Microsoft Word - 6-Agra_37460 312 Original Article Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 IDENTIFYING RESISTANCE TO ROOT-KNOT NEMATODES IN Capsicum GENOTYPES IDENTIFICAÇÃO DE GENÓTIPOS DE Capsicum RESISTENTES A NEMATOIDES DE GALHA Renato Silva SOARES 1 ; Edgard Henrique Costa SILVA 1 ; Willame dos Santos CANDIDO 1 ; Guilherme Matos Martins DINIZ 1 ; Francisco José Becker REIFSCHNEIDER 2 ; Pedro Luiz Martins SOARES 1 ; Leila Trevisan BRAZ 1 1. Department of Plant Production, UNESP, Jaboticabal, SP, Brazil; 2. Embrapa International Relations, Brasília, DF, Brazil. renato_2366@hotmail.com. ABSTRACT: The present study aimed to evaluate Capsicum accessions for resistance to Meloidogyne incognita race 3, Meloidogyne javanica and Meloidogyne enterolobii. Two experiments with different genotypes of hot and sweet peppers were carried out in a completely randomized design. The first experiment was conducted in a 31 x 3 factorial scheme with 27 genotypes of Capsicum annuum, two cultivars of hot pepper, one line of Capsicum frutescens and tomato ‘Santa Cruz Kada’, and three species of nematodes (M. incognita race 3, M. javanica and M. enterolobii). In the second experiment, we used a factorial scheme 39 x 3 with 36 accessions of C. annuum, two hot pepper cultivars and the ‘Santa Cruz Kada’ tomato and three nematodes species mentioned earlier. The total number of eggs and second-stage juveniles (TNEJ), number of eggs and second-stage juveniles per gram of root (NEJGR), reproduction index (RI) and reproduction factor (RF) were evaluated. Based on RI and RF, the genotypes CNPH 185, CNPH 187 and CNPH 680 were resistant and very resistant to M. incognita race 3 and M. javanica, simultaneously. The C. frutescens line presented resistance to the three root-knot nematode species. KEYWORDS: Meloidogyne incognita. Meloidogyne javanica. Meloidogyne enterolobii. chili and sweet peppers. reaction. INTRODUCTION Cropping of sweet and hot peppers (Capsicum spp.) is gaining notoriety in the Brazilian market, due to the growing demand in the segment of fresh vegetables, condiments, seasonings and preserves. Among the domesticated species of Capsicum, the sweet pepper (Capsicum annuum L.) stands out for the high yield and economic value (BÜTTOW et al., 2010; PIMENTA et al., 2016), with an estimated national production area of 12.000 hectares (MOURA et al., 2012). In Brazil, the main producing regions are the Southeast and Center- West, especially the state of São Paulo, which produced, in the 2012 harvest, 65.6 thousand tons in 2.2 thousand hectares (IEA, 2016). With the increase of sweet pepper consumption, cropping mainly carried out in protected environment, due to the greater productivity and fruit quality, as well as the regularization of product supply throughout the year (PINHEIRO et al., 2014). However, successive crops, together with inadequate soil and crop management, have led to a rise in root diseases, especially root-knot nematodes. The Meloidogyne spp. nematodes are phytoparasites that have caused serious damages in cropping of hot and sweet peppers. Several studies have reported the parasitic action of these nematodes on Capsicum (MELO et al., 2011; GONÇALVES et al., 2014; PINHEIRO et al., 2014; PINHEIRO et al., 2015). Genetic control is the most sustainable way to manage root-knot nematodes, since it poses no risk to human health; it is relatively of low cost and does not pollute the environment (HUSSAIN; MUKHTAR; KAYANI, 2014; LIU et al., 2015). Lópes-Pérez et al. (2006) point out that the use of genetic resistance is an attractive alternative because it does not require major adaptations in the productive procedures of the property. It is known that 90 species are described belonging to the genus Meloidogyne (MOENS et al., 2009). Among them, Meloidogyne incognita (Kofoid & White) and Meloidogyne javanica (Treub) are the most important species for the sweet pepper (PINHEIRO et al., 2014). Recently, the species Meloidogyne enterolobii Yang and Eisenback (sin. Meloidogyne mayaguensis Rammah and Hirschmann) has gained importance, as effective sources of resistance against the major Received: 02/02/17 Accepted: 05/12/17 313 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 species of Meloidogyne have been shown to be ineffective in its control (BRITO et al., 2007; PINHEIRO et al., 2013). To minimize losses caused by nematodes occurrence, croppers have adopted the grafting technique, using resistant rootstocks. There are some commercial hybrids available for sweet peppers rootstocks, such as ‘Silver’ and ‘Snooker’, both resistant to M. incognita and M. javanica (PINHEIRO et al., 2014). However, these rootstocks do not present resistance to M. enterolobii. There are no reports of sweet pepper cultivars with multiple resistance to root-knot nematodes, being the search for Capsicum genotypes that, simultaneously, present resistance to the major Meloidogyne species, is of fundamental importance for the development of resistant cultivars or rootstocks. Thus, this study aimed to assess Capsicum genotypes for resistance to M. incognita race 3, M. javanica and M. enterolobii. MATERIAL E METHODS For the identification of resistant genotypes to the species of root-knot nematodes, two experiments were carried out consecutively in a greenhouse in the Sector of Vegetable Crops and Aromatic Medicinal Plants and Plant Pathology Laboratory, Department of Plant Protection, Universidade Estadual Paulista (UNESP), Faculdade de Ciências Agrárias e Veterinárias (FCAV), Jaboticabal (21º15’22” S, 48º18’58” W; 595 m a.s.l.), São Paulo, Brazil, between the months of September of 2015 to February of 2016. A total of 63 genotypes of Capsicum annuum, two commercial pepper cultivars (BRS Moema and BRS Mari), one sweet pepper cultivar (Ikeda) and one chilli pepper strain (C. frutescens) were evaluated for resistance to M. incognita race 3 , M. javanica and M. enterolobii. The accessions of Capsicum annuum are part of the collection of peppers and sweet peppers present from the Active Germplasm Bank of Embrapa Hortaliças, these being from collections and/or partnerships with national and international institutions. Table 1 shows the relation of the genotypes used, as well as the origin and main morphological characteristics. Table 1. Origin and main characteristics of 63 genotypes of Capsicum annuum from the Active Germplasm Bank of Embrapa Hortaliças, evaluated in two experiments on the reaction to root-knot nematodes. Nº Genotypes Origin Fruit color Fruit format Experiment 1 1 CNPH 29 FAO* Dark red Elongated 2 CNPH 30 Spain Dark red Rectangular 3 CNPH 31 FAO Dark red Elongated 4 CNPH 32 Japan Dark red Rectangular 5 CNPH 33 USA Red Triangular 6 CNPH 40 Japan Red Elongated 7 CNPH 42 Japan Dark red Elongated 8 CNPH 43 Japan Dark red Elongated 9 CNPH 44 Japan Red Elongated 10 CNPH 45 Japan Red Elongated 11 CNPH 47 USA Dark red Triangular 12 CNPH 48 USA Red Elongated 13 CNPH 66 Brazil Red Triangular 14 CNPH 67 Brazil Dark red Rectangular 15 CNPH 68 Brazil Dark red Triangular 16 CNPH 69 Brazil Dark red Triangular 17 CNPH 144 Malaysia Dark red Elongated 18 CNPH 147 France Dark red Rectangular 19 CNPH 149 Mexico Red Triangular 20 CNPH 150 Argentina Red Rectangular 21 CNPH 183 Guatemala Yellow/Orange Rectangular 22 CNPH 184 India Dark red Rectangular 314 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 23 CNPH 185 Mexico Dark red Elongated 24 CNPH 186 Mexico Dark red Triangular 25 CNPH 187 Mexico Dark red Triangular 26 CNPH 188 India Dark red Rectangular 27 CNPH 190 India Dark red Rectangular Experiment 2 28 CNPH 64 USA Red Elongated 29 CNPH 145 Malaysia Dark red Elongated 30 CNPH 191 Brazil Red Triangular 31 CNPH 194 Spain Red Triangular 32 CNPH 198 Argentina Dark red Rectangular 33 CNPH 199 Argentina Red Rectangular 34 CNPH 200 Argentina Red Rectangular 35 CNPH 291 USA Yellow/Orange Rectangular 36 CNPH 292 USA Dark red Rectangular 37 CNPH 295 USA Red Rectangular 38 CNPH 296 USA Red Rectangular 39 CNPH 297 USA Red Rectangular 40 CNPH 432 Figi Dark red Elongated 41 CNPH 433 Taiwan Red Rectangular 42 CNPH 580 Netherlands Red Rectangular 43 CNPH 581 Netherlands Red Rectangular 44 CNPH 582 Netherlands Red Rectangular 45 CNPH 583 Netherlands Red Rectangular 46 CNPH 593 Netherlands Red Rectangular 47 CNPH 602 USA Dark red Triangular 48 CNPH 640 Hungary Red Triangular 49 CNPH 641 Hungary Dark red Pitanga type 50 CNPH 642 Hungary Red Triangular 51 CNPH 644 Hungary Dark red Rounded 52 CNPH 646 Hungary Dark red Elongated 53 CNPH 677 Iran Dark red Triangular 54 CNPH 680 USA Dark red Triangular 55 CNPH 682 India Dark red Elongated 56 CNPH 683 India Dark red Triangular 57 CNPH 684 Spain Red Triangular 58 CNPH 687 Turkey Dark red Triangular 59 CNPH 688 Turkey Red Triangular 60 CNPH 690 Turkey Dark red Triangular 61 CNPH 691 Turkey Red Elongated 62 CNPH 692 Turkey Dark red Triangular 63 CNPH 693 Turkey Dark red Triangular *FAO: Food and Agriculture Organization of the United Nations Both experiments were conducted in a completely randomized design. The first experiment was arranged in a factorial scheme 31 x 3, being 27 genotypes of C. annuum (Table 1), the hot pepper cultivars BRS Moema and BRS Mari, a line of tabasco pepper (C. frutescens) and the tomato ‘Santa Cruz Kada’ used as a susceptibility control to the genus Meloidogyne spp., and three species of root- knot nematodes (M. incognita race 3, M. javanica and M. enterolobii). The second experiment was conducted in a factorial scheme 39 x 3, with 31 genotypes of C. 315 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 annuum (Table 1), two hot peppers cultivars (BRS Moema and BRS Mari), the ‘Santa Cruz Kada’ tomato and three species of root-knot nematodes (M. incognita race 3, M. javanica and M. enterolobii). Both experiments contained six replicates and the plots were composed of one plant. The subpopulations of M. incognita race 3, M. javanica and M. enterolobii were obtained from ‘Santa Cruz Kada’ tomato roots, belonging to the nematode collection of the Laboratory of Nematology, Department of Plant Protection, Faculdade de Ciências Agrárias e Veterinárias (UNESP), Campus of Jaboticabal. We prepared the inoculum as described by Hussey and Barker (1973). The estimation of eggs and second-stage juveniles’ population in the suspension was performed using a Peter’s counting chamber under a photonic microscope, with a subsequent concentration adjustment for 1.000 eggs and second-stage juveniles mL-1. The seedlings, in both experiments, were produced in 128 cells expanded polystyrene trays filled with Bioplant®. Two seeds were disposed per cell, with subsequent thinning to obtain one quality seedling. We transplanted the seedlings at 40 days after sowing to 2.0 L plastic pots, containing the mixture of soil, sand and bovine manure, in the ratio 1:1:1, previously autoclaved (120ºC, 1 atm, 1 hour). At the time of transplantation, with the aid of an automatic pipette, we inoculated 5 mL of a suspension containing 5,000 eggs and second-stage juveniles (J2) in each pot, for each root-nematode species separately, characterizing the initial population (Pi). After 90 days of inoculation, the plants were evaluated by separating between shoot and roots. We extracted eggs and other nematode stages according to the technique of Hussey and Barker (1973). With the aid of a Peter’s chamber and a photonic microscope, we quantified the total number of eggs and second-stage juveniles (TNEJ). From this procedure, we obtained the final nematodes population (FP) in the roots. To assess the resistance of genotypes to M. incognita race 3, M. javanica and M. enterolobii, we used the total number of eggs and second-stage juveniles (TNEJ), number of eggs and second-stage juveniles per gram of root (NEJGR), reproduction index (RI) and reproduction factor (RF). The number of eggs and J2 per gram of root was determined from the division of the TNEJ /root total weight. The reproduction factor was calculates as the following formula: Where: RF = Reproduction factor, fP = Final population and iP = Initial population of viable eggs and second-stage juveniles. Plants with RF<1 were considered resistant to the nematode, and with RF≥1 were considered susceptible to the nematode, according to Oostenbrink (1966). We calculated the reproduction index (RI) considering the ‘Santa Cruz Kada’ tomato as a susceptibility control (100%) in relation to nematodes reproduction obtained in Capsicum genotypes. Thus, the formula was used: 100 x (Number of eggs per gram of root of each replicate/Average number of eggs per gram of root of the susceptible tomato cultivar). According to the criteria established by Taylor (1967), the degree of resistance was classified as susceptible (S) - RI greater than 50% of the value obtained for the ‘Santa Cruz Kada’ tomato; Slightly resistant (SR) - RI with 26 to 50%; Moderately resistant (MoR) - RI with 11 to 25%; Very resistant (VR) - RI with 1 to 10%; Highly resistant (HR) - RI with less than 1%, and immune (I) - when there was no reproduction. To meet the assumptions of normality and error distribution, the data were transformed to log (x+5). Data were submitted to analysis of variance, and when significant differences were identified by the F test, were grouped by the Scott-Knott test at 5% probability. For analysis, we used the statistical software AgroEstat (BARBOSA; MALDONADO JUNIOR, 2015). RESULTS AND DISCUSSION For both experiments the viability of the inoculum and the experimental conditions were satisfactory, since the values of TNEJ and NEJGR obtained for the susceptibility control, the ‘Santa Cruz Kada’ tomato, were considered as high (Tables 2 and 5), differing statistically from the other evaluated genotypes. Pinheiro et al. (2014) using the ‘Rutgers’ tomato as susceptibility control for a Capsicum experiment, also observed an excellent multiplication of the same nematode species, which presented high NEJGR and reproduction factor. Tables 2 and 5 show the means of C. annuum genotypes, C. frutescens line and BRS Mari and BRS Moema cultivars inoculated with M. incognita race 3, M. javanica and M. enterolobii, evaluated in the first and second experiments, respectively. For all variables analyzed, in both experiments, there was a significant interaction by F test at 1% probability. The C. frutescens line presented the lowest values for the variables analyzed in the first experiment, differing from the other evaluated 316 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 genotypes. C. frutescens was the only genotype classified as resistant and very resistant to the three species of root-knot nematodes, as we verified RF<1 and RI<10% (Table 2). Table 2. Analysis of variance and test of comparison of means of the total number of eggs and second-stage juveniles (TNEJ) of root-knot nematodes, reproduction factor (RF), number of eggs and second-stage juveniles per gram of root (NEJGR), reproduction index (RI) and reaction (R) of 27 genotypes of Capsicum annuum, two commercial hot pepper cultivars, one Capsicum frutescens lineage and one cultivar ‘Santa Cruz Kada’ tomato. Genotypes (G) TNEJ RF R (2) NEJGR RI R (3) CNPH 29 102,733 c 20.54 S 3,679.45 b 49.95 SR CNPH 30 110,600 c 22.12 S 4,198.24 b 58.25 S CNPH 31 107,838 b 21.56 S 2,849.89 c 39.18 SR CNPH 32 118,666 c 23.73 S 4,389. 99 b 60.31 S CNPH 33 63,733 d 12.74 S 2,290. 53 c 30.83 SR CNPH 40 95,413 d 19.08 S 2,200.77 d 30.17 SR CNPH 42 71,000 c 14.20 S 3,450.33 b 47.54 SR CNPH 43 70,333 d 14.06 S 2,054.14 d 27.34 SR CNPH 44 97,066 d 19.41 S 2,125.13 e 28.67 SR CNPH 45 141,533 b 28.30 S 2,587.84 c 35.36 SR CNPH 47 55,000 d 11.00 S 1,345.85 e 18.26 MoR CNPH 48 84,933 c 16.98 S 2,239.33 c 30.68 SR CNPH 66 146,333 c 29.26 S 4,608.88 b 63.97 S CNPH 67 125,333 b 25.06 S 3,959.14 b 54.76 S CNPH 68 80,133 d 16.02 S 1,874.53 d 25.27 MoR CNPH 69 132,133 b 26.42 S 4,502.91 b 62.29 S CNPH 144 86,466 d 17.29 S 1,674.48 e 22.52 MoR CNPH 147 86,733 c 17.34 S 2,152.63 c 29.29 SR CNPH 149 81,800 d 16.36 S 2,745.89 c 37.22 SR CNPH 150 122,000 b 24.40 S 3,578.45 b 48.92 SR CNPH 183 68,000 d 13.60 S 2,254.45 d 30.90 SR CNPH 184 100,800 d 20.16 S 2,722.89 c 36.64 SR CNPH 185 131,466 e 26.29 S 3,150.97 e 42.56 SR CNPH 186 102,266 c 26.29 S 3,740.19 b 50.91 S CNPH 187 117,533 e 23.50 S 2,952.30 d 39.74 SR CNPH 188 79,733 e 15.94 S 1,905.14 e 25.68 MoR CNPH 190 120,133 d 24.02 S 2,020.97 e 27.27 SR C. frutescens 3,333 f 0.66 R 80.22 f 1.06 VR BRS Mari 165,733 b 33.14 S 2,977.50 c 40.91 SR BRS Moema 189,733 b 37.94 S 5,292.75 b 73.40 S ‘Stª Cruz Kada’ 248,666 a 49.73 S 8,065.70 a 100 S Test F 25.96** 25.18** Nematodes (N) M. incognita race 3 84,162.58 b 16.83 2,702.43 b 38.39 M. javanica 12,897.31 c 2.57 487.28 c 4.89 M. enterolobii 222,990.32 a 44.59 5,875.28 a 79.54 Test F 1985.31** 1421.35** Interaction (G x N) 16.00** 12.80** CV (%) 5.50 8.89 (1) Means followed by the same letter in the column do not differ by Scott-Knott's test at 5% probability; Real means with statistic based on transformed data for log (x+5). (2) S = susceptible, RI>51%; SR = slightly resistant, 26 %< RI>50%; MoR = moderately resistant, 11 %< RI>25%; VR = very resistant, 1 %< RI>10%; HR = highly resistant, IR<1%. (3) R = resistant; S = susceptible. NsNot Significant. ** and * significant at 1 and 5% probability, respectively, by the F test. As expected, the cultivars BRS Mari and BRS Moema performed as resistant to M. javanica, with RF inferior to 1 and susceptible to M. enterolobii (RF>1). The cultivar BRS Moema showed a susceptibility reaction to M. incognita race 3 for the two experiments, both by the reproduction factor and the reproduction index (Tables 3 to 7). The resistance and susceptibility reactions of the cultivars BRS Mari and BRS Moema to the species of root-knot nematodes in the present study corroborate with the study done by Pinheiro et al. (2013). However, the cultivar BRS Mari showed susceptibility to M. incognita race 3 in both experiments, with RF of 33.56 (Table 3) and 63.84 (Table 6), differing from the result found by the same authors, who observed resistance of this genotype, with RF of 0.92. Probably, these differences are attributed to the populations and 317 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 even to different M. incognita races used, in addition to experimental environmental methodologies and conditions. In the Pinheiro et al. (2013) study, the M. incognita race 1 was used and the experiment was carried out in the environmental conditions of Brasília-DF, which has an altitude of 1.200 m in relation to sea level, while in the present study M. incognita race 3 was used, and the altitude of Jaboticabal-SP is 595 m. Dias-Arieira et al. (2012) and Andrade- Junior et al. (2016) reported that certain variations between results obtained in studies involving resistance to nematodes may occur due to differences in evaluation methodologies or to variability among the nematode isolates used in the experiments. Another characteristic that may be related to the discrepancy of the results is the environmental factor, since the studies in question were carried out under different environmental conditions. In the first experiment, there was a significant difference between genotypes and nematode species for TNEJ and NEJGR in the F test at 1% probability (Tables 3 and 4). However, in the second experiment, there was no difference for M. enterolobii among the analyzed materials (Tables 6 and 7). The genotypes of C. annuum CNPH 185, CNPH 187, CNPH 188 (experiment 1) and CNPH 680, CNPH 682, CNPH 690, CNPH 693 (experiment 2) presented the lowest values of TNEJ and NEJGR for M. incognita race 3, being classified in distinct groups from the other genotypes analyzed by the Scott-Knott test (p<0.05) (Tables 3, 4, 6 and 7). When we observed the reaction of these genotypes, we classified as HR or VR by the reproduction index, however, the genotypes CNPH 188 and CNPH 693 were classified as susceptible by the reproduction factor, since RF>1. When evaluated the reaction to M. javanica, it was observed that 19 genotypes were classified as resistant by the reproduction factor in the first experiment (Table 3). As for experiment 2, nine genotypes were in the resistance group (Table 6). Based on RI, the genotypes CNPH 30, CNPH 40, CNPH 183, CNPH 432, CNPH 647, BRS Mari and C. frutescens were classified as HR, with RI <1% (Tables 4 and 7). 318 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 Table 3. Slicing of interactions between genotypes and root-knot nematodes species for total number of eggs and second-stage juveniles. Genotypes M. incognita raça 3 M. javanica M. enterolobii Test F TNEJ RF R(1) TNEJ RF R(1) TNEJ RF R(1) CNPH 29 49,200 cB 9.84 S 4,000 cC 0.80 R 255,000 aA 51.02 S 83.71** CNPH 30 190,400 aA 38.08 S 2,800 dB 0.56 R 138,600 bA 27.72 S 103.70** CNPH 31 118,800 bA 23.76 S 7,916 bB 1.27 S 196,800 bA 39.36 S 54.77** CNPH 32 118,000 bA 23.60 S 4,200 cB 0.84 R 233,800 bA 46.76 S 91.67** CNPH 33 26,200 dB 5.24 S 7,200 bC 1.44 S 157,800 bA 31.56 S 34.66** CNPH 40 83,040 bA 16.61 S 2,600 dB 0.52 R 200,600 bA 40.12 S 94.37** CNPH 42 88,400 bA 17.68 S 4,000 cB 0.80 R 120,600 bA 24.12 S 68.46** CNPH 43 11,000 eB 2.20 S 7,200 bB 1.44 S 192,800 aA 38.56 S 63.99** CNPH 44 10,600 eB 2.12 S 4,000 cC 0.80 R 276,600 aA 55.32 S 92.58** CNPH 45 113,400 bB 22.68 S 5,400 cC 1.08 S 305,800 aA 61.16 S 84.74** CNPH 47 32,000 cB 6.40 S 5,400 cC 1.08 S 127,600 bB 25.52 S 44.93** CNPH 48 82,000 bA 16.40 S 5,600 bB 1.12 S 167,200 bA 33.44 S 52.75** CNPH 66 185,000 aA 37.01 S 2,800 dB 0.56 R 251,200 aA 50.24 S 120.33** CNPH 67 201,400 aA 40.28 S 3,600 cB 0.72 R 171,000 bA 34.20 S 92.06** CNPH 68 22,200 dB 4.44 S 5,000 cC 1.00 S 213,200 aA 42.62 S 72.33** CNPH 69 210,200 aA 42.05 S 4,600 cB 0.92 R 181,600 bA 36.32 S 88.43** CNPH 144 17,000 dB 3.40 S 7,000 bC 140 S 235,400 aA 47.08 S 58.05** CNPH 147 63,800 cB 12.76 S 4,800 cC 0.96 R 191,600 bA 38.32 S 63.87** CNPH 149 25,600 dB 5.12 S 4,800 cC 0.96 R 215,000 aA 43.01 S 74.88** CNPH 150 119,200 bB 23.84 S 6,600 bC 1.32 S 240,200 aA 48.14 S 70.04** CNPH 183 79,000 bA 15.80 S 1,400 dB 0.28 R 123,600 bA 24.72 S 108.42** CNPH 184 13,200 eB 2.64 S 7,800 bB 1.32 S 281,400 aA 5630 S 69.04** CNPH 185 3,800 fB 0.76 R 2,200 dB 0.44 R 388,400 aA 77.66 S 151.28** CNPH 186 51,000 cB 10.20 S 4,600 cC 0.92 R 251,200 aA 50.21 S 81.26** CNPH 187 3,600 fB 0.72 R 4,800 cB 0.96 R 344,200 aA 68.84 S 125.40** CNPH 188 5,600 fB 1.12 S 3,800 cB 0.76 R 229,800 aA 45.96 S 98.51** CNPH 190 17,800 dB 3.56 S 5,000 cC 1.00 S 337,600 aA 67.49 S 95.90** C. frutescens 4,200 fA 0.84 R 1,800 dB 0.36 R 4,000 cA 0.80 R 4.40* BRS Mari 167,800 aB 33.56 S 4,000 cC 080 R 325,400 aA 65.08 S 110.53** BRS Moema 264,400 aA 52.88 S 4,200 cB 0.84 R 300,600 aA 60.10 S 110.08** ‘Stª Cruz Kada’ 231,200 aA 46.24 S 26,070 aA 52.14 S 254,100 aA 51.00 S 0.17ns Test F 32.64 * 13.67** 11.65 ** Lower case letters in the column and upper case in the row do not differ by Scott-Knott's test (p <0.05). (1)R = resistant; S = susceptible. ** and * significant at 1 and 5% probability, respectively, by the F test. 319 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 Table 4. Slicing of interactions between genotypes and root-knot nematodes species for number of eggs and second-stage juveniles per gram of root. Genotypes M. incognita raça 3 M. javanica M. enterolobii Test F NEJGR RI R (1) NEJGR RI R (1) NEJGR RI R(1) CNPH 29 1,811.72 Bb 25.74 MoR 217.52 bC 2.18 VR 9,586.62 aA 129.80 S 56.70** CNPH 30 6,835.21 aA 97.11 S 9108 cB 0.91 HR 5,668.45 aA 76.75 S 96.25** CNPH 31 3,594.87 bA 51.07 S 135.22 bB 1.36 VR 4,785.73 aA 64.80 S 51.41** CNPH 32 4,902.09 aA 69.65 S 186.85 bB 1.88 VR 8,081.05 aA 109.41 S 71.60** CNPH 33 768.30 cB 10.92 VR 302.52 bC 3.04 VR 5,800.79 aA 78.54 S 33.08** CNPH 40 2,193.66 bA 31.17 SR 84.48 cB 0.85 HR 4,362.47 aA 59.06 S 68.16** CNPH 42 4,771.14 aA 67.79 S 198.10 bB 1.99 VR 5,448.87 aA 73.77 S 56.98** CNPH 43 314.62 eB 4.47 VR 456.56 bB 4.59 VR 5,391.25 aA 72.99 S 43.32** CNPH 44 215.06 eB 3.06 VR 129.25 bB 1.30 VR 6,031.10 aA 81.66 S 70.11** CNPH 45 2,210.77 bB 31.41 SR 142.41 bC 1.43 VR 5,410.36 aA 73.25 S 59.11** CNPH 47 903.97 cB 12.84 MoR 139.76 bC 1.40 VR 2,993.82 aA 40.53 SR 34.52** CNPH 48 2,539.68 bA 36.08 SR 169.89 bB 1.71 VR 4,008.43 aA 54.27 S 3977** CNPH 66 7,763.23 aA 110.35 S 136.38 cB 1.37 VR 5,923.00 aA 80.19 S 82.66** CNPH 67 6,093.32 aA 86.57 S 173.78 bB 1.75 VR 5,614.90 aA 76.02 S 64.02** CNPH 68 629.45 cB 8.94 VR 207.68 bC 2.09 VR 4,824.67 aA 54.44 S 47.14** CNPH 69 7,064.34 aA 100.87 S 216.12 bB 2.17 VR 6,192.52 aA 83.84 S 66.14** CNPH 144 335.51 eB 4.77 VR 193.33 bB 1.94 VR 4,494.60 aA 60.85 S 45.15** CNPH 147 1,732.85 bA 24.62 MoR 204.57 bB 2.05 VR 4,520.49 aA 61.20 S 35.95** CNPH 149 1,481.41 bB 21.05 MoR 243.95 bC 2.45 VR 6,656.21 aA 90.12 S 48.47** CNPH 150 3,246.88 bB 46.13 SR 216.41 bC 2.17 VR 7,517.64 aA 101.78 S 55.73** CNPH 183 1,951.24 bB 27.72 SR 50.66 dC 0.51 HR 4,858.10 aA 65.78 S 89.20** CNPH 184 389.21 dB 5.53 VR 225.94 bB 2.27 VR 7,601.03 aA 102.91 S 53.10** CNPH 185 13.,39 fB 1.97 VR 111.42 cB 1.12 VR 9,514.54 aA 128.82 S 96.74** CNPH 186 2,404.56 bB 34.16 SR 220.40 bC 2.21 VR 8,900.20 aA 120.50 S 55.92** CNPH 187 236.55 eB 3.36 VR 238.43 bB 2.39 VR 8,381.94 aA 113.49 S 69.76** CNPH 188 226.76 eB 3.22 VR 134.97 bB 1.36 VR 5,353.72 aA 72.49 S 67.43** CNPH 190 385.65 dB 5.48 VR 145.56 bC 1.46 VR 5,549.07 aA 75.13 S 60.48** C. frutescens 113.01 fA 1.61 VR 36.35cB 0.37 HR 91.32 bA 1.24 VR 4.37* BRS Mari 3,129.14 bA 44.46 SR 82.16 cB 0.83 HR 5,721.22 aA 77.46 S 84.80** BRS Moema 8,414.47 aA 119.55 S 108.24 cB 1.09 VR 7,395.13 aA 100.12 S 96.59** ‘Stª Cruz Kada’ 6,382.30 aA 100.00 S 9,956.70 aA 100.00 S 7,386 aA 100.00 S 0.75ns Test F 28.15** 12.57** 10.07** Lower case letters in the column and upper case in the row do not differ by Scott-Knott's test (p <0.05). (1) S = susceptible, RI>51%; SR = slightly resistant, 26%50%; MoR = moderately resistant, 11%25%; VR = very resistant, 1%10%; HR = highly resistant, IR<1%. ** and * significant at 1 and 5% probability, respectively, nsNot significant, by the F test. 320 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. , Mar./Apr. 2018 Table 5. Analysis of variance and test of comparison of means of the total number of eggs and second-stage juveniles (TNEJ) of root-knot nematodes, reproduction factor (RF), number of eggs and second-stage juveniles per gram of root (NEJGR), reproduction index (RI) and reaction (R) of 36 genotypes of Capsicum annuum, two commercial hot pepper cultivars and one cultivar ‘Santa Cruz Kada’ tomato. Genotypes (G) TNEJ RF R (2) NEJGR RI R (3) CNPH 64 97,733 c(1) 19.54 S 4,915.31 d 36.41 SR CNPH 145 111,544 c 22.30 S 3,731.21 e 26.57 SR CNPH 191 178,122 b 35.62 S 6,442.23 c 34.46 SR CNPH 194 216,333 b 43.26 S 6,605.61 c 42.15 SR CNPH 198 197,566 b 39.51 S 9,105.82 b 61.82 S CNPH 199 234,122 b 46.82 S 8,181.95 d 49.80 SR CNPH 200 118,822 b 23.76 S 3,983.15 d 27.06 SR CNPH 291 230,133 b 46.02 S 9,382.83 c 53.09 S CNPH 292 200,066 b 40.01 S 7,380.24 c 43.35 SR CNPH 295 178,888 b 35.77 S 5,184.28 c 35.74 SR CNPH 296 241,288 b 48.25 S 6,939.06 c 40.75 SR CNPH 297 183,444 b 36.68 S 5,961.58 c 36.59 SR CNPH 432 271,400 c 54.28 S 7,644.21 e 39.82 SR CNPH 433 180,100 b 36.02 S 4,633.18 d 26.62 SR CNPH 580 215,288 b 43.05 S 5,568.14 d 30.98 SR CNPH 581 194,177 b 38.83 S 6,387.96 c 33.87 SR CNPH 582 206,800 c 41.36 S 5,751.49 e 31.84 SR CNPH 583 178,244 c 35.64 S 5,844.53 e 34.16 SR CNPH 593 174,766 b 34.95 S 4,814.48 d 27.22 SR CNPH 602 193,188 b 38.63 S 6,518.16 c 37.70 SR CNPH 640 175,222 c 35.04 S 5,146.33 e 25.06 MoR CNPH 641 116,344 b 23.26 S 5,687.13 c 34.56 SR CNPH 642 123,122 c 24.62 S 8,590.06 c 44.38 SR CNPH 644 223,077 b 44.61 S 9,225.24 b 56.98 S CNPH 646 197,477 c 39.49 S 8,258.64 e 41.72 SR CNPH 677 87,711 c 17.54 S 2,176.90 e 14.83 MoR CNPH 680 116,466 d 23.29 S 3,293.04 g 24.83 MoR CNPH 682 123,388 d 24.67 S 3,28.,82 f 24.93 MoR CNPH 683 138,644 c 27.72 S 4,385.34 e 27.78 SR CNPH 684 54,211 c 10.84 S 2,351.64 e 15.28 MoR CNPH 687 156,977 b 31.39 S 7,460.63 c 43.96 SR CNPH 688 176,944 b 35.38 S 6,163.10 c 41.59 SR CNPH 690 53,477 d 10.69 S 1,986.06 f 14.87 MoR CNPH 691 84,711 c 16.94 S 3,660.79 e 27.66 SR CNPH 692 133,800 b 26.76 S 5,531.69 c 31.41 SR CNPH 693 84,422 d 16.88 S 2,136.56 f 15.81 MoR BRS Mari 196,088 c 39.21 S 4,410.42 e 22.84 MoR BRS Moema 202,944 b 40.58 S 6,816.15 d 39.75 SR ‘Stª Cruz Kada’ 721,444 a 144.28 S 16,800.63 a 100.00 S Test F 12.62** 21.85** Nematodes (N) M. incognita raça 3 220507.69 b 44.10 7801.28 b 29.84 M. javanica 33955.55 c 6.79 1002.59 c 9.07 M. enterolobii 281576.07 a 56.31 9068.64 a 68.65 Test F 652.44** 1313.90** Interaction (G x N) 9.58** 14.96** CV (%) 10.02 9.47 (1) Means followed by the same letter in the column do not differ by Scott-Knott's test at 5% probability; Real means with statistic based on transformed data for log (x+5). (2) S = susceptible, RI>51%; SR = slightly resistant, 26%50%; MoR = moderately resistant, 11%25%; VR = very resistant, 1%10%; HR = highly resistant, RI<1%. (3) R = resistant; S = susceptible. nsNot Significant. ** and * significant at 1 and 5% probability, respectively, by the F test. 321 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. , Mar./Apr. 2018 Table 6. Slicing of interactions between genotypes and root-knot nematodes species for total number of eggs and second-stage juveniles. Genotypes M. incognita raça 3 M. javanica M. enterolobii Test F TNEJ RF R(1) TNEJ RF R(1) TNEJ RF R(1) CNPH 64 13,200 cB 2.64 S 28,533 cB 5.70 S 251,466 aA 50.29 S 12.01** CNPH 145 42,900 bB 8.58 S 13,066 cB 2.61 S 278,666 aA 55.73 S 11.68** CNPH 191 255,300 aA 51.06 S 25,333 cB 5.06 S 253,733 aA 50.74 S 8.63** CNPH 194 261,000 aA 52.20 S 60,800 bB 12.16 S 327,200 aA 65.44 S 4.57* CNPH 198 176,700 aA 35.34 S 137,066 bA 27.41 S 278,933 aA 55.78 S 0.64ns CNPH 199 309,300 aA 61.86 S 7,200 dB 1.44 S 385,866 aA 77.17 S 27.19** CNPH 200 83,400 bB 16.68 S 20,000 cB 4.00 S 253,066 aA 50.61 S 8.11** CNPH 291 352,800 aA 72.72 S 8,800 dB 1.76 S 328,800 aA 65.76 S 22.61** CNPH 292 287,400 aA 57.48 S 21,066 cB 4.21 S 291,733 aA 58.34 S 11.11** CNPH 295 114,000 bB 22.80 S 85,333 bB 17.06 S 337,333 aA 67.46 S 3.00ns CNPH 296 421,200 aA 84.24 S 14,400 cB 2.88 S 288,266 aA 57.65 S 16.68** CNPH 297 229,800 aA 45.96 S 15,200 cB 3.04 S 305,333 aA 61.06 S 14.01** CNPH 432 442,200 aA 88.44 S 1,600 fB 0.32 R 370,400 aA 74.08 S 108.05** CNPH 433 319,500 aA 63.90 S 11,466 cB 2.29 S 209,333 aA 41.86 S 15.90** CNPH 580 331,200 aA 66.24 S 8,266 dB 1.65 S 306,400 aA 61.28 S 22.09** CNPH 581 363,600 aA 72.72 S 11,466 cB 2.29 S 207,466 aA 41.49 S 17.08** CNPH 582 332,400 aA 66.48 S 6,133 eB 1.22 S 281,866 aA 56.37 S 58.79** CNPH 583 252,600 aA 50.52 S 4,533 eB 0.90 R 277,600 aA 55.52 S 61.13** CNPH 593 266,700 aA 53.34 S 8,000 dB 1.60 S 249,600 aA 49.92 S 22.05** CNPH 602 272,100 aA 54.42 S 11,466 cB 2.29 S 296,000 aA 59.20 S 16.86** CNPH 640 327,000 aA 65.40 S 2,933 eB 0.58 R 195,733 aA 39.14 S 49.43** CNPH 641 155,700 aA 31.14 S 15,466 cB 3.09 S 177,866 aA 35.57 S 9.61** CNPH 642 247,500 aA 49.50 S 5,333 dB 1.06 S 116,533 aA 23.30 S 20.97** CNPH 644 260,700 aA 52.14 S 78,933 bB 15.78 S 329,600 aA 65.92 S 2.88ns CNPH 646 344,700 aA 68.94 S 3,200 fB 0.64 R 244,533 aA 48.90 S 90.51** CNPH 677 49,800 bB 9.96 S 5,600 dC 1.12 S 207,733 aA 41.54 S 16.78** CNPH 680 3,000 cB 0.60 R 3,466 eB 0.69 R 342,933 aA 68.58 S 71.74** CNPH 682 2,700 cB 0.54 R 9,866 cC 1.97 S 357,600 aA 71.52 S 43.67** CNPH 683 102,600 bA 20.52 S 2,666 eB 0.53 R 310,666 aA 62.13 S 45.82** CNPH 684 50,100 bA 10.02 S 4,800 dB 0.96 R 107,733 aA 21.54 S 14.13** CNPH 687 172,800 aA 34.56 S 8,533 dB 1.70 S 289,600 aA 57.92 S 18.93** CNPH 688 97,500 bB 19.50 S 39,733 bB 7.94 S 393,600 aA 78.72 S 6.80** CNPH 690 3,900 dC 0.78 R 5,600 dB 1.12 S 150,933 aA 30.18 S 28.46** CNPH 691 7,200 cC 1.44 S 20,533 cB 4.10 S 226,400 aA 45.28 S 16.69** CNPH 692 130,200 bA 26.04 S 18,666 cB 3.73 S 252,533 aA 50.50 S 8.87** CNPH 693 9,000 cB 1.80 S 4,800 eC 0.96 R 239,466 aA 47.89 S 30.63** BRS Mari 319,500 aA 63.84 S 3,466 eB 0.69 R 265,600 aA 53.12 S 49.07** BRS Moema 365,100 aA 73.02 S 4,800 dB 0.96 R 238,933 aA 47.78 S 29.27** ‘Stª Cruz Kada’ 823,800 aA 164.76 S 586,133 aA 117.22 S 754,400 aA 150.88 S 0.17ns Test F 15.67** 15,52** 0.59ns Lower case letters in the column and upper case in the row do not differ by Scott-Knott's test (p <0.05). (1)R = resistant; S = susceptible. ** and * significant at 1 and 5% probability, respectively, by the F test. 322 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. , Mar./Apr. 2018 Table 7. Slicing of interactions between genotypes and root-knot nematodes species for number of eggs and second-stage juveniles per gram of root. Genotypes M. incognita raça 3 M. javanica M. enterolobii Test F NEJGR RI R(1) NEJGR RI R(1) NEJGR RI R(1) CNPH 64 1,123.36 dB 4.29 VR 1,225.90 cB 11.09 MoR 12,396.68 aA 93.84 S 25,43** CNPH 145 1,495.14 cB 5.72 VR 402.00 dC 3.63 VR 9,296.48 aA 70.38 S 25,81** CNPH 191 11,726.29 aA 44.86 SR 670.78 cB 6.06 VR 6,929.61 aA 52.46 S 26,19** CNPH 194 7,150.84 aA 27.35 SR 2,187.59 bB 19.79 MoR 10,478.40 aA 79.32 S 9,57** CNPH 198 8,348.06 aA 31.93 SR 6,727.79 aA 60.86 S 12,241.61 aA 92.67 S 1,00ns CNPH 199 9,825.67 aA 37.59 SR 260.94 eB 2.35 VR 14,459.24 aA 109.46 S 64,11** CNPH 200 2,795.20 cB 10.69 VR 804.12 cC 7.27 VR 8,350.14 aA 63.21 S 16,31** CNPH 291 14,548.66 aA 55.65 S 446.37 dB 4.04 VR 13,153.47 aA 99.57 S 51,49** CNPH 292 10,339.96 aA 39.55 SR 786.50 cB 7.11 VR 11,014.27 aA 83.38 S 27,16** CNPH 295 9,682.42 aA 37.04 SR 623.68 cB 5.64 VR 10,511.07 aA 79.57 S 28,23** CNPH 296 3,591.22 bB 13.73 MoR 1,993.44 bB 18.03 MoR 9,968.17 aA 75.46 S 8,13** CNPH 297 7,019.69 aA 26.85 SR 453.67 dB 4.10 VR 10,411.38 aA 78.82 S 34,19** CNPH 432 14,475.79 aA 55.38 S 46.80 gB 0.42 HR 8,410.04 aA 63.66 S 149,04** CNPH 433 6,888.88 aA 26.35 SR 303.61 dB 2.74 VR 6,707.06 aA 50.77 S 37,26** CNPH 580 9,058.01 aA 34.65 SR 273.14 eB 2.47 VR 7,373.27 aA 55.81 S 44,76** CNPH 581 11,788.94 aA 45.10 SR 473.84 dB 4.28 VR 6,901.10 aA 52.24 S 32,93** CNPH 582 9,422.74 aA 36.04 SR 133.08 fB 1.20 VR 7,698.67 aA 58.28 S 92,68** CNPH 583 8,118.23 aA 31.05 SR 110.82 fB 1.00 VR 9,304.55 aA 70.44 S 100,54** CNPH 593 7,490.50 aA 28.65 SR 248.53 eB 2.25 VR 6,704.43 aA 50.75 S 47,29** CNPH 602 9,499.52 aA 36.34 SR 433.03 dB 3.91 VR 9,621.93 aA 72.84 S 35,72** CNPH 640 11,180.69 aA 42.77 SR 132.50 fC 1.19 VR 4,125.80 aB 31.23 SR 87,06** CNPH 641 7,015.02 aA 26.83 SR 549.58 dB 4.97 VR 9,496.78 aA 71.89 S 28,80** CNPH 642 16,652.44 aA 63.70 S 281.29 eB 2.54 VR 8,836.46 aA 66.89 S 59,83** CNPH 644 11,939.05 aA 45.67 SR 4,157.01 bB 37.61 SR 11,579.66 aA 87.66 S 5,96** CNPH 646 16,697.10 aA 63.87 S 92.71 gB 0.83 VR 7,986.12 aA 60.46 S 134,56** CNPH 677 1,366.79 cB 5.23 VR 130.18 eC 1.17 VR 5,033.73 aA 38.10 SR 37,60** CNPH 680 126.75 fB 0.48 HR 132.39 fB 1.19 VR 9,619.99 aA 72.82 S 102,06** CNPH 682 85.50 fC 0.32 HR 332.67 dB 3.01 VR 9,442.30 aA 71.48 S 76,97** CNPH 683 4,388.50 bA 16.79 MoR 123.07 fB 1.11 VR 8,644.44 aA 65.44 S 70,10** CNPH 684 2,075.23 cB 7.94 VR 151.65 eC 1.37 VR 4,828.06 aA 36.55 SR 36,51** CNPH 687 10,176.10 aA 38.93 SR 371.33 dB 3.35 VR 11,834.46 aA 89.59 S 45,48** CNPH 688 4,511.66 bB 17.26 MoR 1,149.94 cC 10.40 VR 12,827.71 aA 97.11 S 16,53** CNPH 690 224.66 fB 0.86 HR 242.74 eB 2.19 VR 5,490.78 aA 41.56 SR 44,43** CNPH 691 231.12 eB 0.88 HR 494.11 dB 4.47 VR 10,257.15 aA 77.65 S 45,37** CNPH 692 8,687.54 aA 33.23 SR 769.67 cB 6.96 VR 7,137.88 aA 54.03 S 20,47** CNPH 693 341.57 eB 1.30 VR 132.52 fC 1.19 VR 5,935.57 aA 44.93 SR 51,29** BRS Mari 8,478.08 aA 32.43 SR 67.80 fB 0.61 HR 4,685.39 aA 35.47 SR 89,32** BRS Moema 9,543.73 aA 36.51 SR 130.77 eB 1.18 VR 10,773.94 aA 81.56 S 69,75** ‘Stª Cruz Kada’ 26,139.35 aA 100.00 S 11,053.37 aA 100.00 S 13,209.16 aA 100.00 S 2,37ns Test F 27.90** 22.76** 1,11ns Lower case letters in the column and upper case in the row do not differ by Scott-Knott's test (p <0.05). (1) S = susceptible, RI>51%; SR = slightly resistant, 26%50%; MoR = moderately resistant, 11%25%; VR = very resistant, 1%10%; HR = highly resistant, IR<1%. ** and * significant at 1 and 5% probability, respectively, nsNot significant, by the F test. 323 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 With regard to M. enterolobii, with the exception of the C. frutescens line, it was observed a high reproduction in the genotypes evaluated in both experiments, obtaining high values of TNEJ and NEJGR. Despite the difference between the genotypes in the first experiment, by the Scott-Knott test, presenting two distinct groups, all genotypes were classified as susceptible by the Oostenbrink (1966) methodology with RF greater than 21.54. In experiment 2, all genotypes were classified in the same group, confirming susceptibility of all materials. Regarding Taylor (1967) classification method, in both experiments, the genotypes were grouped, by the Scott-Knott test, into a single group. However, there was divergence for the reaction, with seven genotypes slightly resistant and the others susceptible (Tables 4 and 7). The high susceptibility of C. annuum to M. enterolobii is reported in several studies. Gonçalves et al. (2014) evaluated 13 accessions of C. annuum and observed RI from 36.90 to 397.70, being characterized as slightly resistant to susceptible. Oliveira et al. (2009) tested different Capsicum species and verified that all accessions belonging to C. annuum were susceptible to M. enterolobii. The low proportion of genotypes resistant to Meloidogyne spp. is stated in studies with Capsicum (MELO et al., 2011; PINHEIRO et al., 2013; GONÇALVES et al., 2014). Pinheiro et al. (2014) evaluated the resistance of 13 genotypes of Capsicum and verified that eight genotypes were susceptible to M. incognita and M. javanica, and for M. enterolobii, all genotypes were susceptible. In general, classifications by index and reproduction factor were effective for the identification of genotypes resistant to M. incognita race 3, M. javanica and M. enterolobii (Tables 3, 4, 6 and 7). However, the classification proposed by Taylor (1967) provided a broader distribution of classes (I, HR, VR, MoR, SR and S), allowing more flexibility in classification, while the Oostenbrink (1966) methodology classified the genotypes exclusively as resistant (R) or susceptible (S). The classification of Oostenbrink (1966) becomes safer to select resistant genotypes, since it is based on the ratio of the initial and final numbers of nematode eggs and second-stage juveniles. In contrast, the classification of Taylor (1967) is based on the proportion of eggs and second-stage juveniles of nematodes, involving the highly susceptible control (Andrade-Junior et al., 2016), and in this study it was used the ‘Santa Cruz Kada’ tomato, that is classified in different genus and species of the Capsicum species, although they belong to the same botanical family. Therefore, classification by the reproduction factor (OOSTENBRINK, 1966) is more suitable for selection of resistant genotypes. As regards the multiple resistances to the root-knot nematodes species, only the genotypes CNPH 185, CNPH 187 and CNPH 680 were considered resistant to M. incognita race 3 and M. javanica, simultaneously. However, the genotypes described were not resistant to M. enterolobii. Bitencourt and Silva (2010) points out the ability of M. enterolobii to reproduce in plants resistant to other species of Meloidogyne spp, such as the commercial hybrid Snooker, which has a pyramid of the Me1 and Me3/Me7 genes, responsible for resistance to M. incognita, M. arenaria and M. javanica (PINHEIRO et al., 2015). In Brazil, to date, there are no reports of C. annuum genotypes with simultaneous resistance to M. incognita, M. javanica and M. enterolobii with potential to be used as rootstocks in the control of infested areas. The first study on resistance in Capsicum spp. to these nematodes was developed by Oliveira (2007), who observed that only one genotype of C. frutescens is resistant simultaneously to M. incognita and M. javanica, presented resistance to M. enterolobii. However, this genotype was the only one that showed incompatibility for grafting, as the plants that were grafted onto this genotype had the lowest height, productivity and fruit quality (OLIVEIRA et al., 2009). It is necessary the continuity of studies that are engaged in the search for genotypes with multiple resistances to root-knot nematodes, and that are good rootstocks candidates for cropping sweet pepper and/or to be used in breeding programs. CONCLUSIONS The genotypes CNPH 185, CNPH 187 and CNPH 680 are resistant to M. incognita race 3 and M. javanica, however, with no resistance to M. enterolobii. The line of C. frutescens is the only genotype that shows multiple resistances to the three species of root-knot nematodes. RESUMO: O presente trabalho teve por objetivo avaliar acessos de Capsicum quanto à resistência a Meloidogyne incognita raça 3, Meloidogyne javanica e Meloidogyne enterolobii. Foram realizados dois experimentos, com diferentes genótipos de pimentas e pimentões, em delineamento inteiramente casualizado sendo o primeiro em esquema 324 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 fatorial 31 x 3 com 27 genótipos de Capsicum annuum, duas cultivares de pimenta, uma linhagem de Capsicum frutescens, o tomateiro ‘Santa Cruz Kada’ e três espécies de nematoides (M. incognita raça 3, M. javanica e M. enterolobii). No segundo experimento foi utilizado esquema fatorial 39 x 3 com 36 acessos de C. annuum, duas cultivares de pimenta, o tomateiro ‘Santa Cruz Kada’ e três espécies de nematoides mencionadas anteriormente. Avaliou-se o número total de ovos e juvenis de segundo estádio (NTOJ), número de ovos e juvenis de segundo estádio por grama de raízes (NOJGR), índice de reprodução (IR) e fator de reprodução (FR). Com base no FR e IR os genótipos CNPH 185, CNPH 187 e CNPH 680 foram resistentes e muito resistentes a M. incognita raça 3 e M. javanica, simultaneamente. A linhagem de C. frutescens apresentou resistência às três espécies de nematoides de galha. PALAVRAS-CHAVE: Meloidogyne incognita. Meloidogyne javanica. Meloidogyne enterolobii. Pimentas e pimentões. Reação. REFERENCES ANDRADE JÚNIOR, V. C.; GOMES, J. A. A.; OLIVEIRA, C. M.; AZEVEDO, A. M.; FERNANDES, J. S. C.; GOMES, L. A. A.; MALUF, W. R. Resistência de clones de batatadoce a Meloidogyne javanica. Horticultura Brasileira, Brasília, v. 34, n. 1, p. 130-136, 2016. http://dx.doi.org/10.1590/S0102- 053620160000100020. BARBOSA, J. C.; MALDONADO JÚNIOR, W. Experimentação Agronômica & AgroEstat: Sistema para análises estatísticas de ensaios agronômicos. Jaboticabal: UNESP, 2015. 396 p. BITENCOURT, N. V.; SILVA, G. S. Reprodução de Meloidogyne enterolobii em Olerícolas. Nematologia Brasileira, Piracicaba, v. 34, n. 3, p. 181-183, 2010. BRITO, J. A.; STANLEY, J. D.; KAUR, R.; CETINTAS, R.; DI VITO, M.; THIES, J. A.; DICKSON, D. W. Effects of the Mi1, N and Tabasco genes on infection and reproduction of Meloidogyne mayaguensis on tomato and pepper genotypes. Journal of Nematology, Florida, v. 39, n. 4, p. 327-332, 2007. BÜTTOW, M. V.; BARBIERI, R. L.; NEITZKE, R. S.; HEIDEN. G.; CARVALHO, F. I. F. Diversidade genética entre acessos de pimentas e pimentões da Embrapa Clima Temperado. Ciência Rural, Santa Maria, v. 40, n. 6, p. 1264-1269, 2010. https://doi.org/10.1590/S0103-84782010000600004 DIAS-ARIEIRA, C. R.; CUNHA T. P. L.; CHIAMOLERA, F. M.; PUERARI, H. H.; BIELA, F.; SANTANA, S. M. Reaction of vegetables and aromatic plants to Meloidogyne javanica and M. incognita. Horticultura Brasileira, Brasília, v. 30, n. 2, p. 322-326, 2012. http://dx.doi.org/10.1590/S0102-05362012000200023 GONÇALVES, L. S. A.; GOMES, V. M.; ROBAINA, R. R.; VALIM, R. H.; RODRIGUES, R.; ARANHA, F. M. Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp accessions. Revista Agrária, Recife, v. 9, n. 1, p. 49-52, 2014. http://dx.doi.org/ DOI:10.5039/agraria.v9i1a3496. https://doi.org/10.5039/agraria.v9i1a3496 HUSSAIN, M. A.; MUKHTAR, T.; KAYANI, M. Z. Characterization of susceptibility and resistance responses to root-knot nematode (Meloidogyne incognita) infection in okra germplasm. Pakistan Journal of Agricultural Science, Faisalabad v. 51, n. 2, p. 309-314, 2014. HUSSEY, R. S.; BARKER, K. R. A comparasion of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Disease Reporter, Washington, v. 57, p. 1025-1028, 1973. IEA. INSTITUTO DE ECONOMIA AGRÍCOLA. Estatísticas de produção agropecuária paulista, 2016. Disponível em: < http://ciagri.iea.sp.gov.br/nia1/subjetiva.aspx?cod_sis=1&idioma=1 >. Acesso em: 20 de Maio de 2016. 325 Identifying resistance... SOARES, R. S. et al Biosci. J., Uberlândia, v. 34, n. 2, p. 312-325, Mar./Apr. 2018 LIU, B.; REN, J.; ZHANG, Y.; AN, J.; CHEN, M.; CHEN, H.; XU, C.; REN, H. A new grafted rootstock against root-knot nematode for cucumber, melon, and watermelon. Agronomy for Sustainable Development, Paris, v. 35, n. 1, p. 251-259, 2015. https://doi.org/10.1007/s13593-014-0234-5 LÓPES-PÉREZ, J. A.; STRANGE, M.; KALOSHIAN, I.; PLOEG, A. T. Differencial response of Mi gene- resistant tomato rootstocks to root-knot nematodes (Meloidogyne incognita). Crop Protection, Guildford, v. 25, n. 4, p. 382-388, 2006. https://doi.org/10.1016/j.cropro.2005.07.001. https://doi.org/10.1016/j.cropro.2005.07.001 MELO, O. D.; MALUF, W. R.; GONÇALVES, R. J. S.; NETO, A. C. G.; GOMES, L. A. A.; CARVALHO, R. C. Triagem de genótipos de hortaliças para resistência a Meloidogyne enterolobii. Pesquisa Agropecuária Brasileira. Brasília, v. 46, n. 8, p. 829-835, 2011. http://dx.doi.org/10.1590/S0100-204X2011000800007. MOURA, M. F. ; MARUBAYASHI, J. M. ; MITUTI, T.; GIORIA, R. ; KOBORI, R. F. ; PAVAN, M. A. ; KRAUSE-SAKATE, R. Análise comparativa da região codificadora para a proteína capsidial de isolados de PepYMV e PVY coletados em pimentão. Summa Phytopathologica, Botucatu, v. 38, n. 1, p. 93-96, 2012. http://dx.doi.org/10.1590/S0100-54052012000100017 OLIVEIRA, D. C. Enxertia de plantas de pimentão em Capsicum spp. no manejo de nematóides de galha. 2007. 134p. Tese (Doutorado). Universidade Estadual Paulista – Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal. OLIVEIRA, C. D.; BRAZ, L. T.; SANTOS, J. M.; BANZATTO, D. A.; OLIVEIRA, P. R. Resistência de pimentas a nematóides de galha e compatibilidade enxerto/porta-enxerto entre híbridos de pimentão e pimentas. Horticultura Brasileira, Brasília, v. 27, n. 4, p. 520-526, 2009. http://dx.doi.org/10.1590/S0102- 05362009000400019. OOSTENBRINK, M. Major characteristics of the relation between nematodes and plants. Mededelingen Landbouw, v. 66, p. 1-46, 1966. MOENS, M.; PERRY, N. R.; STARR, F. L. Meloidogyne species - a diverse group of novel and important plant parasites. In: PERRY, R. N.; MOENS, M.; STARR, J. L. Root-knot nematodes. Wallingford: CAB International. 2009. p. 1-17. https://doi.org/10.1079/9781845934927.0001 PIMENTA, S.; MENEZES, D.; NEDER, D. G.; MELO, R. A.; ARAÚJO, A. L. R.; MARANHÃO, E. A. A. Adaptability and stability of pepper hybrids under conventional and organic production systems. Horticultura Brasileira, Brasília, v. 34, n. 2, p. 168-174, 2016. http://dx.doi.org/10.1590/S0102-053620160000200004. PINHEIRO, J. B.; REIFSCHNEIDER, F. J. B.; PEREIRA, R. B.; MOITA, A. W. Reprodução de Meloidogyne spp. em Capsicum spp. Nematologia brasileira, Piracicaba, v. 37, p. 20-25, 2013. PINHEIRO, J. B.; REIFSCHNEIDER, F. J. B.; PEREIRA, R. B.; MOITA, A. W. Reação de genótipos de Capsicum ao nematoide-das-galha. Horticultura Brasileira, Brasília, v. 32, n. 2, p. 371-375, 2014. http://dx.doi.org/10.1590/S0102-05362014000300022. PINHEIRO, J. B.; BOITEUX, L. S.; ALMEIDA, M. R. A.; PEREIRA, R. B.; GALHARDO, L. C. S.; CARNEIRO, R. M. D. G. First Report of Meloidogyne enterolobii in Capsicum Rootstocks Carrying The Me1 and Me3/Me7 Genes in Central Brazil. Nematropica, Florida, v. 45, n. 2, p. 184-188, 2015. TAYLOR, A. L. Introduction to research on plant nematology: an FAO guide to the study and control of the plant parasitic nematodes. Rome: Food and Agricultural Organization of the United Nations, 1967. 133p.