 shows the evolution of the number
of violations of the air quality standards for CO
concentrations in the study period for the stations
belonging to the SMAC, comparing the estimates of
the values of the concentrations at 1 hour and 8
hours with the standards primary and secondary
established by CONAMA nº 03/90 resolution (Table
1). Sampling time at 1 hour for the primary and
secondary standards no recorded violations at any of
the CRJ air quality stations in the study period.
However, for the estimates at 8 hours, the Central
station presented a total of 7 violations, followed by
the São Cristovão station with 27 violations, and
finally the Tijuca station with 2 violations. All
stations are close to the main traffic routes of the
CRJ, for example, Av. Brasil and Vermelha line
and, therefore, a higher concentration of vehicles
that contribute actively to the air quality
degradation, according to the inventory carried out
by INEA (2010). The exception was the
Copacabana station with no violation for the
primary and secondary standards (10000 µ g/m3 or 9
ppm) in the study period. Copacabana station is
close to a region of coastal environment surrounded
by several buildings, perfect conformation for the
formatting urban canyons that probably channel the
circulation and favor the dispersion of CO (ZERI et
al., 2011; PIMENTEL et al., 2014).
The results obtained were corroborated by
the study carried out by Cunha et al. (2009) on the
vehicular emission in the Air Basin III of the MRRJ
by Gaussian model of air quality AERMOD.
AERMOD simulations indicated violations in the air
quality standards for mean sampling time at 1 hour
and 8 hours of 33 violations in a single point and 74
violations at four different points.
Table 3. Numbers of violations of air quality standards according to CONAMA nº 03/90 Resolution (1 and 8
hours), from 2010-2014 at air quality stations (Central, Copacabana, Tijuca and São Cristóvão).
STATIONS YEARS 1 HOUR 8 HOURS
CENTRAL
2010 0 4
2013 0 3
COPACABANA 2010-2014 No No
SÃO CRISTÓVÃO
2010 0 7
2011 0 4
2012 0 6
2013 0 7
2014 0 3
TIJUCA 2013 0 2
For understanding the CO concentration, wind is
one of the most important factors, since it transports
and disperses atmospheric pollutants and, therefore,
allows us to identify the trajectory and reach of the
pollutant (OLIVEIRA JÚNIOR et al., 2010;
PIMENTEL et al., 2014). From the CUSUM test,
information on the abrupt changes in CO
concentration was provided. Based on these results
pollution roses were built during the period 2010-
2014.
Figures 1(a) and (b) show the direction of
the CO concentration in the pollution roses for the
Center station. In it, the CUSUM test identified
abrupt changes in CO concentration in the months
of June and August in 2010 and 2014 and higher CO
concentrations predominantly in the North
Northwest (NNW) sector of the station. This winter
wind pattern diversification is characteristic of the
SASH activity (OLIVEIRA JÚNIOR et al., 2010;
PIMENTEL et al., 2014). For São Cristóvão (Figure
1(c)) and (d) and Tijuca (Figure 3(e)), CUSUM test
and pollution roses revealed abrupt changes in CO
concentration in the months of June 2013 and July
2012, suggesting a strong predominance of CO
concentration in the South-South (SSW) and South-
West (SW) sectors for the São Cristóvão station and
1336
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
South-Southwest (SSW) for the Tijuca station. All
the identified patterns are typical of FS performance
in the study region (LYRA et al., 2010; ZERI et al.,
2011).
Figure 1. Pollution roses of the CO concentration (ppm) at Central, São Cristóvão and Tijuca stations in the
winter from 2010-2014.
CONCLUSIONS
Mann-Kendall test shows a strong
significant and inverse trend over time and with a
decreasing in carbon monoxide concentration.
CUSUM test has good agreement with the Mann-
Kendall test, identifying significant abrupt changes
in late autumn, winter and early spring; and
insignificant in the summer, beginning and end of
1337
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
winter and late spring at 1% and 5% probability
level.
All stations are close to the most important
traffic routes in the city of Rio de Janeiro, therefore,
they actively contribute to the air quality
degradation on this scale. Predominant directions of
CO concentrations based on the CUSUM test are in
the North-Northwest, South-Southwest and
Southwest sectors. All sectors are influenced by the
main synoptic systems (FS and SASH) operating in
the city of Rio de Janeiro.
RESUMO: Foi avaliada a tendência das concentrações médias horárias de monóxido de carbono (CO), com
base em testes estatísticos na cidade do Rio de Janeiro (CRJ). As estações de qualidade do ar utilizadas foram: Centro,
Copacabana, São Cristóvão e Tijuca entre os anos de 2010 a 2014. Os resultados da tendência de CO com base no teste de
Mann-Kendall (MK) mostrou uma correlação inversa com o tempo, com diminuição significativa em todas as estações.
Tendência de aumento significativo (Z > 0) e p-valor < 0,05 foram registradas no Centro e Tijuca nos anos de 2010 e 2012
com magnitude entre 0,0224 a 0,0067 ppm/ano. Aumento insignificante ocorreu apenas em São Cristóvão (2011) para
valores positivos (Z > 0) e p-valor > 0,05. O teste de SOCUM mostrou que a magnitude de Q não excedeu o valor crítico
aos níveis de 1% e 5% de probabilidade. O teste das Somas Cumulativas (SOCUM) mostrou que as concentrações de CO
foram homogêneas e significativas. Mudanças bruscas significativas ocorreram nos meses de maio, junho, julho, agosto e
setembro e insignificante em janeiro, fevereiro, junho, agosto e novembro a 1% e 5% de probabilidade. As concentrações
de CO ocorreram nas direções predominantes Norte-Noroeste (NNW), Sul-Sudoeste (SSW) e Sudoeste (SW). Ambos os
setores são influenciados pelos principais sistemas sinóticos (Sistema Frontal e Alta Subtropical do Atlântico Sul) que
atuam na CRJ. Os testes MK e SOCUM se mostraram eficientes na avaliação das tendências e mudanças bruscas nas
concentrações de CO e nas estações de qualidade do ar existentes na CRJ.
PALAVRAS-CHAVE: Emissões. Poluentes. Testes estatísticos. Qualidade do ar.
REFERENCES
BACK, A. J. Aplicação de análise estatística para identificação de tendências climáticas. Pesquisa
Agropecuária Brasileira, Brasília, v. 36, 717-726, 2001.
BUISHAND, T. A. Some methods for testing the homogeneity of rainfall records. Journal of Hidrology,
Stuttgart, v. 58, p. 11-27,1982.
CARVALHO, V. S. B.; FREITAS, E. D.; MARTINS, L. D.; MARTINS, J. A.; MAZZOLI, C. R. R.;
ANDRADE, M. F. Air quality status and trends over the Metropolitan Area of São Paulo, Brazil, as a result of
emission control policies. Environmental Science & Policy, Genève, v. 47, p. 68-79, 2015.
CAÚLA, R. H.; OLIVEIRA JÚNIOR, J.F.; GOIS, G.; DELGADO, RC; PIMENTEL, L. C. G.; TEODORO, P.
E. Nonparametric statistics applied to fire foci obtained by meteorological satellites and their relationship to the
MCD12Q1 product in the state of Rio de Janeiro. Land Degradation & Development, Malden, v. 25, p. 225-
236, 2016.
CONSELHO NACIONAL DE MEIO AMBIENTE. Dispõe sobre padrões de qualidade do ar, previstos no
PRONAR. Resolução CONAMA nº 03, de 6 de dezembro de 1990. Disponível em
. Acesso em 03/07/2015.
CONSELHO NACIONAL DE MEIO AMBIENTE. Dispõe sobre padrões de qualidade do ar, previstos no
PRONAR. Resolução CONAMA nº 08, de 6 de dezembro de 1990. Disponível em
. Acesso em 03/07/2015.
CUNHA, B. D.; SILVA, M. S.; VELLOSO, M. F. A.; OLIVEIRA JÚNIOR, J. F.; PIMENTEL, L. C. G.
Avaliação do desempenho dos modelos regulatórios de qualidade do ar AERMOD e CALPUFF para a Bacia
Áerea III - RJ. Ciência & Natura, Santa Maria, v. 6, p. 225-227, 2009.
1338
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
FEEMA - Fundação Estadual de Engenharia do Meio Ambiente. Inventário de Fontes Emissoras de
Poluentes Atmosféricos da Região Metropolitana do Rio de Janeiro. Departamento de Planejamento
Ambiental, Divisão de Qualidade do Ar, Rio de Janeiro, RJ - Brasil. 2004.
FERRARI, A. L.; VECHHIA, F. A. S.; COLABONE; R. O. Tendência e variabilidade anuais da temperatura e
da pluviosidade em Pirassununga-SP. Revista Brasileira de Climatologia, Curitiba, v. 10, p. 30-46, 2012.
FREITAS, S. R.; LONGO, K.; RODRIGUES, L. F. Modelagem numérica da composição química da atmosfera
e seus impactos no tempo, clima e qualidade do ar. Revista Brasileira de Meteorologia, Curitiba, v. 24, n.
2,188-207, 2009.
GOULART, A. C. O.; DELGADO, R. C.; OLIVEIRA JÚNIOR, J. F.; GOIS, G.; OLIVEIRA, E. S. Relação
espectro-temporal entre índices de vegetação e a chuva na cidade do Rio de Janeiro. Revista de Ciências
Agrárias, Belém, v. 58, n. 3, p. 277-283, 2015.
GUERRERO, J. S. P.; PIMENTEL, L. C. G.; OLIVEIRA JÚNIOR, J. F.; HEILBRON, P. F. L.; ULKE, A. G.
A unified analytical solution of the steady-state atmospheric diffusion equation. Atmospheric Environment,
Hong Kong, v. 55, p. 201-212, 2012.
INEA - Instituto Estadual do Ambiente. Relatório Anual da Qualidade do Ar do Estado do Rio de Janeiro.
Rio de Janeiro, 2009. 108 p. Relatório Técnico. Disponível
em:http://www.inea.rj.gov.br/downloads/relatorios/qualidade_ar_2009.pdf Acesso em: 20 jul. 2010.
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA – IBGE. Censo Brasileiro. Disponível em:
. Acesso em: 22 maio 2016.
KENDALL, M. G. Rank correlation methods. London: Charles Griffin, 120p. 1975.
LÁZARO, R.; RODRIGO, F. S.; GUTIÉRREZ, L.; DOMINGO, F.; PUIGDEFÁBREGAS, J. Analysis of a
thirty year rainfall record (1967– 1997) from semi-arid SE Spain: a plant ecological perspective. Journal of
Arid Environments, Chubut, v.48, p. 373–395, 2001.
LYRA, G. B., ODA-SOUZA, M., VIOLA, D. N. Modelos Lineares Aplicados À Estimativa da Concentração
do Material Particulado (PM10) na Cidade do Rio de Janeiro, RJ. Revista Brasileira de Meteorologia, São José
dos Campos, v. 26, p.392 – 400, 2011.
MANN, H. B. Non-parametric test against trend. Econometrika, Malden, v. 13, n. Y, p. 245-259, 1945.
OLIVEIRA JÚNIOR J. F., PIMENTEL L. C. G., LANDAU L. Critérios de estabilidade atmosférica para a
região da Central Nuclear Almirante Álvaro Alberto, Angra dos Reis – RJ. Revista Brasileira de
Meteorologia, Curitiba, v.25, n. 2, p. 270-285, 2010.
PIMENTEL, L. C. G.; CORREIA E. B.; MARTON E.; CATALDI M., NOGUEIRA, E. Influência dos
parâmetros de configuração do modelo CALMET sobre a simulação da circulação atmosférica na região
metropolitana do Rio de Janeiro. Revista Brasileira de Meteorologia, Curitiba, v.29, n.4, p. 121-132, 2014.
PIMENTEL, L. C. G.; MARTON E.; SOARES M. S.; JOURDAN, P. Caracterização do regime de vento em
superfície na Região Metropolitana do Rio de Janeiro. Revista de Engenharia Sanitária e Ambiental, Rio de
Janeiro, v. 19, n. 2, p. 121-132, 2014.
R Core Team (2015), R: A language and environment for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria, URL http://www,R-project,org/.
SOARES, M. S.; D’AIUTO, B. C.; PIMENTEL, L. C. G., PÉREZ GUERRERO, J. S., VICENTINI, P. C.
Análise Comparativa da Concentração de Dióxido de Enxofre via Modelos Regulatórios AERMOD e
1339
Carbon monoxide trend… GOIS, G. et al.
Biosci. J., Uberlândia, v. 33, n. 5, p. 1332-1339, Sept./Oct. 2017
CALPUFF e Monitoramento Próximo as Fontes de Emissão da Bacia Aérea III – RMRJ. Revista Brasileira de
Meteorologia, Curitiba, v. 29, n.2, p.281-298, 2014.
WRPLOT View - Wind Rose Plots for Meteorological Data.
http://www.weblakes.com/products/wrplot/?AspxAutoDetectCookieSupport=1, (2015)
ZERI, M.; CARVALHO, V. S. B.; CUNHA-ZERI, G.; OLIVEIRA JÚNIOR, J. F.; LYRA, G. B.; FREITAS, E.
D. Assessment of the variability of polluants concentration over the metropolitan area of São Paulo, Brazil,
using the wavelet transform. Atmospheric Science Letter, Malden, v. 17, p. 87-95, 2016.
ZERI, M.; OLIVEIRA JÚNIOR, J. F.; LYRA, G. B. Spatiotemporal analysis of particulate matter, sulfur
dioxide and carbon monoxide concentrations over the city of Rio de Janeiro, Brazil. Meteorology and
Atmospheric Physics, Vienna, v. 113, n. 1, p. 139-152, 2011.